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First project 

!   Build your own (basic) programs 
!   panorama 
!   HDR (really, exposure fusion) 

!   The key components 
!   register images so their features align 
!   determine overlap 
!   blend 
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We need to match (align) images 
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Detect feature points in both images 
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Find corresponding pairs 
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Use these pairs to align images 
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Matching with Features 

!   Problem 1: 
!   Detect the same point independently in both images 

no chance to match! 

We need a repeatable detector 
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Matching with Features 

!   Problem 2: 
!   For each point correctly recognize the corresponding one 

? 

We need a reliable and distinctive descriptor 
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!   We should easily recognize the point by looking through 
a small window 

!   Shifting a window in any direction should give a large 
change in intensity 

Harris Corners: The Basic Idea 
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Harris Detector: Basic Idea 

“flat” region: 
no change in all 
directions 

“edge”: 
no change along the 
edge direction 

“corner”: 
significant change in all 
directions 
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Harris Detector: Mathematics 
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Window-averaged change of intensity for the shift [u,v]: 

Intensity Shifted 
intensity 

Window 
function 

or Window function w(x,y) = 

Gaussian 1 in window, 0 outside 
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Harris Detector: Mathematics 
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Expanding E(u,v) in a 2nd order Taylor series expansion,  
we have, for small shifts [u,v], a bilinear approximation: 
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where M is a 2×2 matrix computed from image derivatives: 
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Eigenvalues λ1, λ2 of M at different locations 

λ1 and  λ2 are large 
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Eigenvalues λ1, λ2 of M at different locations 

large λ1, small λ2 
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Eigenvalues λ1, λ2 of M at different locations 

small λ1, small λ2 
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Harris Detector: Mathematics 

λ1 

λ2 

“Corner” 
λ1 and λ2 are large, 
 λ1 ~ λ2; 
E increases in all 
directions 

λ1 and λ2 are small; 
E  is almost constant 
in all directions 

“Edge”  
λ1 >> λ2 

“Edge”  
λ2 >> λ1 

“Flat” 
region 

Classification of 
image points using 
eigenvalues of M: 
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Harris Detector: Mathematics 

Measure of corner response: 
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(k – empirical constant, k = 0.04 - 0.06) 
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Harris Detector: Mathematics 

λ1 

λ2 “Corner” 

“Edge”  

“Edge”  

“Flat” 

•  R depends only on 
   eigenvalues of M 

•  R is large for a corner 

•  R is negative with large 
   magnitude for an edge 

•  |R| is small for a flat region 

R > 0 

R < 0 

R < 0 |R| small 
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Harris Detector: Workflow 
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Harris Detector: Workflow 
Compute corner response R 
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Harris Detector: Workflow 
Find points with large corner response: R > threshold 
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Harris Detector: Workflow 
Take only the points of local maxima of R 



NVIDIA Research 

Harris Detector: Workflow 
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Harris Detector: Summary 

!   Average intensity change in direction [u,v] can be 
expressed as a bilinear form:  
 
 
 

!   Describe a point in terms of eigenvalues of M: 
measure of corner response 
 
 

!   A good (corner) point should have a large intensity 
change in all directions, i.e., R should be large positive 
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Harris Detector: Invariant to rotation 

Ellipse rotates  
but its shape (i.e., eigenvalues) remains the same 

Corner response R is invariant to image rotation 
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!   Partial invariance 

Almost invariant to intensity change 

ü  Only derivatives are used  
 =>  
 invariance to intensity shift I → I + b 

ü  Intensity scale: I → a I 

R 

x (image coordinate) 

threshold 

R 

x (image coordinate) 
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Not  invariant to image scale! 

All points will be 
classified as edges 

Corner ! 
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FAST Corners 

!   Look for a contiguous arc of N pixels 
!   all much darker (or brighter) than the central pixel p 
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How FAST? 
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How repeatable? 
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!   We know how to detect points 
!   Next question: 
                         How to match them? 

Point Descriptors 

? 
Point descriptor should be: 

1.  Invariant 
2.  Distinctive 
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SIFT – Scale Invariant Feature Transform 



Effects	
  of	
  Noise	
  
}  Consider	
  a	
  single	
  row	
  or	
  column	
  of	
  the	
  image	
  

}  Plo8ng	
  intensity	
  as	
  a	
  func:on	
  of	
  posi:on	
  gives	
  a	
  signal	
  

Where is the edge? 



