Kari Pulli

Senior Director
NVIDIA Research

<A NVIDIA,

- »
Material sources <A

NnviDIA

® A. Criminisi & J. Shotton: Decision Forests Tutorial

* http://research.microsoft.com/en-us/projects/decisionforests/
J. Shotton et al. (CVPR11): Real-Time Human Pose Recognition
in Parts from a Single Depth Image
* http://research.microsoft.com/apps/pubs/?id=145347
Geoffrey Hinton: Neural Networks for Machine Learning
* https://www.coursera.org/course/neuralnets

Andrew Ng: Machine Learning

* https://lwww.coursera.org/course/ml

Rob Fergus: Deep Learning for Computer Vision

* http://media.nips.cc/Conferences/2013/Video/Tutorial1A.pdf
*® https://www.youtube.com/watch?v=qgqx57X0fBdA

NVIDIA Research

»

»

L)

»

Two types of supervised learning

« Each training case consists of
— an input vector x
— a target output t

* Regression: The target output is
— real numbers

- Classification: The target output is Our focus
— aclass label ﬁ@@ﬂ@y

Housing price prediction

400
X

300 X K X X
Price (S) w X
in 1000’s 200

o X
100 ¢
0
0 500 1000 1500 2000 2500
Size in feet?
Supervised Learning Regression: Predict continuous

“right answers” given valued output (price)

Andrew Ng

Breast cancer (malignant, benign)

- Clump Thickness

- Uniformity of Cell Size

- Uniformity of Cell Shape

&'umor Slzé

Andrew Ng

Supervised Learning

X
X
O xx
O O
O

Unsupervised Learning

O
O
O OO
O O
O

Clustering

K-means
algorithm

Machine Learning

Andrew Ng

Andrew Ng

Andrew Ng

Andrew Ng

Andrew Ng

&
-]
3
® [
e ¢ o)X
e
1 1 L
< o N

Andrew Ng

()
@
3
® [
e ¢ o)X
®
1 1 L
< o N

Andrew Ng

Andrew Ng

A. Criminisi, J. Shotton and E. Konukoglu

Ntto//researchrmicrosott.comy/bproiects/adecisionrorests

Decision trees and decision forests

A general tree structure A decision tree

@ < root node

\
) Is bottom Is bottom
mte.rnal —_— @ @ part green? O part blue?
(split) node & 3 Y
NP ;

() Co () (& OX®,

7 b3 91101111121 1131114

1\ Zor Z,
2 ,°o

terminal (leaf) node

A forest is an ensemble of trees. The trees are all slightly different from one another.

Decision tree testing (runtime)
Input V

test
point

A"uu 1'

Prediction at leaf
plc|v) = Zp(d])?(ﬂv)

Split the data at node
A [nput data in feature space h(v,0) € {true, false}

o vV

L1

t

v = (z1, - ,xq) € R?

St ? ﬁj;
Grendai

Decision tree training (off-line)

Input training data
How to split the data? So :* {v,c}

h(v,0) € {true,false}
‘H" HH A

0; = arg max |
OcT;

I=1(S;,6)

Binary tree? Ternary?
How big a tree?

Training and information gain

SL

Information gain

1(S,8) = H(S) -

t€{L,R}

Shannon’s entropy

=—> »()

ceC
Node training

S,

SR

|S°]

2 S|

) log(p

0 = arg max I(S;, 0)

OcT;

H(5Y

Split 1 Before split

Split 2

data before split

o.'..(;}igi

RN
®
o ‘.o
| Info Gain = 0.40 |
- .,.. .’ o
o® ©
3-$;_.____’.3_
8°®

Info éaln =0.69 |

o ©
o®
1)
o

\ A
.‘.’0

Ff

®

class distribution
1

0.8
0.6
0.4
0.2 I I
0
top
0.8
0.6
0.4

0.2
L

L

left

0.8
0.6
0.4

{

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

(for categorical, non-parametric distributions)

bottom

s

right

Training and information gain

S,

St SH

Information gain

I(5,0) =H(S)— > ||‘;|
t€{L,R}
Differential entropy of Gaussian

H(S) = 5 log ((2me)N(S)))

