Using Transfer Learning Between Games to Improve Deep Reinforcement
Learning Performance and Stability

Chaitanya Asawa” ! Christopher Elamri“! David Pan”

“Equal contribution

Abstract

We explore transfer learning in the context of
deep reinforcement learning to perform well on
different OpenAl Gym games. Specifically, we
use Deep Q-learning to play the games Snake
and PuckWorld. We want to see if we can use
a pre-trained Deep Q-Network from PuckWorld
to play Snake, and with some additional training
or layers, see if what is learned from one game
can be adapted to another. We find that trans-
fer learning not only boosts performance for the
game Snake, but also leads to far greater perfor-
mance stability while learning, potentially show-
ing value of transfer learning for safe reinforce-
ment learning.

1. Introduction

Reinforcement learning (RL) is a paradigm for learning se-
quential decision making tasks, where an agent seeks to
maximize long-term rewards through experience in its en-
vironment. During the learning process the agent has to de-
cide whether to look for new information (explore) or to use
its current model to maximize reward (exploit). However,
while significant progress has been made to improve single
task learning, the use of transfer learning has only recently
gained momentum. The idea behind transfer learning is
that generalization can occur not only within tasks, but also
across tasks. In this paper, we investigate the effectiveness
of transfer learning across the Snake and PuckWorld game
environments.

In particular, we use deep Q-learning, which tries to learn
an optimal policy from its history of interaction with the en-
vironment. We primarily explore if the Deep Q-Networks
(DQNss) that are trained for PuckWorld environments can
be used to increase the relative performance of the game
Snake. An increase in the relative performance could per-
haps indicate the usefulness of transfer learning in rein-
forcement learning tasks.

The ability to successfully transfer learn has great impor-
tance, as it allows us to avoid having to train specific mod-

1

els for every task we may have (which takes much compu-
tational power and time), and rather achieve high perfor-
mance quickly using what we have generally learned.

2. Related Work

Recently, researchers have achieved great success in games
using deep reinforcement learning methods.

In their groundbreaking paper “Playing Atari with Deep
Reinforcement learning” (Mnih et al., 2013), Mnih et al.
developed a single Deep Q-Network (DQN) that is able to
play multiple Atari games, in many cases surpassing hu-
man expert players. The model consists of convolutional
layers followed by fully connected layers. The model takes
in the raw image pixels of a game and outputs Q-values es-
timating future rewards. The model is trained with a variant
of Q-learning with a target network and experience replay.
The target network helps reduce oscillations or divergence
of the policy, and experience replay removes correlation in
the observations and prevents the model from getting stuck
in bad local minima.

Realizing that being able to perform multiple tasks and use
previous learnings is crucial for any intelligent agent, in the
paper “Actor-Mimic: Deep Multitask and Transfer Rein-
forcement Learning” (Parisotto et al., 2015), Parisotto et al.
build on the work of Mnih et al. to explore transfer learn-
ing between Atari games. They developed the Actor-Mimic
method that uses the guidance of many game-specific ex-
pert networks to train a single multitask policy network.
For transfer learning, they treat the multitask network as a
DQN, and they transfer all the weights except the final soft-
max layer to a new DQN. After transfer learning, the new
DQN learns to complete a target task significantly faster
than a DQN starting from a random weight initialization.

In our project, we will focus on trying different methods
of transferring weights with deep Q-networks and Dueling
Network architectures and measure the results.

Using Transfer Learning Between Games to Improve Deep Reinforcement Learning Performance and Stability

3. Game Mechanics
3.1. Snake

Snake, the game popularized by Nokia, involves a single
player who controls moving the direction of a snake and
tries to eat randomly appearing items by running into them.
Each item eaten makes the snake longer, and this makes the
game progressively more difficult, as the player/agent loses
when the snake runs into itself or the screen border. In the
version of Snake we are using, there is a —5 reward for
either running into the walls or into itself, and a reward of
+1 for collecting a red square “food” (Sobrecueva, b).

3.2. PuckWorld

PuckWorld is a game in which the agent, a blue circle, must
navigate to a green circle while avoiding a large red puck.
The large red puck slowly tries to follow our agent, and the
green circle randomly changes the location periodically.

The agent has up, down, left, and right thrusters, and its
velocity decays over time. At each timestep, our rewards
earned are a function of the distance to the green circle
(where we want to be closer to the green circle) and nega-
tive reward proportional to our distance from the red puck’s
center if we are within the red puck’s radius. The agent’s
goal is to get close to the green dot while avoiding the red
puck.