Where is the edge?   

Solu:on:	
  	
  Smooth	
  First	
  

Look for peaks in  



Associa:ve	
  Property	
  of	
  Convolu:on	
  

}  This	
  saves	
  us	
  one	
  opera:on:	
  



Laplacian	
  of	
  Gaussian	
  
}  Consider	
  	
  	
  

Laplacian of Gaussian 
operator 

Where is the edge?   Zero-crossings of bottom graph 
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Blob detection in 2D 

!   Laplacian of Gaussian: Circularly symmetric operator for 
blob detection in 2D 
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Characteristic scale 

!   We define the characteristic scale as the scale that 
produces peak of Laplacian response 

characteristic scale 
T. Lindeberg (1998). Feature detection with automatic scale selection. 
International Journal of Computer Vision 30 (2): pp 77--116.  
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Scale selection 

!   Scale invariance of the characteristic scale  
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Difference of Gaussians (DoG) 

!   Laplacian of Gaussian can be approximated by the 
    difference between two different Gaussians 
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!   Descriptor overview: 
!   Determine scale (by maximizing DoG in scale and in space) 

SIFT – Scale Invariant Feature Transform 

D. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints” IJCV 2004 

Blur 

Resample

Subtract



DOG detector 

•  Fast computation, scale space processed one octave at  a time 

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”IJCV 60 (2). 
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0 2π

0 2π

!   Descriptor overview: 
!   Determine scale (by maximizing DoG in scale and in space),  

local orientation as the dominant gradient direction 
!   Use this scale and orientation to make all further computations 

invariant to scale and rotation 

SIFT – Scale Invariant Feature Transform 

D. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints” IJCV 2004 
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Affine invariant regions - Example 



NVIDIA Research 

!   Descriptor overview: 
!   Determine scale (by maximizing DoG in scale and in space),  

local orientation as the dominant gradient direction 
!   Use this scale and orientation to make all further computations 

invariant to scale and rotation 
!   Compute gradient orientation histograms of several small 

windows (128 values for each point) 
!   Normalize the descriptor to make it invariant to intensity change 

SIFT – Scale Invariant Feature Transform 

D. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints” IJCV 2004 
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ORB (Oriented FAST and Rotated BRIEF) 

!   Use FAST-9 
!   use Harris measure to order them 

!   Find orientation 
!   calculate weighted new center 
!   reorient image so that gradients vary vertically 

!   BRIEF 
!   Binary Robust Independent Elementary Features 
!   choose pixels to compare, result creates 0 or 1 
!   combine to a binary vector, compare using  

Hamming distance (XOR + pop count) 
!   Rotated BRIEF 

!   train a good set of pixels to compare 

✓P
xI(x, y)P
I(x, y)

,

P
yI(x, y)P
I(x, y)

◆
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rBRIEF vs. SIFT 
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Aligning images: Translation? 

Translations are not enough to align the images 

left on top right on top 
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A pencil of rays contains all views 

real 
camera 

synthetic 
camera 

Can generate any synthetic camera view 
as long as it has the same center of projection! 
… and scene geometry does not matter … 
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Which transform to use? 

Translation 

2 unknowns 

Affine 

6 unknowns 

Perspective 

8 unknowns 
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Homography 
!   Projective mapping between any two PPs  

with the same center of projection 
!   rectangle should map to arbitrary quadrilateral  
!   parallel lines aren’t 
!   but must preserve straight lines 

    is called a 
    Homography PP2 
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! To apply a homography H 
! compute p’ = Hp   (regular matric multiply) 
! convert p’ from homogeneous to image 

coordinates [x’, y’]  (divide by w) 
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Homography from mapping quads 

Fundamentals of Texture Mapping and Image Warping 
Paul Heckbert, M.Sc. thesis, U.C. Berkeley, June 1989, 86 pp. 
http://www.cs.cmu.edu/~ph/texfund/texfund.pdf 
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!   Multiply out 
wx’ = h11 x + h12 y + h13 

wy’ = h21 x + h22 y + h23 

w    = h31 x + h32 y + h33 

!   Get rid of w 
(h31 x + h32 y + h33)x’ – (h11 x + h12 y + h13) = 0 

(h31 x + h32 y + h33)y’ – (h21 x + h22 y + h23) = 0 

!   Create a new system Ah = 0 
Each point constraint gives two rows of A 

 [-x   -y   -1   0    0    0   xx’   yx’   x’] 
 [  0   0    0  -x   -y   -1   xy’   yy’   y’] 

