Lecture 2: Making Sequences of Good Decisions Given

a Model of the World

Emma Brunskill

CS234 Reinforcement Learning

Winter 2026

Emma Brunskill (CS234 Reinforcement Learn Lecture 2: Making Sequences of Good Decis Winter 2026



L2N1 Quick Check Your Understanding 1. Participation

Poll

In a Markov decision process, a large discount factor v means that short
term rewards are much more influential than long term rewards. [Enter
your answer in participation poll |

o True
o False
@ Don't know

Question for today's lecture (not for poll): Can we construct algorithms

for computing decision policies so that we can guarantee with additional

computation / iterations, we monotonically improve the decision policy?
Do all algorithms satisfy this property?
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L2N1 Quick Check Your Understanding 1. Participation

Poll

In a Markov decision process, a large discount factor v means that short
term rewards are much more influential than long term rewards. [Enter
your answer in the poll]

o True
o False
@ Don’t know

False. A large v implies we weigh delayed / long term rewards more.
~ = 0 only values immediate rewards

Question for today's lecture (not for poll): Can we construct algorithms
for computing decision policies so that we can guarantee with additional
computation / iterations, we monotonically improve the decision policy?
Do all algorithms satisfy this property?

Yes it is possible! We will see this today. Not all of them do.
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Class Tasks and Updates

o Friendly reminder: tutorial sign up! These start next week.
@ Homework 1 out by Friday. Due next Friday at 6pm.

o Office hours will start next week. See Ed for days, times of group and
1:1 office hours and we will also share information about location
and/or zoom links.
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Today's Plan

@ Last Time:

o Introduction
o Components of an agent: model, value, policy

@ This Time:
e Making good decisions given a Markov decision process
@ Next Time:
e Policy evaluation when don't have a model of how the world works
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Today: Given a model of the world

Markov Processes (last time)

Markov Reward Processes (MRPs) (continue from last time)
Markov Decision Processes (MDPs)

Evaluation and Control in MDPs
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Iterative Algorithm for Computing Value of a MRP

Fobilny VG 15 = veckrs é/]

Dynamic programming
Initialize Vp(s) = 0 for all s

@ For k =1 until convergence
e Forallsin S

Vi(s) = R(s) +v > _ P(s'|s) Vi (s')
s’'eS

Computational complexity: O(|S|?) for each iteration (|S| = N)
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Markov Decision Process (MDP)

@ Markov Decision Process is Markov Reward Process 4 actions
@ Definition of MDP
e S is a (finite) set of Markov states s € S
o Ais a (finite) set of actions a € A
e P is dynamics/transition model for each action, that specifies
P(st11 =8'|ss =s,a: = a 7

e R is a reward function! 5[25?0\5 )Zfﬁi s S'>

R(s: = s,ar = a) = E[r|s: = s, a; = 4]
o Discount factor v € [0,1] defecl Fom cless (s, Ck\x
e MDP is a tuple: (S,A,P,R,7)
7

'Reward is sometimes defined as a function of the current state, or as a function of
the (state, action, next state) tuple. Most frequently in this class, we will assume reward
is a function of state and action
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Example: Mars Rover MDP

S1 S2 S3 Sy S5 Sg S7

P(s'|s,a1) = P(s'|s, a) =

[cleololoNel - S
[eoNeNeNel o Nl
O OO OOOoO
OO+ OOOOo
O O OO OoOOo
H O OOOOOo
O OO OO OO
O OO OO oo
OO OO OO
OO OO OO
OO OO~ OOoO
OO O OOOoO
OO R OOOOo
H =2 OOOOO

@ 2 deterministic actions
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MDP Policies

@ Policy specifies what action to take in each state
o Can be deterministic or stochastic

@ For generality, consider as a conditional distribution
o Given a state, specifies a distribution over actions

e Policy: m(als) = P(a; = als; = s)
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MDP + Policy

e MDP + m(a|s) = Markov Reward Process
@ Precisely, it is the MRP (S, R™, P™,~), where

