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First project

* Build your own (basic) programs
panorama
HDR (really, exposure fusion)

* The key components
register images so their features align

determine overlap
blend

NVIDIA Research



We need to match (align) images S,TD,A

NVIDIA Research



Detect feature points in both images SI%A

NVIDIA Research



Find corresponding pairs S,%A

NVIDIA Research



Use these pairs to align images rSTD,A

NVIDIA Research



Matching with Features <X

NVIDIA

* Problem 1:
* Detect the same point independently in both images

no chance to match!

NVIDIA Researcl h



Matching with Features <X

NVIDIA

* Problem 2:
* For each point correctly recognize the corresponding one

NVIDIA Researcl h



Harris Corners: The Basic ldea <3
nvibDiA

* We should easily recognize the point by looking through
a small window

* Shifting a window in any direction should give a large
change in intensity

NVIDIA Researc h



Harris Detector: Basic Idea ,f,%,\

region: : :
no change in all no change along the significant change in all
directions edge direction directions

NVIDIA Research



Harris Detector: Mathematics S,TZD,A

Window-averaged change of intensity for the shift [u, V]:

E(u,v) = > wix, D[ I(x+u,y +v) = 1(x, )|

Window Shifted Intensity
function intensity

Window function W(X, y/) = | ‘ or &

1 in window, O outside Gaussian




Harris Detector: Mathematics ,S%A

Expanding E(u,v) in a 2"d order Taylor series expansion,
we have, for small shifts [u, V], a bilinear approximation:

NVIDIA Researcl h
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of M at different locations

Az

lues A,,

Eigenva

A, and A, are large
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of M at different locations

Az

lues A,,

Eigenva

large A, small A,
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of M at different locations

Az

lues A,,

Eigenva

small A, small A,
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Harris Detector: Mathematics <X
NVIDIA.

Classification of Ay
image points using e -Comer
eigenvalues of M:

NVIDIA Researcl h



Harris Detector: Mathematics E,%A

Measure of corner response.

R =det M —k(traceM)2

detM = AA
trace M = A + A,

(k — empirical constant, k= 0.04 - 0.06)

NVIDIA Researcl h



Harris Detector: Mathematics E,%A

}\2 : : “Corner”

* R depends only on
eigenvalues of M

* Ris large for a

* R is negative with large
magnitude for an

* |R| is small for a region

NVIDIA Researcl h



Harris Detector: Workflow <3

NVIDIA.




Harris Detector: Workflow <3

Compute corner response R

NVIDIA
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Harris Detector: Workflow
Find points with large corner response: R > threshold

e % =

p -
~ &




Harris Detector: Workflow <3

NVIDIA.
Take only the points of local maxima of R

NVIDIA Researcl h



Harris Detector: Workflow <3

NVIDIA.




Harris Detector: Summary E,%A

® Average intensity change in direction [u,V] can be
expressed as a bilinear form:

.

Describe a point in terms of eigenvalues of M:
measure of corner response

R=AA —k(A+2,)

* A good (corner) point should have a large intensity
change in all directions, i.e., R should be large positive

NVIDIA Researc h



Harris Detector: Invariant to rotation <3

P \| g
& R

Ellipse rotates
but its shape (i.e., eigenvalues) remains the same

NVIDIA Researcl h



Almost invariant to intensity change S,%A

* Partial invariance

v Only derivatives are used
=>
invariance to intensity shift /| — I+ b

v"Intensity scale: | — a |

R

threshold

x (image coordinate) x (image coordinate)

NVIDIA Research



Not invariant to image scale! <3
NVIDIA.

) =

All points will be Corner !
classified as

NVIDIA Researcl h



FAST Corners

* Look for a contiguous arc of N pixels
* all much darker (or brighter) than the central pixel p

NVIDIA Research
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How FAST? >
NVIDIA
Detector Set 1 Set 2
Pixel rate (MMPix/s) % | MPix/s %

FASTn =9 188 490 | 179 5.15
FAST n = 12 158 588 | 154 598
Original FAST (n = 12) 79.0 11.7 | 822 112
FAST-ER 75.4 122 | 675 13.7
SUSAN 12.3 747 | 136 679
Harris 8.05 115 | 790 117
Shi-Tomasi 6.50 142 | 650 142
DoG 4.72 195 | 5.10 179

NVIDIA Researc h




How repeatable? <X

NVIDIA.

