
Stitching and Blending 

Kari Pulli   
Senior Director 
NVIDIA Research 



NVIDIA Research 

First project 

!   Build your own (basic) programs 
!   panorama 
!   HDR (really, exposure fusion) 

!   The key components 
!   register images so their features align 
!   determine overlap 
!   blend 



NVIDIA Research 

We need to match (align) images 



NVIDIA Research 

Detect feature points in both images 



NVIDIA Research 

Find corresponding pairs 



NVIDIA Research 

Use these pairs to align images 



NVIDIA Research 

Matching with Features 

!   Problem 1: 
!   Detect the same point independently in both images 

no chance to match! 

We need a repeatable detector 



NVIDIA Research 

Matching with Features 

!   Problem 2: 
!   For each point correctly recognize the corresponding one 

? 

We need a reliable and distinctive descriptor 



NVIDIA Research 

!   We should easily recognize the point by looking through 
a small window 

!   Shifting a window in any direction should give a large 
change in intensity 

Harris Corners: The Basic Idea 



NVIDIA Research 

Harris Detector: Basic Idea 

“flat” region: 
no change in all 
directions 

“edge”: 
no change along the 
edge direction 

“corner”: 
significant change in all 
directions 



NVIDIA Research 

Harris Detector: Mathematics 

[ ]2
,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y= + + −∑

Window-averaged change of intensity for the shift [u,v]: 

Intensity Shifted 
intensity 

Window 
function 

or Window function w(x,y) = 

Gaussian 1 in window, 0 outside 



NVIDIA Research 

Harris Detector: Mathematics 

[ ]( , ) ,
u

E u v u v M
v
⎡ ⎤

≅ ⎢ ⎥
⎣ ⎦

Expanding E(u,v) in a 2nd order Taylor series expansion,  
we have, for small shifts [u,v], a bilinear approximation: 

2

2
,
( , ) x x y

x y x y y

I I I
M w x y

I I I
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

∑

where M is a 2×2 matrix computed from image derivatives: 



NVIDIA Research 

Eigenvalues λ1, λ2 of M at different locations 

λ1 and  λ2 are large 



NVIDIA Research 

Eigenvalues λ1, λ2 of M at different locations 

large λ1, small λ2 



NVIDIA Research 

Eigenvalues λ1, λ2 of M at different locations 

small λ1, small λ2 



NVIDIA Research 

Harris Detector: Mathematics 

λ1 

λ2 

“Corner” 
λ1 and λ2 are large, 
 λ1 ~ λ2; 
E increases in all 
directions 

λ1 and λ2 are small; 
E  is almost constant 
in all directions 

“Edge”  
λ1 >> λ2 

“Edge”  
λ2 >> λ1 

“Flat” 
region 

Classification of 
image points using 
eigenvalues of M: 



NVIDIA Research 

Harris Detector: Mathematics 

Measure of corner response: 

( )2det traceR M k M= −

1 2

1 2

det
trace

M
M

λ λ

λ λ

=

= +

(k – empirical constant, k = 0.04 - 0.06) 

2

2
,
( , ) x x y

x y x y y

I I I
M w x y

I I I
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

∑



NVIDIA Research 

Harris Detector: Mathematics 

λ1 

λ2 “Corner” 

“Edge”  

“Edge”  

“Flat” 

•  R depends only on 
   eigenvalues of M 

•  R is large for a corner 

•  R is negative with large 
   magnitude for an edge 

•  |R| is small for a flat region 

R > 0 

R < 0 

R < 0 |R| small 



NVIDIA Research 

Harris Detector: Workflow 



NVIDIA Research 

Harris Detector: Workflow 
Compute corner response R 



NVIDIA Research 

Harris Detector: Workflow 
Find points with large corner response: R > threshold 



NVIDIA Research 

Harris Detector: Workflow 
Take only the points of local maxima of R 



NVIDIA Research 

Harris Detector: Workflow 



NVIDIA Research 

Harris Detector: Summary 

!   Average intensity change in direction [u,v] can be 
expressed as a bilinear form:  
 