R™(s) =) _m(als)R(s, aB

acA

P (s'|s) = Z w(als)P(s'|s, a)

acA

@ Implies we can use same techniques to evaluate the value of a policy
for a MDP as we could to compute the value of a MRP, by defining a
MRP with R™ and P™
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MDP Policy Evaluation, Iterative Algorithm

ggy f Moo n T A
I “wpr

Initialize Vp(s) = 0 for all s
For k = 1 until convergence
e Forallsin S

- T |

Vi(s) =D _n(als)

a

R(s,2)+7 Y p(s'ls,2) vzl(s’)]

s’eS

This is a Bellman backup for a particular policy

Note that if the policy is deterministic then the above update
simplifies to

Vi(s) = R(s,m(s)) +v > _ p(s'ls, m(s)) Vi_s(s")

s'eS
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Exercise L2E1: MDP 1 lteration of Policy Evaluation, Mars

Rover Example

Dynamics: p(se|ss, a1) = 0.5, p(s7|se,a1) = 0.5, ...

Reward: for all actions, +1 in state s;, +10 in state s7, 0 otherwise
Let m(s) = a1 Vs, assume V|, =[100000 10l and k=1, vy=0.5
e Compute Vii1(ss)

See answer at the end of the slide deck. If you'd like practice, work this
out and then check your answers.
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Check Your Understanding Poll L2N2

S1 S2 S3 Sy S5 Se S7

@ We will shortly be interested in not just evaluating the value of a
single policy, but finding an optimal policy. Given this it is informative
to think about properties of the potential policy space.

@ First for the Mars rover example [ 7 discrete states (location of

rover); 2 actions: Left or Right]

How many deterministic policies are there?

Select answer on the participation poll: 2 / 14 / 72 / 27 / Not sure

Is the optimal policy (one with highest value) for a MDP unique?

Select answer on the participation poll: Yes / No / Not sure
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Check Your Understanding L2N2

S1 Sz S3 Sy Ss Se S7

@ 7 discrete states (location of rover)
@ 2 actions: Left or Right

@ How many deterministic policies are there?

2! A=

@ Is the highest reward policy for a MDP always unique?
No, there may be two policies with the same (maximal) value
function.
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MDP Control

@ Compute the optimal policy

7 (s) = argmax V" (s)
s
——— >
@ There exists a unique optimal value function
@ Optimal policy for a MDP in an infinite horizon problem is
deterministic
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MDP Control

@ Compute the optimal policy

m*(s) = argmax V"™ (s)

@ There exists a unique optimal value function
e Optimal policy for a MDP in an infinite horizon problem (agent acts
forever is

o Deterministic
o Stationary (does not depend on time step)
e Unique? Not necessarily, may have two policies with identical (optimal)

values

Winter 2026
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Policy Search

@ One option is searching to compute best policy

o Number of deterministic policies is |A[l°!

@ Policy iteration is generally more efficient than enumeration
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MDP Policy Iteration (PI)

@ Seti=0

o Initialize mo(s) randomly for all states s

o While i == 0 or ||m; — mj_1]|1 > 0 (L1-norm, measures if the policy
changed for any state):

e V7 < MDP V function policy evaluation of T; Jkﬁf Sa w2
e 71 < Policy improvement
e i=i+1
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New Definition: State-Action Value Q

@ State-action value of a policy

Q(s.a) = R(s,a) + 7 ) P(s'ls,a)V"(s)

s'eS

@ Take action a, then follow the policy 7
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Policy Improvement

@ Compute state-action value of a policy ;
e Forsin S and ain A:

Q" (s,a) = R(s,a) +7 Y _ P(s'|s,a)V™i(s")
s’eS

@ Compute new policy 741, for all s € S

mir1(s) = argmax Q™ (s,a) Vs € S
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MDP Policy Iteration (PI)