The game is a continuous game and there are no terminal
states (Sobrecueva, a).

3.3. Juxtaposition of Games

In both games, we are trying to move to some sort of target,
while generally trying to avoid some regions.

In the case of Snake, once we arrive at the target, we collect
the reward and the target moves. In the case of PuckWorld,
we want to be close to the reward, but the target moves
periodically, not dependent on the agent’s actions.

Additionally, in Snake we want to avoid walls and itself,
while in PuckWorld we want to avoid the large red puck.

Movement is different as well. While in both games we
can move in the same directions, in PuckWorld we have a
velocity with our movement due to thrusters (this velocity
decays over time) and in Snake we just move one square at
a time.

Finally, the snake grows whereas the agent does not change
size in PuckWorld. This increases the probability of reach-
ing a terminal state in Snake, but PuckWorld has no termi-
nal states.

We hope that, despite the many differences between the
games, we can capture the idea of moving to an agent in

both games through transfer learning, and also some sense
of avoiding objects — whether that be avoiding the snake
itself or the large red puck.

We note that we do not have good baselines for OpenAl
games, as they were only released fairly recently and have
few if any submissions (the best Snake submission, for ex-
ample, has best 100-episode performance of -4.12, which
is close to the worst possible score).

4. Approach
4.1. Deep Q-Learning

In Q-learning, we are trying to estimate for a given state
and action pair, what is the expected discounted sum of fu-
ture rewards is if we took that action from the state and
followed the optimal policy after. Once we have these
Q(s,a) values, the action we can take from a given state
s is argmax,,Q(s, a).

When we have an incredibly large state space, however, it
is hard with traditional update methods to determine these
Q-values. Thus, neural networks have proven to, with train-
ing, be a great estimator for these Q-values. We use deep
Q-learning convolutional neural network models with e-
greedy exploration (Mnih et al., 2013).

e-greedy allows us to explore more states, and prevent get-
ting stuck in exploring the same seemingly optimal path
(exploration/exploitation problem). In particular, at each
step the algorithm chooses a random action with probabil-
ity € or picks the best action following the Q estimate with
probability (1 — €). This e decays over time, so initially we
are exploring more and trying to understand the environ-
ment, but after some time we want to mostly use what we
have learned with only a little bit of exploring.

We use experience replay, providing the model with sig-
nals throughout its training history, and target networks to
avoid oscillations and divergences in policy, as mentioned
in section 2.

4.2. Transfer Learning

Transfer learning is a technique in which we use networks
that have proven to do well on some task and try to adapt
what is learned from this task to a separate but potentially
related task. In our case, we would like to use networks
that have performed very well at estimating Q-values for
one game and try to adapt them, with a little more training,
to estimate Q-values for another game.

We want to mainly explore transfer learning from Snake to
PuckWorld. Our hypothesis is that because the games have
similar objectives of chasing an object, transfer learning
will help speed up convergence and perhaps attain better

Using Transfer Learning Between Games to Improve Deep Reinforcement Learning Performance and Stability

performing models than before.

We consider combinations of retraining layers and reini-
tializing layers. Retraining layers involves initializing lay-
ers with the weights of a pre-trained model and continu-
ing to update these weights with backpropagation (we may
choose to keep some layers fixed). Reinitializing layers in-
volves simply randomly initializing the weights for a layer,
rather than using the pre-trained weights. When we reini-
tialize layers, we are purposely choosing to almost “un-
learn” some of what we learned from the previous model
because perhaps it is very specific to the previous model
and does not apply to our current problem.

5. Technical Details

P

A

Figure 1. Preprocessing for Snake. We maintain a small state his-
tory and additional convert the images from RGB to grayscale to
reduce the size of the input.

Figure 2. Preprocessing for PuckWorld. We maintain a small state
history and additional convert the images from RGB to grayscale
to reduce the size of the input.

The Snake and PuckWorld environments from OpenAl
Gym return images of size 64 x 64 x 3, which means 64
pixels width, 64 pixels height, and the last dimension corre-
sponding to the RGB channels which have values between
0 and 255. We convert the image to grayscale to reduce
the input dimension to 64 x 64 x 1. Also, each time the
agent makes an action, we repeat it for some time steps,
and we return a pixel-wise max-pooling of these consecu-
tive frames. This allows us to play many times more games

while training by reducing the frequency of computing new
actions. We also experiment with maintaining a state his-
tory, since the state here might not totally capture all in-
formation, such as the direction an object is traveling with.
This is especially important in a game such as PuckWorld
where the agent is moving with thrusters.

