
Using Transfer Learning Between Games to Improve Deep Reinforcement Learning Performance
Chaitanya Asawa1, Christopher Elamri2, David Pan2

1 Department of Computer Science, Stanford University, 2 Department of Electrical Engineering, Stanford University

•  We aim to play two games with Deep Q-learning, Snake
and PuckWorld, and hope to learn from one game for
another

•  Deep Q-learning has performed very well on Atari games
in the past; it can generalize across huge state spaces

•  In PuckWorld, an agent aims to stay around some target
while avoiding a large red puck that slowly follows it

•  In Snake, an agent collects food, growing longer each
time, while trying to avoid running into itself or a wall

Future Directions
While we found success in transferring PuckWorld
weights to Snake, we’d ideally like to see if this
scheme generalizes to more games using the same
weights – both similar ones and different ones.

ß2AR

We then experiment with using the weights we learned from
PuckWorld in terms of usefulness for playing Snake. We
explore various combinations of two approaches:
- Retraining layers (so the weights can change)
- Reinitializing layers (starting from totally fresh weights)

Motivation

Dueling Network

Background

Transfer Learning

•  Snake: -5 for running into itself/wall, +1 for collecting
reward

•  PuckWorld:
-  Function of distance to the green circle (want to be

closer)
-  Negative reward proportional to distance from the red

puck's center if we are within the red puck's radius.

Dueling Network Performance

We still see oscillation in the rewards,
but looks like greater final performance

and overall performance.

PuckWorld seems to converge around
the same as final reward as Vanilla

DQNs – maybe even slightly worse.

We find greatest
success when

retraining all layers in
addition to

reinitializing some of
the final layers.

Otherwise, we seem to
fail to learn.

•  We used Deep Q-Networks that had 3 convolutional layers of
32 filters (size 3 by 3) with stride 1, followed by FC-256, and a
final FC to the number of actions.

•  In addition, we use experience replay and a target Q-network.

The ability to successfully transfer learn is useful as it allows
us to avoid having to train specific models for every task we
may have (which takes much computational power and
time), and rather achieve high performance quickly using
what we have generally learned.

Rewards

Vanilla DQNs

Conclusion
Source: Wang et. al, ICML, 2016

Preprocessing

•  To have a better sense of direction (and velocity in the
case of PuckWorld), we maintain a state history

•  To reduce the input size, we use gray scale images
instead of RGB images

•  We skip a constant number of frames to play more games
during training

Snake PuckWorld

Benefit of Transfer Learning
Introduced by Wang et. al, separates value of state from
advantage of state, action pairs

PuckWorld

It seems that transfer
learning made significant
improvements in terms of

preventing the rewards
from oscillating, in addition
to earning higher rewards

as it started learning better
and in the end.

We see that with more history, it is harder
for Snake to learn. In addition, when it does

learn well, there is a lot of oscillation.

Snake

PuckWorld seems to converge
smoothly in a relatively similar fashion

regardless of the size of history.

•  Factors such as size of state history can make it more
challenging for DQNs to learn

•  We see in playing Snake oscillating rewards over time. We
hypothesize that the Snake has difficulty adjusting to its
longer length and takes less optimal actions.

•  Transfer learning can help with both reward oscillation
and improving performance.