!   Solve with singular value decomposition of A = USVT 
!   solution is in the nullspace of A 
!   the last column of V (= last row of VT) 

Homography from n  point pairs (x,y ; x’,y’) 
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from numpy import *!
!
# create 4 random homogen. points!

X = ones([3,4])            # the points are on columns!
X[:2,:] = random.rand(2,4) # first row x coord, second y coord, third w = 1!
x,y = X[0],X[1]!
# create projective matrix!
H = random.rand(3,3)!
# create the target points!

Y = dot(H,X)!
# homogeneous division!
YY = (Y / Y[2])[:2,:]!
u,v = YY[0],YY[1]!
!
A = zeros([8,9])!

for i in range(4):!
    A[2*i  ] = [-x[i], -y[i], -1,     0,     0,  0, x[i] * u[i], y[i] * u[i], u[i]]!
    A[2*i+1] = [    0,     0,  0, -x[i], -y[i], -1, x[i] * v[i], y[i] * v[i], v[i]]!
!
[u,s,vt] = linalg.svd(A)!
!
# reorder the last row of vt to 3x3 matrix!

HH = vt[-1,:].reshape([3,3])!
!
# test that the matrices are the same (within a multiplicative factor)!
print H - HH * (H[2,2] / HH[2,2])!
!
!

!

    Python test code 
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Example 

perspective reprojection 

common 
picture 

plane of 
mosaic 
image 

Pics: Marc Levoy 
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Reprojecting an image onto 
a different picture plane 

!   the view on any picture plane can be projected onto any 
other plane in 3D without changing its appearance as seen 
from the center of projection 

the sidewalk art of Julian Beever 
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What to do with outliers? 

!   Least squares OK when error has Gaussian distribution 
!   But it breaks with outliers 

!   data points that are not drawn from the same distribution 
! Mis-matched points are outliers to the Gaussian error 

distribution  
!   severely disturbs the Homography 

Line fitting using 

regression is 

biased by outliers 
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RANSAC 

! RANdom SAmple Consensus 
1.  Randomly choose a subset of data points to fit model (a sample) 
2.  Points within some distance threshold t of model are a consensus set 

Size of consensus set is model’s support 
3.  Repeat for N samples; model with biggest support is most robust fit 

!   Points within distance t of best model are inliers 
!   Fit final model to all inliers 

Two samples 

and their supports 

for line-fitting 
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Hybrid multi-resolution registration 

I.B. 

F.B. 

F.B. 

F.B. 

Initial guess 

Registration parameters 

I.B. Image Based 

F.B. Feature Based 

K. Pulli, M. Tico, Y. Xiong, X. Wang, C-K. Liang, “Panoramic Imaging System for Camera Phones”, ICCE 2010 
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Progression of multi-resolution registration 

Actual 
size 

Applied  
to hi-res 
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Feature-based registration 

+ + 

Convert to spherical  
coordinates 

Convert from spherical  
coordinates 

Apply the previous  
registration estimate 

+ + 

Best block cross-
correlation match 

Feature Detection 
(Harris corners) 

Previous estimate 

Feature Matching 
(spherical coordinates) 

RANSAC 
Validity  
check 

New estimate 

valid 

Update search range 
invalid 
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Image blending 
!   Directly averaging the overlapped pixels results in ghosting artifacts 

!   Moving objects, errors in registration, parallax, etc. 