 
 

!   Describe a point in terms of eigenvalues of M: 
measure of corner response 
 
 

!   A good (corner) point should have a large intensity 
change in all directions, i.e., R should be large positive 

[ ]( , ) ,
u

E u v u v M
v
⎡ ⎤

≅ ⎢ ⎥
⎣ ⎦

( )21 2 1 2R kλλ λ λ= − +



NVIDIA Research 

Harris Detector: Invariant to rotation 

Ellipse rotates  
but its shape (i.e., eigenvalues) remains the same 

Corner response R is invariant to image rotation 



NVIDIA Research 

!   Partial invariance 

Almost invariant to intensity change 

ü  Only derivatives are used  
 =>  
 invariance to intensity shift I → I + b 

ü  Intensity scale: I → a I 

R 

x (image coordinate) 

threshold 

R 

x (image coordinate) 



NVIDIA Research 

Not  invariant to image scale! 

All points will be 
classified as edges 

Corner ! 



NVIDIA Research 

FAST Corners 

!   Look for a contiguous arc of N pixels 
!   all much darker (or brighter) than the central pixel p 



NVIDIA Research 

How FAST? 



NVIDIA Research 

How repeatable? 



NVIDIA Research 

!   We know how to detect points 
!   Next question: 
                         How to match them? 

Point Descriptors 

? 
Point descriptor should be: 

1.  Invariant 
2.  Distinctive 



NVIDIA Research 

SIFT – Scale Invariant Feature Transform 



Effects	  of	  Noise	  
}  Consider	  a	  single	  row	  or	  column	  of	  the	  image	  

}  Plo8ng	  intensity	  as	  a	  func:on	  of	  posi:on	  gives	  a	  signal	  

Where is the edge? 



Where is the edge?   

Solu:on:	  	  Smooth	  First	  

Look for peaks in  



Associa:ve	  Property	  of	  Convolu:on	  

}  This	  saves	  us	  one	  opera:on:	  



Laplacian	  of	  Gaussian	  
}  Consider	  	  	  

Laplacian of Gaussian 
operator 

Where is the edge?   Zero-crossings of bottom graph 



NVIDIA Research 

Blob detection in 2D 

!   Laplacian of Gaussian: Circularly symmetric operator for 
blob detection in 2D 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
=∇ 2

2

2

2
22

norm y
g

x
gg σScale-normalized: 



NVIDIA Research 

Characteristic scale 

!   We define the characteristic scale as the scale that 
produces peak of Laplacian response 

characteristic scale 
T. Lindeberg (1998). Feature detection with automatic scale selection. 
International Journal of Computer Vision 30 (2): pp 77--116.  



NVIDIA Research 

Scale selection 

!   Scale invariance of the characteristic scale  

 

no
rm

. L
ap

. 

no
rm

. L
ap

. 

s 

scale scale 



NVIDIA Research 

Difference of Gaussians (DoG) 

!   Laplacian of Gaussian can be approximated by the 
    difference between two different Gaussians 



NVIDIA Research 

!   Descriptor overview: 
!   Determine scale (by maximizing DoG in scale and in space) 

SIFT – Scale Invariant Feature Transform 

D. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints” IJCV 2004 

Blur 

Resample

Subtract



DOG detector 

•  Fast computation, scale space processed one octave at  a time 

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”IJCV 60 (2). 