H(5Y

Node training

0 = arg max I(S;, 0)
OcT;

Split 1 Before split

Split 2

(for continuous, parametric densities)

data before split

g -
::‘. -
*a2 - \.o
E e 3e
O% LX3 c..?. e .
o % P 2% o ¢
o.ﬁ e N & .’.‘.
¥
. F] 8 ~s ©
“e® hd .
I Info Gain = 1.08 l
o
o..}. -
*o2 - . ;.o
h E e 3%e
R
S a2 5 Tk
"35’ o Seenist
. ‘. ..o:.: .
*e® . -

l Info Gain = 2.43 l

S 1

-® 1 -
e phend
. f" . o e® %% " ..
e W 1 ‘.E:Y '.“ O
-s’»' 2, :-".::: .

fitted Gaussian

The weak learner model

Node weak learner 2
h(v,@,;)
Node test params 1=
0 c j
.
Examples of weak learners
AT2 ’l,b AT2 ATL2
e ® oo e ® o0 ’l/) e e e
e ‘. e o [) .o e o ,lp [.. e o
°* e °Q* e e ¢ e
e L) * ~ L e e * ~ ® ™Y Y A ~ e
e e ‘. e e '. o e ‘.
e e O ‘. e e O .. e e O ‘.
®* o ®* o S o
e o e o e o
e® e® e®
[) [[
1 1 1
> > >
Weak learner: axis aligned Weak learner: oriented line

(Splitting data at node j

h(v,0) = [> ¢p(v) - > 73]

Feature response N — e e T
for 2D example. ¢() (z1 =2)

With v» = (1 0v3) or

b = (01 s)

\.

h(v,0) =[m > ¢p(v) - > 73]

Feature response N — e g T
for 2D example. ¢() (z1 22)

L With ¥ € R®a generic line in homog. coordinates.)

Weak learner: conic section
h(v,0) = [11 > ¢ (v) ¥ d(v) > 7]
Feature response (V) = (x1 x2 1)T

for 2D example.
With 5 € R*>*3 a matrix representing a conic.

The prediction model

What do we do at the Ieaf?\
-
S

o

(Prediction model: probabilistic)

leaf

p(c|v)

Decision forest training (off-line)

[

Decision forest model: the randomness model

i 1) Bagging (randomizing the training set)
So The full training set

t
Sp C So The randomly sampled subset of training data made available for the tree t

Forest training
So
%

Efficient training

Decision forest model: the randomness model

b
T, < T
p = |T;|

(2) Randomized node optimization (RNO)

The full set of all possible node test parameters
For each node the set of randomly sampled features

Randomness control parameter.

For p = |71 no randomness and maximum tree correlation.

For p=1

max randomness and minimum tree correlation.

(Node training
Node weak learner
h(v,8,;)

Node test params

0 cT;

The effect of

Small value of Z; little tree correlation.

Large value of Z; large tree correlation.

-

Decision forest model: the ensemble model

An example forest to predict
continuous variables

WAREARER S

Pt:1(29|V) Pio (y|v) by (y|V)
- pr—a(y|v)

1 — 1 1+
p(ylv) = — > pe(ylv) p(ylv) = - 1 r:(wlv)

A A

p2(y|v) r\p(yIV)

p3(y|v)

A
r1(y|v) Pa(y|Vv) plylv) / \
= J\ /%U o) i

Classification forest: the ensemble model

[The ensemble model

T
1
Forest output probability p(clv) = T E ;pt(C|V)
%

p(clv)

Classification forest: effect of the weak learner model

Training

different trees in the forest

] {[[[BY Crassification wree 1 »