Note that, throughout this paper, we say an epoch is 50,000
training iterations.

6. Vanilla DQN Experiments
6.1. DQN Architecture

Our DQNs have an initial input of 64 x 64 x s where s
is the size of the state history. After this initial layer, in
both DQNs, we apply 3 convolutional layers consisting of
32 filters of size 3 x 3 and stride 1. For both DQNs, our
final hidden layer is a fully-connected layer that results in
256 hidden units, and then we have another fully connected
layer that outputs a vector of size number of actions |A|.

6.2. Snake

Initially, we trained a model for 3 million iterations with a
state history of 1 and skip frame of 4. For this experiment,
we chose not to maintain a state history because for Snake
there is no concept of speed and we theoretically know di-
rection by the snake’s head.

We then tried another experiment as well, for 5 million it-
erations, with a state history of 4 (because perhaps the di-
rection was hard to determine from a grayscale head of the
snake), and not skipping frames since for snake each frame
is important (difference between reward as well as life and
death). Figure 3 shows the results of these two experiments
— in particular, the larger state history did not help and ac-
tually made it harder for the snake to learn, and it achieves
almost consistently -5 reward across 5 million iterations.
Hence, we will focus our analysis on experiment with 3
million iterations, a state history of 4, and skip frame of 4.

After training in the first experiment, we achieved a final
average reward of 14.94 +/- 1.01. However, at an earlier
point in training, we achieved an average reward of 21.68
+/- 1.15. Figure 3 shows the change in average evaluation
reward over our training epochs.

The performance over training time as well as actually
watching the algorithm behave reveals some interesting in-
sights:

o Initially, for the first 15 epochs or so, our average re-
ward remains around -5 (meaning no points were col-
lected). This seems to indicate at this point the snake
is just crashing into walls, and has not yet learned to
characterize and avoid such states. The snake is not

Using Transfer Learning Between Games to Improve Deep Reinforcement Learning Performance and Stability

Snake: Vanilla DQN

r T
25 — iterations=3M, state_history=1, skip_frame=4
— iterations=5M, state_history=4, skip_frame=1

Average Reward

Epoch

Figure 3. Average evaluation reward of the Snake agent on 50 test
episodes over training epochs with vanilla DQNss.

long enough, with no points collected, to run into it-
self.

e However, after the 15th epoch, we see a quick dra-
matic improvement in the performance (to an average
of +5), as we can now substantially delay the terminal
state of a wall.

e At the 30th epoch though, performance dips back
down to negative reward. It rises significantly starting
from the 35th epoch, but then we see a huge decline at
the 58th epoch again. Near the last few epochs though,
we are once again on the rise.

We observe some sort of oscillation in Snake performance.
From these initial experiments with vanilla DQNs, we hy-
pothesize that this is either caused by difficulty generaliz-
ing with both a longer snake and the snake crashing into
itself, or in the mechanics of the learning process of the
Deep Q-Network.

6.3. PuckWorld

First, we trained the model for PuckWorld with 5 million
iterations, state history of 4, and skip frame of 4. The agent
learned to follow the green dot. As shown in Figure 4, the
agent continuously improves at the game with little oscilla-
tion. We made the following observations:

e The agent oscillates significantly around the green dot
instead of staying on it. We think the reason is that we
apply the same action for four frames in a row, but the
agent can travel a great distance in four frames.

e The agent does not attempt to avoid the red puck. We
noticed in the OpenAl Gym implementation of Puck-
World, the reward contributed by the red puck ranges

PuckWorld: Vanilla DQN

T T T
— iterations=3M, state_history=4, skip_frame=4
— iterations=5M, state_histery=4, skip_frame=1

—-100000

—150000 |

—200000 |

—250000 |

—300000 |

Average Reward

—350000

—400000

—450000

=500000
0

l‘D Zb Eb 4‘0 Bb 60
Epoch

Figure 4. Average evaluation reward of the PuckWorld agent on

50 test episodes over training epochs with vanilla DQNs. (Note

that the second experiment was cut short of SM iterations because
of resource constraints and 4x training time due to skip_frame=1.)

from -2 to 0 while the reward contributed by the green
dot ranges from —64+/2 to 0. Because the agent oscil-
lates so much, the reward contributed by the red puck
is relatively negligible.

e When the green dot is close to the red puck, the agent
will sometimes appear to oscillate around the red puck
instead of green dot. We think the reason is that after
the grayscale preprocessing, the green dot and the red
puck only differ by 1 grayscale value (the values range
from 0 to 255), so the agent gets confused between the
green dot and red puck.