Detector AUR

FAST-ER 1313.6

FAST-9 1304.57

DoG 127559 £

Shi & Tomasi | 1219.08 g

Harris 1195.2

Harris-Laplace | 1153.13 e
FAST-12 1121.53 Comers per frame
SUSAN 1116.79

Random 271.73



Point Descriptors <3

NVIDIA

* We know how to detect points
* Next question:
How to match them?

NVIDIA Research



_ X
SIFT — Scale Invariant Feature Transform HV%A

Figure 12: The training images for two objects are shown on the left. These can be recognized in a
cluttered image with extensive occlusion, shown in the middle. The results of recognition are shown

on the right. A parallelogram i1s drawn around each recognized object showing the boundaries of the
original training image under the atfi ne transformation solved for during recognition. Smaller squares

indicate the keypoints that were used for recognition.

NVIDIA Research



Effects of Noise

» Consider a single row or column of the image
Plotting intensity as a function of position gives a signal

f(x)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

L f(x)

1 1 I I I 1 1 I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge?



Solution: Smooth First

Signal

>
Kernel

h*f §
ge(h* ) ¢
a0

Where is the edge?

1 1 l | 1 1 I
600 800 1000 1200 1400 1600 1800 2000
I I I I I I I
......... e
600 800 1000 1200 1400 1600 1800 2000
! ) J l | ! H J H
e ———— O L L] Sttt} Sttt hate i
0 200 400 600 800 1000 1200 1400 1600 1800 2000
I I I I I I I I
BSOSO SN SN /\ AN SO S
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Look for peaks in

L (h* f)



Associative Property of Convolution

L(hr f) = (GEh) * f
» This saves us one operation:

Sigma = 50

.................................................

~-
Signal

| | i 1 1
0 200 400 600 800 1000

| | 1 1
1200 1400 1600 1800 2000

I I ! ! I ! ! I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

N\
Q
Flo
>
N’
>
Kh
Convolution

| | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000




Laplacian of Gaussian

2
» Consider %(h * f)

f

| | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

operator

| | | 1 | | | | |

0 200 400 600 800 1000 1200 1400 1600 1800 2000

.........

Convolution
(]
T

(8x2h) * f

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge? Zero-crossings of bottom graph



Blob detection in 2D <X

NVIDIA

* Laplacian of Gaussian: Circularly symmetric operator for
blob detection in 2D
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Characteristic scale

We define the characteristic scale as the scale that
produces peak of Laplacian response

characteristic scale

T. Lindeberg (1998). Feature detection with automatic scale selection.
international Journal of Computer Vision 30 (2): pp 77--116.




. X
Scale selection NVIDIA

Scale invariance of the characteristic scale

NVIDIA Research



Difference of Gaussians (DoG)

» Laplacian of Gaussian can be approximated by the

difference between two different Gaussians

NVIDIA Research

Figure 2—16. The best engineering approximation to VG (shown by the contin-
uous line), obtained by using the difference of two Gaussians (DOG), occurs when
the ratio of the inhibitory to excitatory space constraints is about 1:1.6. The DOG
is shown here dotted. The two profiles are very similar. (Reprinted by permission

from D. Marr and E. Hildreth, “Theory of edge detection, “ Proc. R. Soc. Lond. B
204, pp. 301-328.)