_ Testing different trees in the forest

A=t | rgm [t Wt

Three concepts to keep in mind:

“Accuracy of prediction”
“Quality of confidence”

“Generalization”

Classification forest: effect of the weak learner model

Training different trees in the forest

Training points

LD g o Training points 18
g%é&g aﬁﬁ
.: o e . xl .&
>

Testing different trees in the forest

Classification forest: effect of the weak learner model

_Testing different trees in the forest

o omme Forest postenmr (T=1 D=

Classification forest: with >2 classes

Training different trees in the forest

%2 Training points T pens

ﬁﬁfﬁf g . t:;#,';l\-

A

underfitting overfitting
too little model capacity too much model capacity

best generalization

Mror

\ training set error

>
model capacity (e.g. tree depth)

Classification forest: effect of tree depth

A2 . . ——— .
- oo~ olIraining poipts: 4:¢lass.mixed

max tree depth, D
underfitting overfitting

Real-Time Human Pose Recognition
in Parts from Single Depth Images

Jamie Shotton, Andrew Fitzgibbon, Mat Cook,
Toby Sharp, Mark Finocchio, Richard Moore,
Alex Kipman, Andrew Blake

»

CVPR 2011

Microsoft”
Research EEEeccel

Body part recognition

left

right hand

Body part recognition

= No temporal information
= frame-by-frame

= Local pose estimate of parts
= each pixel & each body joint treated independently

= Very fast

= simple depth image features
= parallel decision forest classifier

The Kinect pose estimation pipeline

S

==
capture
depth image & :
remove bg T e 8
infer
body parts 8%
per pixel cluster pixels to
hypothesize
body joint fit model &

positions track skeleton

Synthetic training data

Record mocap Retr et to sveral odels

ook frames
distilled to 100k poses

Train invariance to:

1123 AERE PPN ‘MMR

Synthetic vs. real data

} 2]‘l‘r

synthetic
(train & test)

Fast depth image features

= Depth comparisons

= very fast to compute

|mage depth offset depth
—

feature f(7.) =di(2) - dr(z+ A)
response
image coordlnate

A =v/dr(x)

——
scales inversely with depth

Background pixels
d = large constant

Depth of trees

input depth ground truth parts inferred parts (soft)
®

depth 18

73

Depth Of trees =~ gook training images

<9¢ 15k training images

. 65% - _ 65% -
"o synthetic test data 0% real test data
O
= 25“5% y 55%
% §O% . 50% -
S B5% - 45% -
:% 40% 4,0%
35% 35%
30% - | 30% i i |

° Depth of fees 20 . De1|§th of trees °°

Number of trees

v
7S
>

U1
2
N

45%

Average per-class

40%

ground truth
— -
— R
inferred body parts (most likely)
b 1tree 3 trees 6 trees
| | | | | | %\ ﬁi
Numbeér o{Ftrges6 g ‘

R

input depth inferred body parts

front view side view top view
inferred joint positions

no tracking or smoothing

input depth inferred body parts

front view side view top view
inferred joint positions

no tracking or smoothing

From proposals to skeleton

ta.! ? 1

Use...

3D joint hypotheses
kinematic constraints
temporal coherence

. to give

full skeleton
higher accuracy
invisible joints
multi-player

) ,a.

4. track skeleton

Feed-forward neural networks

* These are the most common type of
neural network in practice

— The first layer is the input output units
and the last layer is the output. T

— If there is more than one hidden layer, < hidden units
we call them “deep” neural networks.

— Hidden layers learn complex features, O O O input units

the outputs are learned in terms of those
features.

Linear neurons

 These are simple but computationally limited

bias i thinput
l |
y=b+ > xw -~ S
t : weight on
output 7 th i
index over L O O O

iInput connections

Sigmoid neurons

1
« These give a real-valued z=b+ Exiwi y=
output that is a smooth and i 1+e <
bounded function of their
total input. 9z _ . 9z _ Y ya-y)
— They have nice ow; l 0X; l dz
derivatives which make
learning easy 1
i 05
Y
@,
0 |
0o <

Finding weights with backpropagation

There is a big difference between the
forward and backward passes.

