
CS 234: Assignment #2

Due date: April 26, 2024 at 6:00 PM (18:00) PST

These questions require thought but do not require long answers. Please be as concise as possible.

We encourage students to discuss in groups for assignments. However, each student must finish

the problem set and programming assignment individually, and must turn in her/his

assignment. We ask that you abide by the university Honor Code and that of the Computer Science

department, and make sure that all of your submitted work is done by yourself. If you have discussed

the problems with others, please include a statement saying who you discussed problems with. Failure

to follow these instructions will be reported to the Office of Community Standards. We reserve the

right to run a fraud-detection software on your code.

Please review any additional instructions posted on the assignment page at

http://web.stanford.edu/class/cs234/assignments.html. When you are ready to submit, please

follow the instructions on the course website.

1 Deep Q-Networks (DQN) (8 pts writeup)

All questions in the section pertain to DQN. The pseudocode for DQN is provided below.

Algorithm 1 Deep Q-Network (DQN)

1: Initialize replay buffer D
2: Initialize action-value function Q with random weights θ

3: Initialize target action-value function Q̂ with weights θ− = θ

4: for episode = 1, M do

5: Receive initial state s1
6: for t = 1, T do

7: With probability ϵ select a random action at
8: otherwise select at = maxa Q(st, a; θ)

9: Execute action at and observe reward rt and state st+1

10: Store transition (st, at, rt, st+1) in D
11: Sample random minibatch B of transitions from D
12: for each transition (sj , aj , rj , sj+1) in B do

13: if sj+1 is terminal then

14: Set yj = rj
15: else

16: Set yj = rj + γmaxa′ Q̂(sj+1, a
′; θ−)

17: end if

18: Perform gradient descent step on (yj −Q(sj , aj ; θ))
2 with respect to network parameters θ

19: end for

20: Every C steps reset Q̂ = Q by setting θ− = θ

21: end for

22: end for

In this pseudocode:
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• D is the replay memory which stores transitions.

• θ are the weights of the Q-network, which are adjusted during training.

• θ− are the weights of the target network, which are periodically updated to match θ.

• M is the number of episodes over which the training occurs.

• T is the maximum number of steps in each episode.

• ϵ is the exploration rate, which is typically decayed over time.

• γ is the discount factor, used to weigh future rewards.

• C is the frequency with which to update the target network’s weights.

1.1 Written Questions (8 pts)

(a) (3 pts) (written) What are three key differences between the DQN and Q-learning algorithms?

(b) (2 pts) (written) When using DQN with a deep neural network, which of the above components would you

hypothesize contributes most to performance gains? Justify your answer.

(c) (3 pts) (written) In DQN, the choice of target network update frequency is important. What might happen

if the target network is updated every 1015 steps for an agent learning to play a simple Atari game like

Pong?
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2 Policy Gradient Methods (54 pts coding + 26 pts writeup)

The goal of this problem is to experiment with policy gradient and its variants, including variance reduction

and off-policy methods. Your goals will be to set up policy gradient for both continuous and discrete

environments, use a neural network baseline for variance reduction, and implement the off-policy Proximal

Policy Optimization algorithm. The starter code has detailed instructions for each coding task and includes

a README with instructions to set up your environment. Below, we provide an overview of the key steps

of the algorithm.

2.1 REINFORCE

Recall the policy gradient theorem,

∇θJ(θ) = Eπθ
[∇θ log πθ(a|s)Qπθ (s, a)]

REINFORCE is a Monte Carlo policy gradient algorithm, so we will be using the sampled returns Gt

as unbiased estimates of Qπθ (s, a). The REINFORCE estimator can be expressed as the gradient of the

following objective function:

J(θ) =
1∑
Ti

|D|∑
i=1

Ti∑
t=1

log
(
πθ(a

i
t|sit)

)
Gi

t

where D is the set of all trajectories collected by policy πθ, and τ i = (si0, a
i
0, r

i
0, s

i
1, . . . , s

i
Ti
, aiTi

, riTi
) is

trajectory i.

