Today the 3rd part of the lecture includes slides from David Silver’s introduction to RL slides or modifications of those slides.
Today’s Plan

- Overview of reinforcement learning
- Course logistics
- Introduction to sequential decision making under uncertainty
Make good sequences of decisions
Learn to make good sequences of decisions
Fundamental challenge in artificial intelligence and machine learning is learning to make good decisions under uncertainty.
2010s: New Era of RL. Atari

Figure: DeepMind Nature, 2015
2010s: New Era of RL. Robotics

Figure: Chelsea Finn, Sergey Levine, Pieter Abbeel
Figure: RL used to optimize Refraction 1, Madel, Liu, Brunskill, Popvic AAMAS 2014.
Expanding Reach. Health

Figure: Personalized HeartSteps: A Reinforcement Learning Algorithm for Optimizing Physical Activity. Liao, Greenewald, Klasnja, Murphy 2019 arxiv
With great power there must also come – great responsibility
Reinforcement Learning Involves

- Optimization
- Delayed consequences
- Exploration
- Generalization
Optimization

- Goal is to find an optimal way to make decisions
 - Yielding best outcomes or at least very good outcomes
- Explicit notion of utility of decisions
- Example: finding minimum distance route between two cities given network of roads
Delayed Consequences

- Decisions now can impact things much later...
 - Saving for retirement
 - Finding a key in video game Montezuma’s revenge

- Introduces two challenges
 - When planning: decisions involve reasoning about not just immediate benefit of a decision but also its longer term ramifications
 - When learning: temporal credit assignment is hard (what caused later high or low rewards?)
Exploration

- Learning about the world by making decisions
 - Agent as scientist
 - Learn to ride a bike by trying (and failing)
 - Finding a key in Montezuma’s revenge

- Censored data
 - Only get a reward (label) for decision made
 - Don’t know what would have happened if we had taken red pill instead of blue pill (Matrix movie reference)

- Decisions impact what we learn about
 - If we choose to go to Stanford instead of MIT, we will have different later experiences...
• Policy is mapping from past experience to action
• Why not just pre-program a policy?
Generalization

- Policy is mapping from past experience to action
- Why not just pre-program a policy?

Figure: DeepMind Nature, 2015

- How many possible images are there?
 - \((256^{100 \times 200})^3 \)
Reinforcement Learning Involves

- Optimization
- Exploration
- Generalization
- Delayed consequences
RL vs Other AI and Machine Learning

<table>
<thead>
<tr>
<th></th>
<th>AI Planning</th>
<th>SL</th>
<th>UL</th>
<th>RL</th>
<th>IL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learns from experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generalization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delayed Consequences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exploration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **SL** = Supervised learning; **UL** = Unsupervised learning; **RL** = Reinforcement Learning; **IL** = Imitation Learning
RL vs Other AI and Machine Learning

<table>
<thead>
<tr>
<th></th>
<th>AI Planning</th>
<th>SL</th>
<th>UL</th>
<th>RL</th>
<th>IL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimization</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learns from experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generalization</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delayed Consequences</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Exploration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **SL** = Supervised learning; **UL** = Unsupervised learning; **RL** = Reinforcement Learning; **IL** = Imitation Learning
- AI planning assumes have a model of how decisions impact environment
RL vs Other AI and Machine Learning

<table>
<thead>
<tr>
<th></th>
<th>AI Planning</th>
<th>SL</th>
<th>UL</th>
<th>RL</th>
<th>IL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimization</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learns from experience</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generalization</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delayed Consequences</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exploration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- SL = Supervised learning; UL = Unsupervised learning; RL = Reinforcement Learning; IL = Imitation Learning
- Supervised learning is provided correct labels
RL vs Other AI and Machine Learning

<table>
<thead>
<tr>
<th></th>
<th>AI Planning</th>
<th>SL</th>
<th>UL</th>
<th>RL</th>
<th>IL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimization</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learns from experience</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generalization</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delayed Consequences</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exploration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **SL** = Supervised learning; **UL** = Unsupervised learning; **RL** = Reinforcement Learning; **IL** = Imitation Learning
- Unsupervised learning is provided no labels.
RL vs Other AI and Machine Learning

<table>
<thead>
<tr>
<th></th>
<th>AI Planning</th>
<th>SL</th>
<th>UL</th>
<th>RL</th>
<th>IL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimization</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Learns from experience</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Generalization</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Delayed Consequences</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Exploration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

- **SL** = Supervised learning; **UL** = Unsupervised learning; **RL** = Reinforcement Learning; **IL** = Imitation Learning
- Reinforcement learning is provided with censored labels
Sidenote: Imitation Learning

<table>
<thead>
<tr>
<th></th>
<th>AI Planning</th>
<th>SL</th>
<th>UL</th>
<th>RL</th>
<th>IL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimization</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Learns from experience</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Generalization</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Delayed Consequences</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Exploration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

- **SL** = Supervised learning; **UL** = Unsupervised learning; **RL** = Reinforcement Learning; **IL** = Imitation Learning
- Imitation learning assumes input demonstrations of good policies
- IL reduces RL to SL. IL + RL is promising area
How Do We Proceed?