In the forward pass we use squashing
functions to prevent the activity vectors
from exploding.

The backward pass, is completely linear.

— The forward pass determines the slope
of the linear function used for
backpropagating through each neuron.

%" Ey_ Backpropagating dE/dy Ei=30;-1)

2

* Find squared error

* Propagate error to the
layer below

« Compute error
derivative w.r.t. weights

 Repeat

1+e

Zl-)il Backpropagating dE/dy Ei=20,-1)

D E _ @ oF
0z dzj 9y,
Propagate error across
\(D non-linearity
@/ ®
B

14 e

Backpropagating dE/dy =i 2
)
0E @) oF OE
@ oy, MU

Propagate error across
non-linearity

5]-:);]._ j
JE dy; OE oE
=l o e
0z; Z; 9y, ay,
ok _ 5 o
ay, ; dy, .

Propagate error to the
next activation across
connections

Propagate error to the
next activation across
connections

.=$. Backpropagating dE/dy E, jg(yf'tf)

ayj
OE dy; 0E OF
— = — =y, 0-y)—
dz; dzj dy; dy;
oE dz; OF oE
o E jos Wy —
oe _ & oE

Error gradient w.r.t. weights

Backpropagating dE/dy

9k _, 4
ayj yj J
oE dy. oE oE
=) = = yj (1_};])_
dz, dz; dy, dy;
—_ = _ | = W _—

Q dy, r dy; 9z; ; ' 0z f

\ JE 0z; OE OE

Q awij awl-j azj ZGZJ-

Converting error derivatives into a learning procedure

« The backpropagation algorithm is an efficient way of computing the
error derivative dE/dw for every weight on a single training case.

« To get a fully specified learning procedure, we still need to make a lot
of other decisions about how to use these error derivatives:

— Optimization issues: How do we use the error derivatives on
individual cases to discover a good set of weights?

— Generalization issues: How do we ensure that the learned weights
work well for cases we did not see during training?

Gradient descent algorithm

OF

repeat until convergence { W := W — a 5=

Andrew Ng

Andrew Ng

Andrew Ng

Overfitting: The downside of using powerful models

« The training data contains information about the regularities in the
mapping from input to output. But it also contains two types of noise.

— The target values may be unreliable

— There is sampling error:
accidental regularities just because of the particular training
cases that were chosen.

* When we fit the model, it cannot tell which regularities are real and
which are caused by sampling error.

— So it fits both kinds of regularity.
— |f the model is very flexible it can model the sampling error really
well. This is a disaster.

Example: Logistic regression

“hg(z) = g(0g + 0121 + 02x2) g(Oy + 0121 + O34 g(0o ‘|2‘ Ohxy + 922$2% &
(g = sigmoid function) +93£% + 0423 N +93_x.%£§ ™ 94%22

“Undu 8t —

\\ OM‘Q{ \

Andrew Ng

Preventing overfitting

Approach 1: Get more data!

— Almost always the best bet if you
have enough compute power to
train on more data.

Approach 2: Use a model that has
the right capacity:

— enough to fit the true regularities.

— not enough to also fit spurious
regularities (if they are weaker).

Approach 3: Average many different
models.

— Use models with different forms.

Approach 4: (Bayesian) Use a
single neural network architecture,
but average the predictions made
by many different weight vectors.

— Train the model on different
subsets of the training data
(this is called “bagging”).

Some ways to limit the capacity of a neural net

« The capacity can be controlled in many ways:

— Architecture: Limit the number of hidden layers and the number
of units per layer.

— Early stopping: Start with small weights and stop the learning
before it overfits.

— Weight-decay: Penalize large weights using penalties or
constraints on their squared values (L2 penalty) or absolute
values (L1 penalty).