O
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SIFT — Scale Invariant Feature Transform

Descriptor overview:
Determine (by maximizing DoG in scale and in space)

Resample / m Q
AN N

| Subtrac

D. L&We. “Distinctive Image Features from Scale-Invariant Keypoints” [JCV 2004



DOG detector

Fast computation, scale space processed one octave at a time

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”lJCV 60 (2).
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SIFT — Scale Invariant Feature Transform

Descriptor overview:

Determine (by maximizing DoG in scale and in space),
as the dominant gradient direction

Use this scale and orientation to make all further computations
invariant to scale and rotation

&

D. L&We. “Distinctive Image Features from Scale-Invariant Keypoints” [JCV 2004
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Affine invariant regions - Example nVIDIA

NVIDIA Research
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SIFT — Scale Invariant Feature Transform
nvibDiA

Descriptor overview:
Determine (by maximizing DoG in scale and in space),
as the dominant gradient direction
Use this scale and orientation to make all further computations
invariant to scale and rotation
Compute of several small
windows (128 values for each point)
Normalize the descriptor to make it invariant to intensity change

Image gradients Keypoint descriptor

D. LoWe=*Distinctive Image Features from Scale-Invariant Keypoints” [JCV 2004



ORB (Oriented FAST and Rotated BRIEF) <3

NVIDIA
Use FAST-9
* use Harris measure to order them
Find orientation > xl(x,y) Y yl(z,y)
calculate weighted new center

reorient image so that gradients vary vertically

* BRIEF
Binary Robust Independent Elementary Features
choose pixels to compare, result creates 0 or 1
combine to a binary vector, compare using 42N BTN
Hamming distance (XOR + pop count) V& AN 2 S

Rotated BRIEF

train a good set of pixels to compare

> I(x,y) " Yo I(x,y)

NVIDIA Research



rBRIEF vs. SIFT <X

NVIDIA

@® rBRIEF

() steered BRIEF

® SIFT
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Aligning images: Translation? N
ST \— -// 72

Ieft on t0p

s \—',,

NVIDIA Research



<3

A pencil of rays contains all views
NnVIDIA

real synthetic
camera camera

~Q
/v.ﬁ%@?
AN

Can generate any synthetic camera view
as long as it has the same center of projection!
worreseaen - @NA Scene geometry does not matter ...




Which transform to use? <X

RAYA|D]VAY
' / similarity O proje gln
tr lll\l ition
Y
—
Euclidean
Translation Affine Perspective

2 unknowns 6 unknowns 8 unknowns

NVIDIA Research



Homography

Projective mapping between any two PPs
with the same center of projection
rectangle should map to arbitrary quadrilateral
parallel lines aren’t
but must preserve straight lines

Is called a
Homography

To apply a homography H

; \Z
h, h,l||y
h
p’ H p

compute p’=Hp (regular matric multiply)
convert p’ from homogeneous to image
coordinates [X’, y’] (divide by w)

NVIDIA Researc h

PP1
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Homography from mapping quads

Figure 2.8: Quadrilateral to quadrilateral mapping as a composition of simpler mappings.

Fundamentals of Texture Mapping and Image Warping
Paul Heckbert, M.Sc. thesis, U.C. Berkeley, June 1989, 86 pp.
http://www.cs.cmu.edu/~ph/texfund/texfund.pdf

NVIDIA Research
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Homography from n point pairs (x,y ; x’,y’)

Multiply out
wx’ =hy  x+hpy+hys
Wy’ = hyy X+ hyy y + hys
W =hy x+hsythsg
Get rid of w
(h3y X+ hg y + hg)x’ —(hyy x+h,y+h)=0

(h3y X+ hs y + hg)y’ = (hyy X+ hy y + hy) =0 211
Create a new system Ah =0 hz
Each point constraint gives two rows of A h,,
[x -y 1 0 0 0 xx’ yx Xx] h=|h,,

[0 0 0x -y -1 xy yy y] hys
Solve with singular value decomposition of A = USVT ha
solution is in the nullspace of A ha,
@ tth1e last column of V (= last row of VT) | has



from numpy import *

Python test code >

X = ones([3,4]) NVIDIA

X[:2,:] = random.rand(2,4)
x,y = X[0],X[1]

H random.rand (3, 3)
Y = dot(H,X)

YY = (Y / Y[2])[:2,:]
u,v = YY[O0],YY[1]

A = zeros([8,9])

for i in range(4):
A[2*i ] = [-x[i], -y[i]l, -1, o, 0, 0, x[i] * u[i], y[i] * u[i], u[i]]
A[2*i+1] = | 0, 0, O, -x[i], -y[il, -1, x[i] * v[i], yI[i] * v[i], Vv[i]]