NVIDIA Research 

0 2π

0 2π

!   Descriptor overview: 
!   Determine scale (by maximizing DoG in scale and in space),  

local orientation as the dominant gradient direction 
!   Use this scale and orientation to make all further computations 

invariant to scale and rotation 

SIFT – Scale Invariant Feature Transform 

D. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints” IJCV 2004 



NVIDIA Research 

Affine invariant regions - Example 



NVIDIA Research 

!   Descriptor overview: 
!   Determine scale (by maximizing DoG in scale and in space),  

local orientation as the dominant gradient direction 
!   Use this scale and orientation to make all further computations 

invariant to scale and rotation 
!   Compute gradient orientation histograms of several small 

windows (128 values for each point) 
!   Normalize the descriptor to make it invariant to intensity change 

SIFT – Scale Invariant Feature Transform 

D. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints” IJCV 2004 



NVIDIA Research 

ORB (Oriented FAST and Rotated BRIEF) 

!   Use FAST-9 
!   use Harris measure to order them 

!   Find orientation 
!   calculate weighted new center 
!   reorient image so that gradients vary vertically 

!   BRIEF 
!   Binary Robust Independent Elementary Features 
!   choose pixels to compare, result creates 0 or 1 
!   combine to a binary vector, compare using  

Hamming distance (XOR + pop count) 
!   Rotated BRIEF 

!   train a good set of pixels to compare 

✓P
xI(x, y)P
I(x, y)

,

P
yI(x, y)P
I(x, y)

◆



NVIDIA Research 

rBRIEF vs. SIFT 



NVIDIA Research 

Aligning images: Translation? 

Translations are not enough to align the images 

left on top right on top 



NVIDIA Research 

A pencil of rays contains all views 

real 
camera 

synthetic 
camera 

Can generate any synthetic camera view 
as long as it has the same center of projection! 
… and scene geometry does not matter … 



NVIDIA Research 

Which transform to use? 

Translation 

2 unknowns 

Affine 

6 unknowns 

Perspective 

8 unknowns 



NVIDIA Research 

Homography 
!   Projective mapping between any two PPs  

with the same center of projection 
!   rectangle should map to arbitrary quadrilateral  
!   parallel lines aren’t 
!   but must preserve straight lines 

    is called a 
    Homography PP2 

PP1 

€ 

wx'
wy'
w

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

=

h11 h12 h13
h21 h22 h23
h31 h32 h33

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

x
y
1

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

H p p’   

! To apply a homography H 
! compute p’ = Hp   (regular matric multiply) 
! convert p’ from homogeneous to image 

coordinates [x’, y’]  (divide by w) 



NVIDIA Research 

Homography from mapping quads 

Fundamentals of Texture Mapping and Image Warping 
Paul Heckbert, M.Sc. thesis, U.C. Berkeley, June 1989, 86 pp. 
http://www.cs.cmu.edu/~ph/texfund/texfund.pdf 



NVIDIA Research 

!   Multiply out 
wx’ = h11 x + h12 y + h13 

wy’ = h21 x + h22 y + h23 

w    = h31 x + h32 y + h33 

!   Get rid of w 
(h31 x + h32 y + h33)x’ – (h11 x + h12 y + h13) = 0 

(h31 x + h32 y + h33)y’ – (h21 x + h22 y + h23) = 0 

!   Create a new system Ah = 0 
Each point constraint gives two rows of A 

 [-x   -y   -1   0    0    0   xx’   yx’   x’] 
 [  0   0    0  -x   -y   -1   xy’   yy’   y’] 

!   Solve with singular value decomposition of A = USVT 
!   solution is in the nullspace of A 
!   the last column of V (= last row of VT) 

Homography from n  point pairs (x,y ; x’,y’) 

€ 

wx'
wy'
w

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

=

h11 h12 h13
h21 h22 h23
h31 h32 h33

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

x
y
1

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

H p p’   

  h11 

  h12 

  h13 

  h21 

h =   h22 

  h23 

  h31 

  h32 

  h33 



NVIDIA Research 

from numpy import *!
!
# create 4 random homogen. points!

X = ones([3,4])            # the points are on columns!
X[:2,:] = random.rand(2,4) # first row x coord, second y coord, third w = 1!
x,y = X[0],X[1]!
# create projective matrix!
H = random.rand(3,3)!
# create the target points!