— Noise: Add noise to the weights or the activities.
« Typically, a combination of several of these methods is used.

Small Model vs. Big Model + Regularize

Small model Big model Big model +
regularize

Cross-validation for choosing meta parameters

« Divide the total dataset into three subsets:
— Training data is used for learning the parameters of the model.

— Validation data is not used for learning but is used for deciding
what settings of the meta parameters work best.

— Test data is used to underfitting overfitting
get a f|na|, unb|ased A too little model capacity too much model capacity
estimate of how well *
the network works.

error

best generalization

test set error

training set error

> =
model capacity (e.g. tree depth)

Convolutional Neural Networks
(currently the dominant approach for neural networks)

The similarly colored
connections all have the

o same weight.
— Replication greatly reduces the number of free

parameters to be learned. O O

Use many different copies of the same feature detector
with different positions.

Use several different feature types, O
each with its own map of replicated detectors.

— Allows each patch of image to be represented in
several ways.

Le Net

Yann LeCun and his collaborators developed a really good recognizer for
handwritten digits by using backpropagation in a feedforward net with:

— Many hidden layers

— Many maps of replicated convolution units in each layer

— Pooling of the outputs of nearby replicated units

— A wide input can cope with several digits at once even if they overlap
This net was used for reading ~10% of the checks in North America.
Look the impressive demos of LENET at http://yann.lecun.com

X
v
&
«
W
]
W
o

-1
v~
=l
ot

—
o Ns

55355
feNet 5

ATsT

answer:

w_
: é?. 3§
T A L DL e e e R T

v R a1 B e mu?.,.:u_u)

E¥

B Beel

—
RESEARCH

12
et iH
feNet 5

answer
titi
ATsY

I M N L

10 AP R s A R a0 e B L H_..um”..:h_-.__._:_ o
B e L e R

B 2B el e

RESEARCH
RESEARCH

"
R
<
3

BT TEEHHES

&
]
8RR | R A
2. S22 -

g

MAOEE T il ST U S S e L R

era Jaak: CREA7 - O RIS AR Y
B0 -EN GG 00

The architecture of LeNet5

C3: f. maps 16@10x10
S4: f. maps 16@5x5

CS5: layer pg. T
120 F6: layer ?gTPU

C1: feature maps

INPUT
35430 6@28x28

S2: f. maps
6@14x14

— |

i " Full connection } Gaussian
Subsampling Convolutions Subsampling Full connection

}
|
|

Convolutions

Pooling the outputs of replicated feature detectors

« Get a small amount of translational invariance at each level by
averaging four neighboring outputs to give a single output.

— This reduces the number of inputs to the next layer of
feature extraction.

— Taking the maximum of the four works slightly better.

* Problem: After several levels of pooling, we have lost
information about the precise positions of things.

The architecture of LeNet5

C3: f. maps 16@10x10
S4: f. maps 16@5x5

CS5: layer pg. T
120 F6: layer ?gTPU

C1: feature maps

INPUT
35430 6@28x28

S2: f. maps
6@14x14

— |

i " Full connection } Gaussian
Subsampling Convolutions Subsampling Full connection

}
|
|

Convolutions

X
v
&
«
W
]
W
o

-1
v~
=l
ot

—
o Ns

55355
feNet 5

ATsT

answer:

w_
: é?. 3§
T A L DL e e e R T

v R a1 B e mu?.,.:u_u)

E¥

B Beel

—
RESEARCH

12
et iH
feNet 5

answer
titi
ATsY

I M N L

10 AP R s A R a0 e B L H_..um”..:h_-.__._:_ o
B e L e R

B 2B el e

RESEARCH
RESEARCH

"
R
<
3

BT TEEHHES

&
]
8RR | R A
2. S22 -

g

MAOEE T il ST U S S e L R

era Jaak: CREA7 - O RIS AR Y
B0 -EN GG 00

() nw P o
) - = 5 e .
a ._I.aS..I.r O O

Q] © O O
m5 .._nluhe reauo
e ot .T...I. rOhSO
N o L2 0™y
o Z OpsS =02 @
o ESZ 25<t g
C > N
o Tepe sNGTLE g
> EeE Ex>O00@ 2
f —