Second, we trained the model for PuckWorld with 5 million
iterations, state history of 4, and skip frame of 1. The agent
was able to land on the green dot with little oscillation be-
cause skip frame is now 1 instead of 4. The agent appeared
to avoid the red puck sometimes, but most of the time it just
follows the green dot even in the vicinity of the red puck.
Like the previous agent, the agent continuously improves
at the game with little oscillation, and we see very similar
results.

7. Dueling Network Experiments

We then experimented in seeing if we could both increase
performance and reduce oscillation using a Dueling Net-
work architecture instead of vanilla DQNs. The rationale
for this was that the Dueling Network architecture was
shown to be successful for a wide variety of Atari games,
but also because it separates how valuable a state is with
what the advantage of different actions are from a state by
using different streams (Wang et al., 2015). We thought
this separation could help better capture the idea of grow-

Using Transfer Learning Between Games to Improve Deep Reinforcement Learning Performance and Stability

ing longer is valuable, and taking actions to avoid one’s
self and collect rewards are advantageous — perhaps helping
with the oscillation. Figure 5 shows the Dueling Network
architecture.

Figure 5. Dueling Network Architecture (Wang et al., 2015)

We show below the results of the Dueling Network archi-
tecture for our two games, PuckWorld and Snake. We use
a state history of 2 and skip every 4 frames in both games.

Snake: Dueling Networks

[— iterations=5m, state history=2, skip_frame=4

Average Reward

Epoch

Figure 6. Average evaluation reward of the Snake agent on 50 test
episodes over training epochs with a Dueling Network architec-
ture.

We find that we have increased performance for Snake and
we reach this quicker as well — on the 16th epoch we have a
reward of around +17 with the Dueling Network architec-
ture, and we do not even have positive reward with vanilla
DQNs at this point. However, we find that the oscillations
are still maintained.

PuckWorld: Dueling Networks

\ — iterations=5M, state_history=2, skip_frame=4 \

-100000
—150000 -
—200000 |
—250000 |

—300000 |

Average Reward

—350000 |

—400000 |

-450000

~500000 ‘ ‘ ‘ ‘
0 20 40 60 80 100
Epoch
Figure 7. Average evaluation reward of the PuckWorld agent on
50 test episodes over training epochs with a Dueling Network ar-
chitecture.

The PuckWorld performance, for the most part, seems very
similar to that achieved by vanilla DQNs (converges to
same value, if not only slightly worse).

8. Oscillations

We then tried to better understand why we saw these os-
cillations in performance for Snake — in the real world, we
would never want to deploy a system which we could not
trust to have reliable performance across training. We look
at the behavior of the models when performance drastically
drops after peaks.

With Vanilla DQNs, we find that the Snake, close to a wall,
simply moves in a very tight circular fashion, with the tar-
get being far away.

With the Dueling Network architecture, we don’t see the
circling behavior, but instead the snake almost hugs the
wall and moves back and forth.

After seeing both how the Vanilla DQNs and the Dueling
Network architecture perform over time, we infer that the
agent, as it grows longer, needs to solve a new problem:
initially, it needed to learn to avoid walls and go to targets,
but now, however, it has grown long enough that the reason
we reach a terminal state is because of the snake running
into itself. As it tries to update to avoid this terminal state,
with the twist and turning behavior we do see that it learns,
we believe the updates override past learnings that help it
find and move towards the target.

We provide videos to visualize this behavior here: https:
//goo.gl/M0OaBgu

https://goo.gl/M0aBgu
https://goo.gl/M0aBgu

Using Transfer Learning Between Games to Improve Deep Reinforcement Learning Performance and Stability

9. Transfer Learning Experiments

As PuckWorld seems fairly stable, but Snake is not, we
wanted to see if transfer learning from PuckWorld to Snake
could both somehow reduce oscillation and improve the av-
erage reward for Snake.

We explored various ways of transfer learning from Puck-
World to Snake. After transferring all the learned weights
from PuckWorld, we chose which layers to reinitialize and
which layers to retrain.

