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•  We aim to play two games with Deep Q-learning, Snake 
and PuckWorld, and hope to learn from one game for 
another

•  Deep Q-learning has performed very well on Atari games 
in the past; it can generalize across huge state spaces

•  In PuckWorld, an agent aims to stay around some target 
while avoiding a large red puck that slowly follows it

•  In Snake, an agent collects food, growing longer each 
time, while trying to avoid running into itself or a wall

Future Directions 
While we found success in transferring PuckWorld 
weights to Snake, we’d ideally like to see if this 
scheme generalizes to more games using the same 
weights – both similar ones and different ones.
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We then experiment with using the weights we learned from
PuckWorld in terms of usefulness for playing Snake. We 
explore various combinations of two approaches:
- Retraining layers (so the weights can change)
- Reinitializing layers (starting from totally fresh weights)

Motivation 

Dueling Network 

Background 

Transfer Learning 

•  Snake: -5 for running into itself/wall, +1 for collecting 
reward

•  PuckWorld: 
-  Function of distance to the green circle (want to be 

closer) 
-  Negative reward proportional to distance from the red 

puck's center if we are within the red puck's radius.

Dueling Network Performance 

We still see oscillation in the rewards, 
but looks like greater final performance 

and overall performance.

PuckWorld seems to converge around 
the same as final reward as Vanilla 

DQNs – maybe even slightly worse.

We find greatest 
success when 

retraining all layers in 
addition to 

reinitializing some of 
the final layers. 

Otherwise, we seem to 
fail to learn.

•  We used Deep Q-Networks that had 3 convolutional layers of 
32 filters (size 3 by 3) with stride 1, followed by FC-256, and a 
final FC to the number of actions.

•  In addition, we use experience replay and a target Q-network.

The ability to successfully transfer learn is useful as it allows 
us to avoid having to train specific models for every task we 
may have (which takes much computational power and 
time), and rather achieve high performance quickly using 
what we have generally learned.

Rewards 

Vanilla DQNs 

Conclusion 
Source: Wang et. al, ICML, 2016

Preprocessing 

•  To have a better sense of direction (and velocity in the 
case of PuckWorld), we maintain a state history

•  To reduce the input size, we use gray scale images 
instead of RGB images

•  We skip a constant number of frames to play more games 
during training

Snake PuckWorld 

Benefit of Transfer Learning 
Introduced by Wang et. al, separates value of state from 
advantage of state, action pairs

PuckWorld 

It seems that transfer 
learning made significant 
improvements in terms of 

preventing the rewards 
from oscillating, in addition 
to earning higher rewards  

as it started learning better 
and in the end.

We see that with more history, it is harder 
for Snake to learn. In addition, when it does 

learn well, there is a lot of oscillation.

Snake 

PuckWorld seems to converge 
smoothly in a relatively similar fashion 

regardless of the size of history.

•  Factors such as size of state history can make it more 
challenging for DQNs to learn

•  We see in playing Snake oscillating rewards over time. We 
hypothesize that the Snake has difficulty adjusting to its 
longer length and takes less optimal actions.

•  Transfer learning can help with both reward oscillation 
and improving performance.