2b tae UbbC._nlu.
© Ses Eg2§ ©
c S0 €25 ® O
— Z 0o HFaoa
1wl el S’ QS
wiolelwl sl inlQ)
(@} < o ¢] [+)] f\.ﬁ
Wil 13 l@inig]
T i i@t o @i
V)5 VANl 00 N @0\

w ™ un r~

X A X A A _w
Q.?.?.»@.#_;&OWWI%
5

> >

y o QJ AJ ﬂl.9..:“./9 ©
[Te} N

A A

o

>5 6

- <

TS ST T 2SN
ol el mitl ol QLN
el et l il wing o]
Wi elvni@in gl bigl
<l olal wlQf pl T ol W

The brute force approach

LeNet uses knowledge about the
Invariances to design:

— the local connectivity
— the weight-sharing
— the pooling.
This achieves about 80 errors.

Ciresan et al. (2010) inject
knowledge of invariances by
creating a huge amount of carefully
designed extra training data:

— For each training image, they
produce many new training
examples by applying many
different transformations.

— They can then train a large,
deep, dumb net on a GPU
without much overfitting.

They achieve about 35 errors.

From hand-written digits to 3-D objects

* Recognizing real objects in color photographs downloaded from the web is
much more complicated than recognizing hand-written digits:

— Hundred times as many classes (1000 vs. 10)
— Hundred times as many pixels (256 x 256 color vs. 28 x 28)
— Two dimensional image of three-dimensional scene.
— Cluttered scenes requiring segmentation
— Multiple objects in each image.
* Will the same type of convolutional neural network work?

The ILSVRC-2012 competition on ImageNet

 The dataset has 1.2 million high-resolution training images.
» The classification task:

— Get the “correct” class in your top 5 bets.
There are 1000 classes.

 The localization task:

— For each bet, put a box around the object.
Your box must have at least 50% overlap
with the correct box.

Groundtruth:

tv or monitor

tv or monitor (2)
tv or monitor (3)
person

remote control
remote control (2)

Examples from the test set (with the network’s guesses)

cheetah

cheet*h

leopard
snow leopard

Egyptian cat

mi:ullét tlz.am

hand glass

bullet train

passenger car

subway train

electric locomotive

scissors

han+ glass

'fr*ing pan

st+thoscope

University of Toronto (Alex Krizhevsky) ¢ 16.4% 34.1%

Error rates on the ILSVRC-2012 competition

classification

lassification o
classiticatio &localization

University of Tokyo e 26.1% 53.6%
Oxford University Computer Vision Group e 26.9% 50.0%
INRIA (French national research institute in CS) + e 27.0%

XRCE (Xerox Research Center Europe)
University of Amsterdam

29.5%

A neural network for ImageNet
Alex Krizhevsky (NIPS 2012) .

developed a very deep
convolutional neural net
Its architecture:

Softmax Output

Layer 7: Full

Layer 6: Full

Layer 5: Conv + Pool
Layer 4: Conv

Layer 3: Conv

Layer 2: Conv + Pool

Layer 1: Conv + Pool

Input Image

The activation functions were:

— Rectified linear units in every hidden
layer.
* These train much faster.
* More expressive than logistic.

T

—>
N 0 Z
— Competitive normalization to
suppress hidden activities when

nearby units have stronger activities.
* This helps with variations in intensity.

Tricks that significantly improve generalization

« Train on random 224x224 patches <+ Use “dropout” to regularize the

from the 256x256 images to get weights in the globally

more data. Also use left-right connected layers (which contain

reflections of the images. most of the parameters).