@ Seti=0
o Initialize mo(s) randomly for all states s
o While i == 0 or ||m; — mj_1]|1 > 0 (L1-norm, measures if the policy
changed for any state):
e V7™ « MDP V function policy evaluation of 7;
e 71 < Policy improvement @m‘/s 0\_\
/

e i=i+1 () -
T agmes Y /@a)

Ifr
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Delving Deeper Into Policy Improvement Step

Qi(s,a) = R(s,a) +v ) _ P(s'[s, a)V™(s)

s'eS

77/}‘/ (‘5> = @Vfrmo.&( &77/((8/ C}\\B
(Joeeltica

Vﬂm = \/ um
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Delving Deeper Into Policy Improvement Step

e Q" (s,a) = R(s,a ~|—’yz s'|s,a)V™i(s)

s'eS
max Q" (s, a) > R(s,m(s)) + Z P(s'|s, mi(s))V™i(s') = V™i(s)
jﬁg-—“ - s'eS

—= misi(s )—argmax Q™ (s, a)
o WGy = (U (5 Tie ()

@ Suppose we take m;11(s) for one action, then follow ; forever

e Our expected sum of rewards is at least as good as if we had always
followed 7;

@ But new proposed policy is to always follow 741 ...
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Monotonic Improvement in Policy

@ Definition
V™ > VT VT(s) > VT(s),Vs € S

@ Proposition: V™1 > V7i with strict inequality if 7; is suboptimal,
where 711 is the new policy we get from policy improvement on 7;
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Proof: Monotonic Improvement in Policy

Geal @ Vﬂ”/5> = i /S) > e
V7i(s) <max QT(s, a) / de e
4([/51’5 ’ “ &

pecotl 40f QT SmaxR(s,0) 4 Y P(s'ls, ) V()
7“.” (6} - Wzif s’eS

W(v i
ey = RE T &Y r 7; P(<'fs, T f(s)B\/ [g)
» = /Z/ér T}‘f(/£>> f?” gg, P/s‘/g(ﬁﬁ_[[g)s VMB

= /Z[%( Tre [%581"7/ ﬁg P/Sjjg( Tﬂ‘r,(iﬁs" T
Em@&r [R (s, ") Ty ﬁg" PKSH(SI/&(B\} (?/)]

12
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Proof: Monotonic Improvement in Policy

VTi(s) < max Q" (s, a)

=max R(s,a) + 7 Z P(s'|s,a)V™(s")

s’'eS
=R(s,mit1(s)) + Z P(s'|s, mi+1(s))V™(s") //by the definition of ;41
s'eS
R(s,misa()) +7 > P(s'ls misa(s)) (max @(s', )
s'eS ?
=R(s,mi11(s)) +v Y P(s'ls, mi1a(s))
s’eS
(R(S mis1(s)) v D P(s"ls miaa(s ))Vﬂ’(sll)>
s'"eS

= /Tt (S) ﬂ
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Check Your Understanding L2N3: Policy Iteration (PI)

N
o Note: all the below is for finite state-action spaces fe> Com?/gﬂ
@ Seti=0 6MM o Q
o Initialize mo(s) randomly for all states s .- \/
o While i == 0 or ||m; — mj_1]|1 > 0 (L1-norm, measures if the policy
changed for any state):
- : , . , s
" s < Polcy improverment e gl

e i=i+1
. , . 0 N
If policy doesn’t change, can it ever change again?
Select on participation poll: Yes / No / Not sure
Is there a maximum number of iterations of policy iteration?
Select on participation poll: Yes / No / Not sure //F/ 1=t
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Lecture Break after Policy Iteration
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Results for Check Your Understanding L2N3 Policy

Iteration

@ Note: all the below is for finite state-action spaces
@ Seti=0
o Initialize mo(s) randomly for all states s
e While i == 0 or ||mj — mj—1||1 > 0 (L1-norm, measures if the policy
changed for any state):
e V™ « MDP V function policy evaluation of 7;
e 71 < Policy improvement
o i=i+1
o If policy doesn’t change, can it ever change again?
No

o Is there a maximum number of iterations of policy iteration?
|A]ISI since that is the maximum number of policies, and as the policy
improvement step is monotonically improving, each policy can only
appear in one round of policy iteration unless it is an optimal policy.
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Check Your Understanding Explanation of Policy Not