Y = dot(H,X)!
# homogeneous division!
YY = (Y / Y[2])[:2,:]!
u,v = YY[0],YY[1]!
!
A = zeros([8,9])!

for i in range(4):!
    A[2*i  ] = [-x[i], -y[i], -1,     0,     0,  0, x[i] * u[i], y[i] * u[i], u[i]]!
    A[2*i+1] = [    0,     0,  0, -x[i], -y[i], -1, x[i] * v[i], y[i] * v[i], v[i]]!
!
[u,s,vt] = linalg.svd(A)!
!
# reorder the last row of vt to 3x3 matrix!

HH = vt[-1,:].reshape([3,3])!
!
# test that the matrices are the same (within a multiplicative factor)!
print H - HH * (H[2,2] / HH[2,2])!
!
!

!

    Python test code 



NVIDIA Research 

Example 

perspective reprojection 

common 
picture 

plane of 
mosaic 
image 

Pics: Marc Levoy 



NVIDIA Research 

Reprojecting an image onto 
a different picture plane 

!   the view on any picture plane can be projected onto any 
other plane in 3D without changing its appearance as seen 
from the center of projection 

the sidewalk art of Julian Beever 



NVIDIA Research 

What to do with outliers? 

!   Least squares OK when error has Gaussian distribution 
!   But it breaks with outliers 

!   data points that are not drawn from the same distribution 
! Mis-matched points are outliers to the Gaussian error 

distribution  
!   severely disturbs the Homography 

Line fitting using 

regression is 

biased by outliers 



NVIDIA Research 

RANSAC 

! RANdom SAmple Consensus 
1.  Randomly choose a subset of data points to fit model (a sample) 
2.  Points within some distance threshold t of model are a consensus set 

Size of consensus set is model’s support 
3.  Repeat for N samples; model with biggest support is most robust fit 

!   Points within distance t of best model are inliers 
!   Fit final model to all inliers 

Two samples 

and their supports 

for line-fitting 



NVIDIA Research 

Hybrid multi-resolution registration 

I.B. 

F.B. 

F.B. 

F.B. 

Initial guess 

Registration parameters 

I.B. Image Based 

F.B. Feature Based 

K. Pulli, M. Tico, Y. Xiong, X. Wang, C-K. Liang, “Panoramic Imaging System for Camera Phones”, ICCE 2010 



NVIDIA Research 

Progression of multi-resolution registration 

Actual 
size 

Applied  
to hi-res 



NVIDIA Research 

Feature-based registration 

+ + 

Convert to spherical  
coordinates 

Convert from spherical  
coordinates 

Apply the previous  
registration estimate 

+ + 

Best block cross-
correlation match 

Feature Detection 
(Harris corners) 

Previous estimate 

Feature Matching 
(spherical coordinates) 

RANSAC 
Validity  
check 

New estimate 

valid 

Update search range 
invalid 



NVIDIA Research 

Image blending 
!   Directly averaging the overlapped pixels results in ghosting artifacts 

!   Moving objects, errors in registration, parallax, etc. 

Photo by Chia-Kai Liang 



NVIDIA Research 

Alpha Blending / Feathering 



NVIDIA Research 

Alpha Blending / Feathering 

0 
1 

0 
1 

+ 

= 
Iblend = αIleft + (1-α)Iright 

 



NVIDIA Research 

Setting alpha: simple averaging 

Alpha = .5 in overlap region 



NVIDIA Research 

Solution for ghosting: Image labeling 

!   Assign one input image each output pixel  
!   Optimal assignment can be found by graph cut [Agarwala et al. 2004] 



NVIDIA Research 

New artifacts 

!   Inconsistency between pixels from different input images 
!   Different exposure/white balance settings 
!   Photometric distortions (e.g., vignetting) 



NVIDIA Research 

Solution: Poisson blending 

!   Copy the gradient field from the input image 
!   Reconstruct the final image by solving a Poisson equation 

Combined gradient field 



NVIDIA Research 

Problems with direct cloning 
P. Pérez, M. Gangnet, A. Blake. Poisson image editing. SIGGRAPH 2003 
http://www.irisa.fr/vista/Papers/2003_siggraph_perez.pdf 