• Explore the world

• Use experience to guide future decisions
Other Issues

- Where do rewards come from?
 - And what happens if we get it wrong?
- Robustness / Risk sensitivity
- We are not alone...
 - Multi-agent RL
Break
Today’s Plan

- Overview of reinforcement learning
- **Course structure overview**
- Introduction to sequential decision making under uncertainty
High Level Learning Goals*

- Define the key features of RL
- Given an application problem how (and whether) to use RL for it
- Compare and contrast RL algorithms on multiple criteria
- *For more detailed descriptions, see website
Course Staff

- **Instructor:** Emma Brunskill
- **CAs:** Dilip Arumugam, Jean-Raymond Betterton, Yuqian Cheng, Ramtin Keramati, Haojun Li, Jasdeep Singh, Garrett Thomas, Woody Wang, and Andrea Zanette

Additional information
- Course webpage: http://cs234.stanford.edu
- Schedule, Piazza (fastest way to get help), lecture slides
- Prerequisites, grading details, late policy, see webpage
Standing on the shoulders of giants...

- A key part of human progress is our ability to learn beyond our own experience
- Enormous variability in the effectiveness of education
- Practice, coupled with prompt feedback, is key
- Use some of our class time to provide opportunities for practice and feedback
- Huge body of evidence which supports that retrieval practice helps increase retention more than many other methods, and can support deep learning: ”Refresh your understanding” exercises in many lectures
Effective Practice Strategies for Learning Class Content

- Keep up with Refresh/Check your understanding exercises
- Do homework
- Attend office hours for help
- Attend problem sessions
- Do past quiz or exam problems for practice without referring to solutions
Criteria for Doing Well in Class

- All of you can succeed if you put in the effort
- We, the class staff, and your fellow classmates, are here to help
Course content will be pre-recorded and available by the end of Sunday the week before class

Monday class time: Optional CA-facilitated watch party for the first lecture will occur during normal class time

Wednesday class time: Optional CA-lead session to go through worked examples about the material and also practice working on materials in breakouts with CA support

Friday 6pm Pacific: This is generally when quizzes and homeworks will be due. All quizzes and homeworks will be submitted on gradescope.

We will drop the lowest score of Quizzes 1-3.
I know the pandemic is hard for everyone, and for some of you, an extraordinarily hard time.

I have made some changes to the class to provide additional opportunities to engage in meaningful ways with the material and your classmates, based on discussions with other faculty and CAs about what has worked well in their large remote classes.
Today’s Plan

- Overview of reinforcement learning
- Course logistics
- Introduction to sequential decision making under uncertainty
Refresher Exercise: AI Tutor as a Decision Process

- Student initially does not know addition (easier) nor subtraction (harder)
- AI tutor agent can provide practice problems about addition or subtraction
- AI agent gets rewarded +1 if student gets problem right, -1 if get problem wrong
- Model this as a Decision Process. Define state space, action space, and reward model. What does the dynamics model represent? What would a policy to optimize the expected discounted sum of rewards yield?
- Write down your own answers (5 min) and then (if watching live) discuss in small breakout groups.
Refresher Exercise: AI Tutor as a Decision Process

- State:
- Actions:
- Reward model:
- Meaning of dynamics model:
Refresher Exercise: AI Tutor as a Decision Process

- Student initially does not know addition (easier) nor subtraction (harder)
- Teaching agent can provide activities about addition or subtraction
- Agent gets rewarded for student performance: +1 if student gets problem right, -1 if get problem wrong
- Which items will agent learn to give to max expected reward? Is this the best way to optimize for learning? If not, what other reward might one give to encourage learning?
Goal: Select actions to maximize total expected future reward
- May require balancing immediate & long term rewards
Example: Web Advertising

- **Goal**: Select actions to maximize total expected future reward
- **May require balancing immediate & long term rewards**
Example: Robot Unloading Dishwasher

- Camera image of kitchen
- Reward: +1 if no dishes on counter

Goal: Select actions to maximize total expected future reward
May require balancing immediate & long term rewards
Goal: Select actions to maximize total expected future reward

May require balancing immediate & long term rewards
Sequential Decision Process: Agent & the World (Discrete Time)

- Each time step t:
 - Agent takes an action a_t
 - World updates given action a_t, emits observation o_t and reward r_t
 - Agent receives observation o_t and reward r_t
History: Sequence of Past Observations, Actions & Rewards

- History $h_t = (a_1, o_1, r_1, \ldots, a_t, o_t, r_t)$
- Agent chooses action based on history
- State is information assumed to determine what happens next
 - Function of history: $s_t = (h_t)$
This is true state of the world used to determine how world generates next observation and reward

Often hidden or unknown to agent

Even if known may contain information not needed by agent
Agent State: Agent’s Internal Representation

- What the agent / algorithm uses to make decisions about how to act
- Generally a function of the history: $s_t = f(h_t)$
- Could include meta information like state of algorithm (how many computations executed, etc) or decision process (how many decisions left until an episode ends)
Markov Assumption

- Information state: sufficient statistic of history
- State s_t is Markov if and only if:
 \[
p(s_{t+1}|s_t, a_t) = p(s_{t+1}|h_t, a_t)
 \]
- Future is independent of past given present
Information state: sufficient statistic of history

State s_t is Markov if and only if:

$$p(s_{t+1}|s_t, a_t) = p(s_{t+1}|h_t, a_t)$$

Future is independent of past given present

Hypertension control: let state be current blood pressure, and action be whether to take medication or not. Is this system Markov?