Changing

@ Suppose for all s € S, m11(s) = m(s)
@ Then forall s € S, Q™+1(s,a) = Q™i(s, a)
@ Recall policy improvement step

Q™ (s,a) = R(s,a) + v Z P(s'|s,a)V™i(s)
s'eS
mit1(s) = argmax Q™ (s, a)
Tiv2(s) = arg max Q™+ (s,a) = arg max Q" (s, a)
Therefore policy cannot ever change again

. 7 =V
R ad /S tharge€ V é’ \/

V- #re
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MDP: Computing Optimal Policy and Optimal Value

@ Policy iteration computes infinite horizon value of a policy and then
improves that policy
@ Value iteration is another technique

o Idea: Maintain optimal value of starting in a state s if have a finite
number of steps k left in the episode
o lIterate to consider longer and longer episodes
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Bellman Equation and Bellman Backup Operators

@ Value function of a policy must satisfy the Bellman equation

VT(s) = R™(s)+7 Y PT(s|s)V7(s)

s’eS
T~

@ Bellman backup operator

o Applied to a value function
o Returns a new value function
e Improves the value if possible

BV(s) = max R(s,a) + Z p(s'|s,a)V(s")| —> \/Mw
s’'eS -

e BV yields a value function over all states s
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Value Iteration (VI)

[on oY Qn
o Set k=1 M) ey (3D Vi @5//

o Initialize Vp(s) = 0 for all states s

@ Loop until convergence: (for ex. ||Vii1 — Villoo <€)
o For each state s

Vit1(s) = max
a

sa+’yz s'|s, a) Vi(s")

s’eS

e View as Bellman backup on value function

| Vi1 =BV

Tks1(s) = arg max [R(s7 a)+~ E P(s'|s, a) Vi(s")
a
s’'eS
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Policy Iteration as Bellman Operations

@ Bellman backup operator B™ for a particular policy is defined as

B™V(s) = R™(s)+7 Y P"(s|s)V(s)
s'eS
@ Policy evaluation amounts to computing the fixed point of B™

@ To do policy evaluation, repeatedly apply operator until V stops

changing
VT =B"B"...B™V
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Policy Iteration as Bellman Operations

@ Bellman backup operator B™ for a particular policy is defined as

B™V(s) = R"(s) +7 Y P™(s'|s)V(s)

s'eS

@ To do policy improvement

mkr1(s) = argmax | R(s,a) + 7 g P(s'|s,a)V(s)
a
s'eS
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Going Back to Value lteration (VI)

@ Set k=1
o Initialize Vp(s) = 0 for all states s

@ Loop until convergence: (for ex. ||Vi+1 — Villoo <€)
o For each state s

Vita(s)

e Equivalently, in Bellman backup notation

R(s,a) + Z P(s'|s,a)Vi(s")
s'eS

Vi1 = BV,

@ To extract optimal policy if can act for k + 1 more steps,

m(s) = arg max [R(s, a)+ Z P(s'|s, a) Vk+1(5/)]
s'eS
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Contraction Operator

@ Let O be an operator,and |x| denote (any) norm of x
e If [OV — OV'| < |V — V'], then O is a contraction operator
= A\
)

(EUK~B\]\R*\\ {\\/K - \/kq \
\V{Ms -U K \ = k\)w* \/k—\\
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Will Value Iteration Converge?