2.2 Baseline

One difficulty of training with the REINFORCE algorithm is that the Monte Carlo sampled return(s) Gt

can have high variance. To reduce variance, we subtract a baseline bϕ(s) from the estimated returns when

computing the policy gradient. A good baseline is the state value function, V πθ (s), which requires a training

update to ϕ to minimize the following mean-squared error loss:

LMSE(ϕ) =
1∑
Ti

|D|∑
i=1

Ti∑
t=1

(bϕ(s
i
t)−Gi

t)
2

2.3 Advantage Normalization

After subtracting the baseline, we get the following new objective function:

J(θ) =
1∑
Ti

|D|∑
i=1

Ti∑
t=1

log
(
πθ(a

i
t|sit)

)
Âi

t

where

Âi
t = Gi

t − bϕ(s
i
t)

A second variance reduction technique is to normalize the computed advantages, Âi
t, so that they have mean

0 and standard deviation 1. From a theoretical perspective, we can consider centering the advantages to be

simply adjusting the advantages by a constant baseline, which does not change the policy gradient. Likewise,

rescaling the advantages effectively changes the learning rate by a factor of 1/σ, where σ is the standard

deviation of the empirical advantages.
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2.4 Proximal Policy Optimization

One might notice that the REINFORCE algorithm above (with or without a baseline function) is an on-policy

algorithm; that is, we collect some number of trajectories under the current policy network parameters, use

that data to perform a single batched policy gradient update, and then proceed to discard that data and

repeat the same steps using the newly updated policy parameters. This is in stark contrast to an algorithm

like DQN which stores all experiences collected over several past episodes. One might imagine that it could be

useful to have a policy gradient algorithm “squeeze” a little more information out of each batch of trajectories

sampled from the environment. Unfortunately, while the Q-learning update immediately allows for this, our

derived REINFORCE estimator does not in its standard form.

Ideally, an off-policy policy gradient algorithm will allow us to do multiple parameter updates on the same

batch of trajectory data. To get a suitable objective function that allows for this, we need to correct for

the mismatch between the policy under which the data was collected and the policy being optimized with

that data. Proximal Policy Optimization (PPO) restricts the magnitude of each update to the policy (i.e.,

through gradient descent) by ensuring the ratio of the current and former policies on the current batch is

not too different. In doing so, PPO tries to prevent updates that are “too large” due to the off-policy data,

which may lead to performance degradation. This technique is related to the idea of importance sampling

which we will examine in detail later in the course. Consider the following ratio zθ, which measures the

probability ratio between a current policy πθ (the “actor”) and an old policy πold
θ :

zθ(s
i
t, a

i
t) =

πθ(a
i
t | sit)

πθold(a
i
t | sit)

To do so, we introduce the clipped PPO loss function, shown below, where clip(x, a, b) outputs x if a ≤ x ≤ b,

a if x < a, and b if x > b:

Jclip(θ) =
1∑
Ti

|D|∑
i=1

Ti∑
t=1

min(zθ(s
i
t, a

i
t)Â

i
t, clip(zθ(s

i
t, a

i
t), 1− ϵ, 1 + ϵ)Âi

t)

where Âi
t = Gi

t − Vϕ(s
i
t). Note that in this context, we will refer to Vϕ(s

i
t) as a “critic”; we will train this

like the baseline network described above.

To train the policy, we collect data in the environment using πold
θ and apply gradient ascent on Jclip(θ) for

each update. After every K updates to parameters [π, ϕ], we update the old policy πold
θ to equal πθ.

2.5 Coding Questions (50 pts)

The functions that you need to implement in network utils.py, policy.py, policy gradient.py,

and baseline network.py are enumerated here. Detailed instructions for each function can be found in

the comments in each of these files.

Note: The ”batch size” for all the arguments is
∑

Ti since we already flattened out all the episode observa-

tions, actions, and rewards for you.

In network utils.py, you need to implement:

• build mlp

In policy.py, you need to implement:

• BasePolicy.act

• CategoricalPolicy.action distribution

• GaussianPolicy. init

• GaussianPolicy.std
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• GaussianPolicy.action distribution

In policy gradient.py, you need to implement:

• PolicyGradient.init policy

• PolicyGradient.get returns

• PolicyGradient.normalize advantage

• PolicyGradient.update policy

In baseline network.py, you need to implement:

• BaselineNetwork. init

• BaselineNetwork.forward

• BaselineNetwork.calculate advantage

• BaselineNetwork.update baseline

In ppo.py, you need to implement:

• PPO.update policy

2.6 Debugging

To help debug and verify that your implementation is correct, we provide a set of sanity checks below that

pass with a correct implementation. Note that these are not exhaustive (i.e., they do not verify that your

implementation is correct) and that you may notice oscillation of the average reward across training.

Across most seeds:

• Policy gradient (without baseline) on Pendulum should achieve around an average reward of 100 by

iteration 10.

• Policy gradient (with baseline) on Pendulum should achieve around an average reward of 700 by

iteration 20.

• PPO on Pendulum should achieve an average reward of 200 by iteration 20.

• All methods should reach an average reward of 200 on Cartpole, 1000 on Pendulum, and 200 on

Cheetah at some point.