[u,s,vt] = linalg.svd(A)

HH = vt[-1,:].reshape([3,3])

print H - HH * (H[2,2] / HH[2,2])



>

NVIDIA.

common
picture

plane of
mosaic
image

NVIDIA Research pe rs peC‘nve reprOJeCtlon Pics: Marc Levoy



Reprojecting an image onto X
a different picture plane NVIDIA.

the sidewalk art of Julian Beever

* the view on any picture plane can be projected onto any
other plane in 3D without changing its appearance as seen
from the center of projection

NVIDIA Researcl h



What to do with outliers? <X
RAYA|D]VAY

Least squares OK when error has Gaussian distribution

But it breaks with outliers

data points that are not drawn from the same distribution
Mis-matched points are outliers to the Gaussian error
distribution

severely disturbs the Homography

Line fitting using
regression is
biased by outliers

NVIDIA Researc h
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RANSAC

dom S /Ample Consensus
1. Randomly choose a subset of data points to fit model (a sample)

2. Points within some distance threshold t of model are a consensus set
Size of consensus set is model’ s support

3. Repeat for N samples; model with biggest support is most robust fit

Points within distance t of best model are inliers
Fit final model to all inliers

Two samples
and their supports
for line-fitting

NVIDIA Research



Hybrid multi-resolution registration S,%A

Image Based

Initial guess
@ Feature Based

Registration parameters

NVIDIA Research
K. Pulli, M. Tico, Y. Xiong, X. Wang, C-K. Liang, “Panoramic Imaging System for Camera Phones”, ICCE 2010



Progression of multi-resolution registration S%A

Actual
size

Applied
to hi-res

NVIDIA Researcl h



Feature-based registration <3

NVIDIA
Previous estimate Update search range y

' Feature Matchin Validit
Feature Detection | ' g RANSAC alidity
(Harris corners) (spherical coordinates) check

N Apply the previous
( registration estimate /\ New estimate

Convert to spherical Convert from spherical
coordinates coordinates

invalid

, = Best block cross-
NVIDIA Research =3 correlation match



Image blending >

NVIDIA.

* Directly averaging the overlapped pixels results in ghosting artifacts
* Moving objects, errors in registration, parallax, etc.

NVIDIA Research
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Alpha Blendlng | Feathering <3
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Alpha Blending / Feathering <3

NVIDIA
/@

Iptend = Al T (1-0) L1

NVIDIA Researcl h
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ing

le averag

simp

Setting alpha

Y § sy

Alpha = .5 in overlap region

NVIDIA Research



Solution for ghosting: Image labeling > |

* Assign one input image each output pixel
* Optimal assignment can be found by graph cut [Agarwala et al. 2004]




New artifacts <3

NVIDIA.

* Inconsistency between pixels from different input images
* Different exposure/white balance settings
* Photometric distortions (e.g., vignetting)

NVIDIA Research



Solution: Poisson blending <3

NVIDIA

* Copy the gradient field from the input image
* Reconstruct the final image by solving a Poisson equation

.. = Combined gradient field

NVIDIA Research



Problems with direct cloning <3

NVIDIA.
P. Pérez, M. Gangnet, A. Blake. Poisson image editing. SIGGRAPH 2003
http://www.irisa.fr/vista/Papers/2003_siggraph_perez.pdf

-t

cloning

sources/destinations

NVIDIA Research



= - - D
Solution: clone gradient, integrate colors rfmm

cloning seamless cloning
sources/destinations

NVIDIA Research




Membrane interpolation <3

NVIDIA

NVIDIA Researcl h
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Copy the details

Seamlessly paste m onto

Just add a linear function so that the boundary condition is respected

m

Gradients didn’'t change much,
and function is continuous

NVIDIA Researc



Coordinates for Instant Image Cloning SIGGRAPH 2009

Zeev Farbman Gil Hoffer Yaron Lipman Daniel Cohen-Or Dani Lischinski
Hebrew University Tel Aviv University Princeton University Tel Aviv University Hebrew University

(d) Target image (e) Poisson cloning (f) Mean-value cloning

Figure 1: Poisson cloning smoothly interpolates the error along the boundary of the source and the target regions across the entire cloned
region (the resulting membrane is shown in (b)), yielding a seamless composite (e). A qualitatively similar membrane (c) may be achieved
via transfinite interpolation, without solvine a linear svstem. (f) Seamless clonine obtained instantly using the mean-value interpolant.