@ Yes, if discount factor v < 1, or end up in a terminal state with
probability 1
@ Bellman backup is a contraction if discount factor, v < 1

o If apply it to two different value functions, distance between value
functions shrinks after applying Bellman equation to each
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Proof: Bellman Backup is a Contraction on V for v < 1

@ Let ||V — V/|| = maxs |V(s) — V/(s)| be the infinity norm

\( Ecllme Qlaﬁ(;\ Lillewsnbec leeys
1BV — BV;|| = max (R +'yZP(s |s, a)Vi(s )) 7max( sa')+’yZP (s"|s,a")V; )H
s'es

= o [ RGeS g Za P SNy %%2 Aok
[Z7 PGs) (Ui - V) |
= Mg /VK~VJKM%£D/§@
- /(/k/[/ /@o -
7 J /F?/C / 7%//“

@ﬂf/&@?@ 2

f

— m=X
<
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Proof: Bellman Backup is a Contraction on V for v < 1

@ Let ||V — V/|| = maxs |V(s) — V/(s)| be the infinity norm

I1BVi — BV;[| =

maax( sa+'yZP |s, a)Vi(s )>7m§><( sa)+'yZP |s,a’) Vi(s )>H

s'es s'es

Smgx‘(R(sa+'yZ (s” s, a) V(s )—R(sa)—'yz s'ls,a)V, s/)>H

s'es s'es

= max||ly 32 P(s']s, a)(Vi(s) - v,»(s’»H

s'es
’
< max |y D7 P(sls, a)ll Vi — \/jH)”
s'es
= mex |1Vic = Y1l 3 (15,9) H
s'es
=7V = i

@ Note: Even if all inequalities are equalities, this is still a contraction if v < 1
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Opportunities for Out-of-Class Practice

@ Prove value iteration converges to a unique solution for discrete state
and action spaces with v < 1

@ Does the initialization of values in value iteration impact anything?

@ Is the value of the policy extracted from value iteration at each round
guaranteed to monotonically improve (if executed in the real infinite
horizon problem), like policy iteration?
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Value lteration for Finite Horizon H

V. = optimal value if making k more decisions
m, = optimal policy if making k more decisions
e Initialize Vp(s) = 0 for all states s
@ Fork=1:H

o For each state s

R(s,a) + Z P(s'|s, a) Vi(s")
s'eS

Vit1(s) = max
a

Tky1(s) = arg max lR(s, a) + 7 E P(s'|s, a) Vi(s")
a
s’'eS
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Computing the Value of a Policy in a Finite Horizon

@ Alternatively can estimate by simulation

o Generate a large number of episodes

o Average returns

o Concentration inequalities bound how quickly average concentrates to
expected value

e Requires no assumption of Markov structure
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Example: Mars Rover

S1 S2 S3 Sy S5 Se S7
024 04 04 24 04 24
P 0.4 0.4 0.4 0.4 < 0.4 0.4
o oo O O O O O
0.6 0.2 0.2 0.2 0.2 0.2 0.6

@ Reward: +1 in s, +10 in s7, 0 in all other states
@ Sample returns for sample 4-step (H=4) episodes, v =1/2
@ S4,Ss5,S56,S7: 0—&—% ><O+% ><O+% x 10 =1.25
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Example: Mars Rover

S1 Sy S3 Sy Ss Se Sy
04 04] 04 04 . 04] 04]
Jos o o4 Jos o4 Jos

o O O O O U 0O

0.6 0.2 0.2 0.2 0.2 0.2 06

@ Reward: +1 in s3, +10 in s7, O in all other states

@ Sample returns for sample 4-step (H=4) episodes, start state s ,
y=1/2

o 4,55, 56,57 o+%xo+lxo+lx10=1.25

@ S4,S54,55,54: 0+?X0+1X0+EXO:0

@ S4,S3,5,51: 0+§x0+%x0+§x1:0.125
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Question: Finite Horizon Policies

@ Set k=1
o Initialize Vp(s) = 0 for all states s
o Loop until k ==

o For each state s

Vit1(s) = max R(s,a) + v E P(s'|s, a) Vi(s")
a
s'€S

mkr1(s) = argmax R(s,a) + g P(s'|s, a) Vi(s')
a
s'eS

Is optimal policy stationary (independent of time step) in finite horizon
tasks?
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Question: Finite Horizon Policies