2.7 Writeup Questions (26 pts)

(a) (3 pts) To compute the REINFORCE estimator, you will need to calculate the values {Gt}Tt=1 (we drop the

trajectory index i for simplicity), where

Gt =

T∑
t′=t

γt′−trt′

Naively, computing all these values takes O(T 2) time. Describe how to compute them in O(T ) time.

(b) (3 pts) Consider the cases in the gradient of the clipped PPO loss function equals 0. Express these cases

mathematically and explain why PPO behaves in this manner.
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(c) (3 pts) Notice that the method which samples actions from the policy also returns the log-probability with

which the sampled action was taken. Why does REINFORCE not need to cache this information while

PPO does? Suppose this log-probability information had not been collected during the rollout. How

would that affect the implementation (that is, change the code you would write) of the PPO update?

(d) (12 pts) The general form for running your policy gradient implementation is as follows:

python main.py --env-name ENV --seed SEED --METHOD

ENV should be cartpole, pendulum, or cheetah, METHOD should be either baseline, no-baseline,

or ppo, and SEED should be a positive integer.

For the cartpole and pendulum environments, we will consider 3 seeds (seed = 1, 2, 3). For

cheetah, we will only require one seed (seed = 1) since it’s more computationally expensive, but

we strongly encourage you to run multiple seeds if you are able to. Run each of the algorithms we

implemented (PPO, PG with baseline, PG without baseline) across each seed and environment. In

total, you should end up with at least 21 runs.

Plot the results using:

python plot.py --env-name ENV --seeds SEEDS

where SEEDS should be a comma-separated list of seeds which you want to plot (e.g. --seeds

1,2,3). Please include the plots (one for each environment) in your writeup, and comment

on the performance of each method.

We have the following expectations about performance to receive full credit:

• cartpole: Should reach the max reward of 200 (although it may not stay there)

• pendulum: Should reach the max reward of 1000 (although it may not stay there)

• cheetah: Should reach at least 200 (could be as large as 900)
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3 Distributions induced by a policy (13 pts)

Suppose we have a single MDP and two policies for that MDP, π and π′. Naturally, we are often interested

in the performance of policies obtained in the MDP, quantified by V π and V π′
, respectively. If the reward

function and transition dynamics of the underlying MDP are known to us, we can use standard methods for

policy evaluation. There are many scenarios, however, where the underlying MDP model is not known and

we must try to infer something about the performance of policy π′ solely based on data obtained through

executing policy π within the environment. In this problem, we will explore a classic result for quantifying

the gap in performance between two policies that only requires access to data sampled from one of the

policies.

Consider an infinite-horizon MDP M = ⟨S,A,R,P, γ⟩ and stochastic policies of the form π : S → ∆(A)1.

Specifically, π(a|s) refers to the probability of taking action a in state s, and
∑

a π(a|s) = 1, ∀s. For

simplicity, we’ll assume that this decision process has a single, fixed starting state s0 ∈ S.

(a) (3 pts) (written) Consider a fixed stochastic policy and imagine running several rollouts of this policy within

the environment. Naturally, depending on the stochasticity of the MDP M and the policy itself,

some trajectories are more likely than others. Write down an expression for ρπ(τ), the probability of

sampling a trajectory τ = (s0, a0, s1, a1, . . .) from running π in M. To put this distribution in context,

recall that V π(s0) = Eτ∼ρπ

[ ∞∑
t=0

γtR(st, at) | s0
]
.

(b) (1 pt) (written) What is pπ(st = s), where pπ(st = s) denotes the probability of being in state s at timestep

t while following policy π? (Provide an equation)

(c) (5 pts) (written) Just as ρπ captures the distribution over trajectories induced by π, we can also examine the

distribution over states induced by π. In particular, define the discounted, stationary state distribution

of a policy π as

dπ(s) = (1− γ)

∞∑
t=0

γtpπ(st = s),

where pπ(st = s) denotes the probability of being in state s at timestep t while following policy π; your

answer to the previous part should help you reason about how you might compute this value.

The value function of a policy π can be expressed using this distribution dπ(s, a) = dπ(s)π(a | s) over
states and actions, which will shortly be quite useful.

Consider an arbitrary function f : S ×A → R. Prove the following identity:

Eτ∼ρπ

[ ∞∑
t=0

γtf(st, at)

]
=

1

(1− γ)
Es∼dπ

[
Ea∼π(s) [f(s, a)]

]
.

Hint: You may find it helpful to first consider how things work out for f(s, a) = 1,∀(s, a) ∈ S ×A.

(d) (5 pts) (written) For any policy π, we define the following function

Aπ(s, a) = Qπ(s, a)− V π(s).