Mean-value coordinates for smooth

interpolation

<X
NVIDIA

these coordinates may be used to smoothly interpolate any function

f defined at the boundary vertices:
m—1

fx) =Y Ai(x)f(pi)-

i=0

Pi+1 Pi

Figure 2: Angle definitions for mean-value coordinates.

* Evaluate them sparsely...

... and interpolate within
triangles

NVIDIA Research

VS g

Figure 3: An adaptive triangular mesh constructed over the region
to be cloned. The red dots on the boundary show the positions
of boundary vertices that were selected by adaptive hierarchical
subsampling for the mesh vertex indicated in blue.




Interactive Poisson cloning!

Table 1: Performance statistics for MVC cloning. Times exclude
disk I/0 and sending the images to the graphics subsystem. Cloning
rate is the number of region updates per second.

#cloned #mesh coords prep. cloning rate
pixels vertices | /vertex | time(s) CPU GPU
51,820
133,408

465,134

1,076,572

4,248.461
12,328,289

* Faster than “real” Poisson

NVIDIA Research

2008], as well as our own experiments, indicate that common Pois-
son solvers on the CPU are able to handle regions with 2567 pixels
at a rate of 3-5 solutions per second. Another possibility, which we
have not seen mentioned in the literature, is to precompute a fac-
torization of the Poisson equation matrix during the preprocessing

stage, and then quickly compute the solution via back-substitution
at each target location. In our experiments, for a region with 125K
pixels, computing the back-substitution takes 0.3 seconds. Thus, all
of the above are significantly slower than the rates we are able to
achieve.

S

NVIDIA




Alpha blendi
<@

NVIDIA

After labeling

Poisson blending




The Laplacian pyramid <X

NVIDIA.

Gaussian Pyramid Laplacian Pyramid
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void createLaplacePyr( const Mat &img, int num_levels, std::vector<Mat> &pyr )

{

pyr.resize(num_levels + 1);

Mat downNext, 1lvl up, 1lvl down;
Mat current = img;

pyrDown(img, downNext);

for( int 1 = 1; i < num_levels; ++i )

{
pyrDown( downNext, 1lvl_down );
pyrUp( downNext, 1lvl up, current.size() );
subtract( current, 1lvl up, pyr[i-1], noArray(), CV_16S );
current = downNext;
downNext = 1lvl_down;
}

pyrUp( downNext, 1lvl _up, current.size() );
subtract( current, 1lvl_up, pyr[num_levels-1], noArray(), CV_16S );
downNext.convertTo( pyr[num_levels], CV_16S );

NVIDIA Research
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Pyramid Blending

NVIDIA Research
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Laplacian Pyramid: Blending
* General Approach:
1. Build Laplacian pyramids LA and LB from images A and B

2. Build a Gaussian pyramid GR from selected region R

3. Form a combined pyramid LS from LA and LB using nodes of GR
as weights: 7
- LS(i,j) = GR(l,j,) *LA(lj) +
(1-GR(l,j)) " LB(1,j)
4. Collapse the LS pyramid
to get the final blended image

NVIDIA Research
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Pyramid Blending

1 -
level k (= 1 pixel] 0 X level k (= 1 pixel
o
level k-1 X level k-1
o —+ !

level k-2

(@) p—
|
| =

Left pyramid blend Right pyramid

NVIDIA Research



Laplacian
level
4

Laplacian
level
2

Laplacian

level
0

(a) (e) (1)

Ty W left pyramid right pyramid blended pyramid
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Pyramid Blending




Simplification: Two-band Blending >

NVIDIA.

* Brown & Lowe, 2003

* Only use two bands: high freq. and low freq.
¢ Blends low freq. smoothly

NVIDIA Research
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2-band Blending
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