Photo by Chia-Kai Liang 
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Alpha Blending / Feathering 
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Alpha Blending / Feathering 

0 
1 

0 
1 

+ 

= 
Iblend = αIleft + (1-α)Iright 
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Setting alpha: simple averaging 

Alpha = .5 in overlap region 
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Solution for ghosting: Image labeling 

!   Assign one input image each output pixel  
!   Optimal assignment can be found by graph cut [Agarwala et al. 2004] 
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New artifacts 

!   Inconsistency between pixels from different input images 
!   Different exposure/white balance settings 
!   Photometric distortions (e.g., vignetting) 
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Solution: Poisson blending 

!   Copy the gradient field from the input image 
!   Reconstruct the final image by solving a Poisson equation 

Combined gradient field 
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Problems with direct cloning 
P. Pérez, M. Gangnet, A. Blake. Poisson image editing. SIGGRAPH 2003 
http://www.irisa.fr/vista/Papers/2003_siggraph_perez.pdf 



NVIDIA Research 

Solution: clone gradient, integrate colors 
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Membrane interpolation 
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Copy the details 

Seamlessly paste onto 

Just add a linear function so that the boundary condition is respected 

Gradients didn’t change much, 
and function is continuous 
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SIGGRAPH 2009 
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Mean-value coordinates for smooth 
interpolation 

!   Evaluate them sparsely… 
!   … and interpolate within 

triangles 
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Interactive Poisson cloning! 

!   Faster than “real” Poisson 
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Alpha blending 

After labeling 

Poisson blending 
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expand 

Gaussian Pyramid Laplacian Pyramid 

0G

1G
2G
nG

- = 

0L

- = 
1L

- = 2L
nn GL =

The Laplacian pyramid 
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void	
  createLaplacePyr(	
  const	
  Mat	
  &img,	
  int	
  num_levels,	
  std::vector<Mat>	
  &pyr	
  )	
  	
  
{	
  
	
  	
  	
  	
  pyr.resize(num_levels	
  +	
  1);	
  
	
  	
  	
  	
  Mat	
  downNext,	
  lvl_up,	
  lvl_down;	
  
	
  	
  	
  	
  Mat	
  current	
  =	
  img;	
  
	
  	
  	
  	
  pyrDown(img,	
  downNext);	
  
	
  
	
  	
  	
  	
  for(	
  int	
  i	
  =	
  1;	
  i	
  <	
  num_levels;	
  ++i	
  )	
  	
  
	
  	
  	
  	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  pyrDown(	
  downNext,	
  lvl_down	
  );	
  
	
  	
  	
  	
  	
  	
  	
  	
  pyrUp(	
  downNext,	
  lvl_up,	
  current.size()	
  );	
  
	
  	
  	
  	
  	
  	
  	
  	
  subtract(	
  current,	
  lvl_up,	
  pyr[i-­‐1],	
  noArray(),	
  CV_16S	
  );	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  current	
  	
  =	
  downNext;	
  
	
  	
  	
  	
  	
  	
  	
  	
  downNext	
  =	
  lvl_down;	
  
	
  	
  	
  	
  }	
  
	
  
	
  	
  	
  	
  pyrUp(	
  downNext,	
  lvl_up,	
  current.size()	
  );	
  
	
  	
  	
  	
  subtract(	
  current,	
  lvl_up,	
  pyr[num_levels-­‐1],	
  noArray(),	
  CV_16S	
  );	
  
	
  	
  	
  	
  downNext.convertTo(	
  pyr[num_levels],	
  CV_16S	
  );	
  
}	
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Pyramid Blending 
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Laplacian Pyramid: Blending 

!   General Approach: 
1.  Build Laplacian pyramids LA and LB from images A and B 
2.  Build a Gaussian pyramid GR from selected region R 
3.  Form a combined pyramid LS from LA and LB using nodes of GR 

as weights: 
•  LS(i,j) =     GR(I,j,)  * LA(I,j) +  

              (1-GR(I,j)) * LB(I,j) 
4.  Collapse the LS pyramid  

to get the final blended image 



NVIDIA Research 

Pyramid Blending 

0 

1 

0 

1 

0 

1 

Left pyramid Right pyramid blend 
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Laplacian 
level 

4 

Laplacian 
level 

2 

Laplacian 
level 

0 

left pyramid right pyramid blended pyramid 
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Pyramid Blending 
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Simplification: Two-band Blending 

!   Brown & Lowe, 2003 
!   Only use two bands: high freq. and low freq. 
!   Blends low freq. smoothly 
!   Blend high freq. with no smoothing: use binary alpha 
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Low frequency (λ > 2 pixels) 

High frequency (λ < 2 pixels) 

2-band Blending 
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Linear Blending 
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2-band Blending 