NVIDIA Research 

Solution: clone gradient, integrate colors 



NVIDIA Research 

Membrane interpolation 



NVIDIA Research 

Copy the details 

Seamlessly paste onto 

Just add a linear function so that the boundary condition is respected 

Gradients didn’t change much, 
and function is continuous 



NVIDIA Research 

SIGGRAPH 2009 



NVIDIA Research 

Mean-value coordinates for smooth 
interpolation 

!   Evaluate them sparsely… 
!   … and interpolate within 

triangles 



NVIDIA Research 

Interactive Poisson cloning! 

!   Faster than “real” Poisson 



NVIDIA Research 

Alpha blending 

After labeling 

Poisson blending 



NVIDIA Research 

expand 

Gaussian Pyramid Laplacian Pyramid 

0G

1G
2G
nG

- = 

0L

- = 
1L

- = 2L
nn GL =

The Laplacian pyramid 



NVIDIA Research 

void	  createLaplacePyr(	  const	  Mat	  &img,	  int	  num_levels,	  std::vector<Mat>	  &pyr	  )	  	  
{	  
	  	  	  	  pyr.resize(num_levels	  +	  1);	  
	  	  	  	  Mat	  downNext,	  lvl_up,	  lvl_down;	  
	  	  	  	  Mat	  current	  =	  img;	  
	  	  	  	  pyrDown(img,	  downNext);	  
	  
	  	  	  	  for(	  int	  i	  =	  1;	  i	  <	  num_levels;	  ++i	  )	  	  
	  	  	  	  {	  
	  	  	  	  	  	  	  	  pyrDown(	  downNext,	  lvl_down	  );	  
	  	  	  	  	  	  	  	  pyrUp(	  downNext,	  lvl_up,	  current.size()	  );	  
	  	  	  	  	  	  	  	  subtract(	  current,	  lvl_up,	  pyr[i-‐1],	  noArray(),	  CV_16S	  );	  
	  
	  	  	  	  	  	  	  	  current	  	  =	  downNext;	  
	  	  	  	  	  	  	  	  downNext	  =	  lvl_down;	  
	  	  	  	  }	  
	  
	  	  	  	  pyrUp(	  downNext,	  lvl_up,	  current.size()	  );	  
	  	  	  	  subtract(	  current,	  lvl_up,	  pyr[num_levels-‐1],	  noArray(),	  CV_16S	  );	  
	  	  	  	  downNext.convertTo(	  pyr[num_levels],	  CV_16S	  );	  
}	  
	  



NVIDIA Research 

Pyramid Blending 



NVIDIA Research 

Laplacian Pyramid: Blending 

!   General Approach: 
1.  Build Laplacian pyramids LA and LB from images A and B 
2.  Build a Gaussian pyramid GR from selected region R 
3.  Form a combined pyramid LS from LA and LB using nodes of GR 

as weights: 
•  LS(i,j) =     GR(I,j,)  * LA(I,j) +  

              (1-GR(I,j)) * LB(I,j) 
4.  Collapse the LS pyramid  

to get the final blended image 



NVIDIA Research 

Pyramid Blending 

0 

1 

0 

1 

0 

1 

Left pyramid Right pyramid blend 



NVIDIA Research 

Laplacian 
level 

4 

Laplacian 
level 

2 

Laplacian 
level 

0 

left pyramid right pyramid blended pyramid 



NVIDIA Research 

Pyramid Blending 



NVIDIA Research 

Simplification: Two-band Blending 

!   Brown & Lowe, 2003 
!   Only use two bands: high freq. and low freq. 
!   Blends low freq. smoothly 
!   Blend high freq. with no smoothing: use binary alpha 



NVIDIA Research 

Low frequency (λ > 2 pixels) 

High frequency (λ < 2 pixels) 

2-band Blending 



NVIDIA Research 

Linear Blending 



NVIDIA Research 

2-band Blending 