Aπ(s, a) is known as the advantage function and shows up in a lot of policy gradient based RL al-

gorithms, which we shall see later in the class. Intuitively, it is the additional benefit one gets from

first following action a and then following π, instead of always following π. Prove that the following

statement holds for all policies π, π′:

V π(s0)− V π′
(s0) =

1

(1− γ)
Es∼dπ

[
Ea∼π(s)

[
Aπ′

(s, a)
]]

.

1For a finite set X , ∆(X ) refers to the set of categorical distributions with support on X or, equivalently, the ∆|X|−1

probability simplex.
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Hint 1: Try adding and subtracting a term that will let you bring Aπ′
(s, a) into the equation. What

happens on adding and subtracting
∞∑
t=0

γt+1V π′
(st+1) on the LHS?

Hint 2: Recall the tower property of expectation which says that E [X] = E [E [X | Y ]].

After proving this result, you might already begin to appreciate why this represents a useful theoretical

contribution. We are often interested in being able to control the gap between two value functions and this

result provides a new mechanism for doing exactly that, when the value functions in question belong to two

particular policies of the MDP.

Additionally, to see how this result is of practical importance as well, suppose the data-generating policy in

the above identity π is some current policy we have in hand and π′ represents some next policy we would

like to optimize for; concretely, this scenario happens quite often when π is a neural network and π′ denotes

the same network with updated parameters. As is often the case with function approximation, there are

sources of instability and, sometimes, even small parameter updates can lead to drastic changes in policy

performance, potentially degrading (instead of improving) the performance of the current policy π. These

realities of deep learning motivate a desire to occasionally be conservative in our updates and attempt to

reach a new policy π′ that provides only a modest improvement over π. Practical approaches can leverage

the above identity to strike the right balance between making progress and maintaining stability.
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4 Ethical concerns with Policy Gradients (5 pts)

In this assignment, we focus on policy gradients, an extremely popular and useful model-free technique for

RL. However, policy gradients collect data from the environment with a potentially suboptimal policy during

the learning process. While this is acceptable in simulators like Mujoco or Atari, such exploration in real

world settings such as healthcare and education presents challenges.

Consider a case study of a Stanford CS course considering introducing a RL-based chat bot for office hours.

For each assignment, some students will be given 100% human CA office hours; others 100% chatbot; others

a mix of both. The reward signal is the student grades on each assignment. Since the AI chatbot will learn

through experience, at any given point in the quarter, the help given by the chatbot might be better or

worse than the help given by a randomly selected human CA.

If each time students are randomly assigned to each condition, some students will be assigned more chatbot

hours and others fewer. In addition, some students will be assigned more chatbot hours at the beginning of

the term (when the chatbot has had fewer interactions and may have lower effectiveness) and fewer at the

end, and vice versa. All students will be graded according to the same standards, regardless of which type

of help they have received.

Researchers who experiment on human subjects are morally responsible for ensuring their well being and

protecting them from being harmed by the study. A foundational document in research ethics, the Belmont

Report, identifies three core principles of responsible research:

1. Respect for persons: individuals are capable of making choices about their own lives on the basis of

their personal goals. Research participants should be informed about the study they are considering

undergoing, asked for their consent, and not coerced into giving it. Individuals who are less capable of

giving informed consent, such as young children, should be protected in other ways.

2. Beneficence: the principle of beneficence describes an obligation to ensure the well-being of subjects.

It has been summarized as “do not harm” or “maximize possible benefits and minimize possible harms.”

3. Justice: the principle of justice requires treating all people equally and distributing benefits and harms

to them equitably.

(a) (4 pts) In 4-6 sentences, describe two experimental design or research choices that researchers planning

the above experiment ought to make in order to respect these principles. Justify the importance of

these choices using one of the three ethical principles above and indicating which principle you have

chosen. For example, “Researchers ought to ensure that students advised by the chatbot are able to

revise their assignments after submission with the benefit of human advice if needed. If they did not

take this precaution, the principle of justice would be violated because the risk of harm from poor

advice from the AI chatbot would be distributed unevenly.”

At universities, research experiments that involve human subjects are subject by federal law to Institutional

Review Board (IRB) approval. The purpose of IRB is to protect human subjects of research: to “assure,

both in advance and by periodic review, that appropriate steps are taken to protect the rights and welfare of

humans participating as subjects in the research” (reference). The IRB process was established in response

to abuses of human subjects in the name of medical research performed during WWII (reference). The

IRB is primarily intended to address the responsibilities of the researcher towards the subjects. Familiarize

yourself with Stanford’s IRB Research Compliance process at this link.

(b) (1 pt) If you were conducting the above experiment, what process would you need to follow at Stanford

(who would you email/ where would you upload a research protocol) to get clearance?
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