At test time, combine the — Dropout means that half of
opinions from ten different the hidden units in a layer
patches: The four 224x224 are randomly removed for
corner patches plus the central each training example.
224x224 patch plus the — This stops hidden units from

relying too much on other
hidden units.

The hardware required for Alex’s net

He uses a very efficient implementation of convolutional nets on two
Nvidia GTX 580 Graphics Processor Units (over 1000 fast little cores)

— GPUs are very good for matrix-matrix multiplies.

— GPUs have very high bandwidth to memory.

— This allows him to train the network in a week.

— It also makes it quick to combine results from 10 patches at test time.

We can spread a network over many cores if we can communicate the
states fast enough.

As cores get cheaper and datasets get bigger, big neural nets will improve
faster than old-fashioned (i.e., pre Oct 2012) computer vision systems.

Auto-Encoders

Restricted Boltzmann Machines

« Simple recursive neural net

— Only one layer of hidden
units.

— No connections between
hidden units.

. Idea: p(h, - 1) = 1

— The hidden layer should J
“auto-encode” the input. _(bj"'_z viwl.j)
1 _I_ e [SSVAY

Contrastive divergence to train an RBM

Start with a training vector on the
NS oNe

visible units.

0 1
<Vihj>/ .\<Vih17 Update all the hidden units in
O @

arallel.
T @ P

t=0 t=1
data reconstruction

Update all the visible units in
parallel to get a “reconstruction”.

Update the hidden units again.

0 1
Aw; = e(<vih;>" —<v;h;>)

Explanation

eve eoe

<v,.hj>y .\<vih]7
T O ge

=0 t=1
data reconstruction

0 1
Aw; = e(<vih;>" —<v;h;>)

|deally, hidden layers re-generate
the input.

If that's not the case, the hidden
layers generate something else.

Change the weights so that this
wouldn’t happen.

The weights of the 50 feature detectors

We start with small random weights to break symmetry

The final 50 x 256 weights: Each neuron grabs a different feature

e = =
i i .
B s '
I
™ = E o
= - " e =

How well can we reconstruct digit images from the
binary feature activations?

Reconstruction
from activated
binary features

New test image from
the digit class that the
model was trained on

Reconstruction
from activated
Data)
binary features
. | . |

Image from an
unfamiliar digit class
The network tries to see
every image as a 2.

The DBN used for modeling the joint distribution of
MNIST digits and their labels

« The first two hidden layers are 2000 units
learned without using labels. t t
 The top layer connects the .
labels Ec)o tr):e features in the 10 labels 900 units
second hidden layer. t ;
« The weights are then fine-tuned 900 units
to be a better generative model ' 1
using backpropagation. 28 x 28
pixel
image

Krizhevsky’'s deep autoencoder

The encoder has

256-bit binary code

about 67,000,000 75
parameters. 512
It takes a few days on 103
a GTX 285 GPU to ~
ftraln on two million 2048
images. >
4096
i

8192

T @ i

1024 1024 1024

Reconstructions of 32x32 color images from 256-bit codes

retrieved using 256 bit codes

dlSt 61 dlSt 64 dlst 65 dist: 66 dist: 67 dist: 67 dist: 67

retrieved using Euclidean distance in pixel intensity space

dist: 3064.2 dist: 3094 1 dist: 3132.4 dist: 3139.2 dist: 3147.0 dist: 3150.9

dist: 3187.5

retrieved using 256 bit codes

dist: 61 dist: 62 dist: 62 dist: 63 dist: 64

dist: 65

retrieved using Euclidean distance in pixel intensity space

dist: 2725.1 dist: 2764.2 dist: 2807.8 dist: 2844.9 dist: 2855.9 dist: 2870.3

dist: 2916.7 dist: 2916.7 dist: 2916.8 dist: 2922.7 dist: 2930.2 dist: 2931.3

dist: 64

dist: 2899.1