At first, we tried retraining all layers without reinitializing
any layers, but we found that the reward just stays around
—5. The reason was that the PuckWorld weights, in partic-
ular those with the affine layers, were very large because
PuckWorld has a reward function with large magnitude.
Hence, these weights were on a very different scale, and
due to gradient clipping in the update step, the weights up-
dated stayed this way.

Next, we tried the following: retraining the affine layers,
reinitializing and retraining the affine layers, and reinitial-
izing and retraining the last convolutional layer (conv3) and
the affine layers. We found that the reward barely improves.
(Figure 8. Note that training for the “Reset & train affine
layers” model was cut short due to resource constraints.
We conclude that this is fine because its reward over epoch
should be approximately bounded by the reward over epoch
for the “Reset & train conv3, affine layers” model.) Over-
all, this shows that the convolutional layers from Puck-
World are not directly applicable to Snake and needs more
tuning before achieving success.

Finally, we tried reinitializing the affine layers and retrain-
ing all layers, and reinitializing the last convolutional layer
and the affine layers and retraining all layers. We found
that reward over epoch increases approximately linearly
with smaller oscillations compared to the dueling network
without transfer learning. In addition, the final reward was
higher than that of the dueling network without transfer
learning (Figure 9). These results validate our hypothesis
that transfer learning from PuckWorld reduces oscillation
and improves average reward.

Note that we started reinitializing layers from the top of the
network (closest to the output) instead of from the bottom
layers (closest to the input). The reasoning is that top layers
tend to have specific features that are usually only applica-
ble to the game trained on, while bottom layers have more
general features that could be applicable to other games. In
addition, the bottom layers are convolutional layers which
extract visual features, so they are important to keep.

We hypothesize that transfer learning from PuckWorld
helps to both reduce oscillation and improve average re-
ward in Snake because the visual features in the convo-

lutional layers of the PuckWorld model have deeply in-
grained the concept of going towards an object. Without
transfer learning, the snake learns to avoid walls and go to-
wards the red dot, but as the snake gets longer, it gets in
an unfamiliar state. It has to learn to avoid running into its
longer body, and it may have to relearn going towards the
red dot because the model may be unsure what to do in this
unfamiliar state where the snake is longer (as we discussed
in Section 8). With transfer learning, the snake is condi-
tioned to go towards the red dot no matter what its length
is, therefore bypassing this dilemma and reducing oscilla-
tion.

35 Snake: Dueling Networks with Transfer Learning

Train all layers
Train affine layers
30l Reset & train affine layers N
Reset & train conv3, affine layers [
Reset affine and train all layers
25 1 Reset conv3, affine and train all \ayersj\Jv\/\ 4
! \] \

|
15| (/)
!

Average Reward

Epoch

Figure 8. Average evaluation reward of the Snake agent on 50 test
episodes over training epochs with different variants of transfer
learning.

Snake: Best Dueling Networks With/Without Transfer Learning

: T
— With transfer: reset affine and train all layers
— Without transfer: state_history=2, skip_frame=4

35

30+

25

20 |

15+

Average Reward

10+

Epoch

Figure 9. Average evaluation reward of the Snake Dueling Net-
work agent on 50 test episodes over training epochs, with and
without transfer learning.

Using Transfer Learning Between Games to Improve Deep Reinforcement Learning Performance and Stability

9.1. Transferring from Snake to PuckWorld

Finally, we were curious to see, despite stable performance
of PuckWorld, whether transferring the learned weights in
Snake with a Dueling Network architecture could improve
PuckWorld in terms of either convergence time or perfor-
mance. We used the most successful transfer learning strat-
egy we found above; retraining the entire network, but
reinitializing the final affine layers. We show the results
below:

PuckWorld: Dueling Networks With/Without Transfer Learning

T T T T
— With transfer: iterations=5M, state_history=2, skip_frame=4
— Without transfer: iterations=5M, state_history=2, skip_frame=4

-100000

—150000 |

—200000 |

—250000 |

—300000 |

Average Reward

—350000

—400000 -

-450000

-500000 - ‘ - s ‘ -
0 10 20 30 40 50 60 70
Epoch
Figure 10. Average evaluation reward of the PuckWorld Dueling
Network agent on 50 test episodes over training epochs, with and
without transfer learning.

It seems that the performances with and without transfer
learning are roughly the same — if anything, the transfer
learning performance is slightly worse.