Website shopping: state is current product viewed by customer, and action is what other product to recommend. Is this system Markov?
Why is Markov Assumption Popular?

- Can always be satisfied
 - Setting state as history always Markov: $s_t = h_t$
- In practice often assume most recent observation is sufficient statistic of history: $s_t = o_t$
- State representation has big implications for:
 - Computational complexity
 - Data required
 - Resulting performance
Environment and world state $s_t = o_t$
Types of Sequential Decision Processes

- Is state Markov? Is world partially observable? (POMDP)
- Are dynamics deterministic or stochastic?
- Do actions influence only immediate reward or reward and next state?
Example: Mars Rover as a Markov Decision Process

Figure: Mars rover image: NASA/JPL-Caltech

- States: Location of rover \((s_1, \ldots, s_7)\)
- Actions: TryLeft or TryRight
- Rewards:
 - +1 in state \(s_1\)
 - +10 in state \(s_7\)
 - 0 in all other states
Often includes one or more of: Model, Policy, Value Function
MDP Model

- Agent’s representation of how world changes given agent’s action
- Transition / dynamics model predicts next agent state
 \[p(s_{t+1} = s' | s_t = s, a_t = a) \]
- Reward model predicts immediate reward
 \[r(s_t = s, a_t = a) = \mathbb{E}[r_t | s_t = s, a_t = a] \]
Numbers above show RL agent’s reward model

Part of agent’s transition model:

- \(0.5 = P(s_1 | s_1, \text{TryRight}) = P(s_2 | s_1, \text{TryRight}) \)
- \(0.5 = P(s_2 | s_2, \text{TryRight}) = P(s_3 | s_2, \text{TryRight}) \) …

Model may be wrong
Policy

- Policy π determines how the agent chooses actions
- $\pi : S \rightarrow A$, mapping from states to actions
- Deterministic policy:
 \[\pi(s) = a \]
- Stochastic policy:
 \[\pi(a|s) = Pr(a_t = a|s_t = s) \]
Example: Mars Rover Policy

\[
\begin{array}{ccccccc}
 s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 \\
 \hline
 & & & \text{Mars Rover} & & & \\
\end{array}
\]

- \(\pi(s_1) = \pi(s_2) = \cdots = \pi(s_7) = \text{TryRight} \)
- **Quick check:** is this a deterministic policy or a stochastic policy?
Value Function

- Value function V^π: expected discounted sum of future rewards under a particular policy π

\[V^\pi(s_t = s) = \mathbb{E}_\pi[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots | s_t = s] \]

- Discount factor γ weighs immediate vs future rewards
- Can be used to quantify goodness/badness of states and actions
- And decide how to act by comparing policies
Example: Mars Rover Value Function

<table>
<thead>
<tr>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
<th>S_5</th>
<th>S_6</th>
<th>S_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V^\pi(s_1) = +1$</td>
<td>$V^\pi(s_2) = 0$</td>
<td>$V^\pi(s_3) = 0$</td>
<td>$V^\pi(s_4) = 0$</td>
<td>$V^\pi(s_5) = 0$</td>
<td>$V^\pi(s_6) = 0$</td>
<td>$V^\pi(s_7) = +10$</td>
</tr>
</tbody>
</table>

- Discount factor, $\gamma = 0$
- $\pi(s_1) = \pi(s_2) = \cdots = \pi(s_7) = \text{TryRight}$
- Numbers show value $V^\pi(s)$ for this policy and this discount factor
Types of RL Agents

- Model-based
 - Explicit: Model
 - May or may not have policy and/or value function

- Model-free
 - Explicit: Value function and/or policy function
 - No model
Figure: Figure from David Silver’s RL course
Evaluation and Control

- **Evaluation**
 - Estimate/predict the expected rewards from following a given policy

- **Control**
 - Optimization: find the best policy
Example: Mars Rover Policy Evaluation

<table>
<thead>
<tr>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
<th>s_5</th>
<th>s_6</th>
<th>s_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
</tr>
</tbody>
</table>

- $\pi(s_1) = \pi(s_2) = \cdots = \pi(s_7) = \text{TryRight}$
- Discount factor, $\gamma = 0$
- What is the value of this policy?

$$V^\pi(s_t = s) = \mathbb{E}_\pi[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots | s_t = s]$$

- Answer:

$$V^\pi(s_t = s) = r(s)$$
Course Outline

- Markov decision processes & planning
- Model-free policy evaluation
- Model-free control
- Reinforcement learning with function approximation & Deep RL
- Policy Search
- Exploration
- Advanced Topics

See website for more details