We noticed however that a decent number of gradients for
PuckWorld are getting clipped — this is most likely due to
having a reward function that has a high magnitude. It is
possible we can see improved performance if we set a much
higher threshold for gradient clipping (both in previous ex-
periments and this one).

10. Conclusion

We find that we were able to successfully use transfer learn-
ing to improve performance and stability in using deep Q-
learning to play the Snake game. Specifically, we found
best results when we retrained the entire weights of a pre-
viously trained Dueling Network model and then reinitial-
ized the layers at the end. We are excited about these re-
sults, since they not only show that transfer learning can
improve deep reinforcement learning performance, but also
that transfer has implications in Safe Reinforcement Learn-
ing (which, to our knowledge, is the first of its kind with

transfer learning) — as of course, we would not want to trust
an unstable agent in the real world.

11. Future Work

In the future, we are interested in seeing if we can suc-
cessfully transfer learn weights to other games to improve
performance and stability — this would more definitively
show that transfer learning is viable more broadly in deep
reinforcement learning in the context of games.

Specifically for the models we explored, one way to
improve performance that could be explored is using
the full RGB image as the input instead of the prepro-
cessed grayscale image. The reason is that in PuckWorld,
grayscale preprocessing makes it difficult to distinguish be-
tween the green dot and the red puck, and in many instances
it appeared that the agent started following the red puck in-
stead of the green dot. We would also like to allow the
gradients for PuckWorld to be larger, clipping at a more
appropriate scale for the game.

While there is still much left to explore in terms of our
deep Q-network architectures to optimize performance for
these games, ultimately it may be more interesting to fo-
cus on whether we successfully apply transfer learning to
improve the relative performance and stability of the al-
gorithms across a variety of applications that are not just
limited to games.

Acknowledgements

Thank you to Barak Oshri for being our project mentor, and
also the CS 234 DQN assignment.

References

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David,
Graves, Alex, Antonoglou, Ioannis, Wierstra, Daan, and
Riedmiller, Martin. Playing Atari with deep reinforce-
ment learning. arXiv preprint arXiv:1312.5602, 2013.

Parisotto, Emilio, Ba, Jimmy Lei, and Salakhutdinov, Rus-
lan. Actor-mimic: Deep multitask and transfer reinforce-
ment learning. arXiv preprint arXiv:1511.06342, 2015.

Sobrecueva, Luis. = PuckWorld-v0 (experimental) (by
@lusob) - OpenAl Gym, a. URL https://gym.
openai.com/envs/PuckWorld-vO.

Sobrecueva, Luis. Snake-v0 (experimental) (by @lusob)
- OpenAl Gym, b. URL https://gym.openai.
com/envs/Snake-vO0.

Wang, Ziyu, Schaul, Tom, Hessel, Matteo, van Hasselt,
Hado, Lanctot, Marc, and de Freitas, Nando. Dueling

https://gym.openai.com/envs/PuckWorld-v0
https://gym.openai.com/envs/PuckWorld-v0
https://gym.openai.com/envs/Snake-v0
https://gym.openai.com/envs/Snake-v0

Using Transfer Learning Between Games to Improve Deep Reinforcement Learning Performance and Stability

network architectures for deep reinforcement learning.
arXiv preprint arXiv:1511.06581, 2015.

12. Supplemental Material
(Also in submitted zip file.)

We wanted to show how, over time, our Snake is able
to learn various aspects of the game to perform better
(such as avoiding walls, collecting target, and avoiding
itself). Please check out the following video of our final
Snake agent’s learning process (using transfer learning and
Dueling Networks):

https://www.youtube.com/watch?v=
—7UZHERmM2bA

Our source code is here:

https://drive.google.com/file/d/
OB4pM4ssJKAZ2MTk1tVmFzemZPRzQ/view?usp=
sharing

Contributions

All three members contributed to the analysis and con-
tributed different sections of the code; for example, among
other things, David did most of the transfer learning code,
Chaitanya did most of the DQN architecture code, and
Chris worked on the general infrastructure and visualiza-
tions.

https://www.youtube.com/watch?v=-7UZHERm2bA
https://www.youtube.com/watch?v=-7UZHERm2bA
https://drive.google.com/file/d/0B4pM4ssJKA2MTkltVmFzemZPRzQ/view?usp=sharing
https://drive.google.com/file/d/0B4pM4ssJKA2MTkltVmFzemZPRzQ/view?usp=sharing
https://drive.google.com/file/d/0B4pM4ssJKA2MTkltVmFzemZPRzQ/view?usp=sharing