@ Set k=1
o Initialize Vp(s) = 0 for all states s
@ Loop until k ==

e For each state s

Vir1(s) = max R(s,a) + v E P(s'|s,a) Vi(s')
a
s’'eS

mk+1(s) = argmax R(s,a) + v Z P(s'|s, a) Vi(s")
s'eS

Is optimal policy stationary (independent of time step) in finite horizon
tasks?
In general no.
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Value vs Policy lteration

@ Value iteration:
o Compute optimal value for horizon = k
@ Note this can be used to compute optimal policy if horizon = k
e Increment k
@ Policy iteration
e Compute infinite horizon value of a policy

o Use to select another (better) policy
o Closely related to a very popular method in RL: policy gradient
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RL Terminology: Models, Policies, Values

@ Model: Mathematical models of dynamics and reward
@ Policy: Function mapping states to actions

e Value function: future rewards from being in a state and/or action
when following a particular policy

Winter 2026
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What You Should Know

Define MP, MRP, MDP, Bellman operator, contraction, model,
Q-value, policy
@ Be able to implement

e Value Iteration
e Policy Iteration

Give pros and cons of different policy evaluation approaches

Be able to prove contraction properties

Limitations of presented approaches and Markov assumptions
e Which policy evaluation methods require the Markov assumption?
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Where We Are

@ Last Time:

o Introduction
o Components of an agent: model, value, policy

@ This Time:
e Making good decisions given a Markov decision process
@ Next Time:
e Policy evaluation when don't have a model of how the world works
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Exercise L2E1: MDP 1 lteration of Policy Evaluation, Mars

Rover Example, Answer

4 Dynamics: P(56‘56; 31) = 0.5, p(57|56, 31) = 0.57 e
@ Reward: for all actions, +1 in state s;, +10 in state s7, 0 otherwise
o Let m(s) =a; Vs, assume V =[100000 10] and k=1, y=10.5
e Compute Vi1(s6)
Vira(ss) = r(ss) +7 Y p(sIs6, a1) Vi(s) (1)
S/
= 0+40.5%(0.5%x10+ 0.5%0) (2)
= 25 (3)
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Check Your Understanding L2N1: MDP 1 lteration of

Policy Evaluation, Mars Rover Example

Dynamics: p(se|se,a1) = 0.5, p(s7|se,a1) = 0.5, ...
Reward: for all actions, +1 in state s;, +10 in state s7, 0 otherwise
Let m(s) = a1 Vs, assume V|, =[100000 10l and k=1, vy=0.5

Vi (s) = r(s,m(s)) +v Y p(s']s, 7(s)) Vi1 (s")
s’eS
Vk+1(56) = I’(S(j, 31) + v % 0.5 % Vk(56) + v % 0.5 % Vk(57)
Vk+1(56) =0+05%x05%x0+.5%x05%x10

Vk+1(56) =25
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Return & Value Function

@ Definition of Horizon (H)

o Number of time steps in each episode
e Can be infinite
e Otherwise called finite Markov reward process

@ Definition of Return, G; (for a MRP)

e Discounted sum of rewards from time step t to horizon H

Ge=re+ w1+ Vro+ -+

o Definition of State Value Function, V/(s) (for a MRP)
o Expected return from starting in state s

1

V(s) = E[G;|s; = s] = E[rs +7res1 +72ro 4 M resH—1|St = 9]
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Computing the Value of an Infinite Horizon Markov

Reward Process

@ Markov property provides structure

@ MRP value function satisfies

V)= Ris) =+ 7Y PSIs)V(s)

!
Immediate reward s'e€S

~
Discounted sum of future rewards
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Matrix Form of Bellman Equation for MRP

@ For finite state MRP, we can express V/(s) using a matrix equation

Vi) (RED\ el e (v
: = : +7 : : :
Vi) A\R(on) Plsilsw) - Plsulsw)) V¢V

V=R+~yPV
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Analytic Solution for Value of MRP

@ For finite state MRP, we can express V/(s) using a matrix equation

Vi) (RED\ ) ) (vs)
; = ; + : . : ;
V(sn) R(sn) P(Sl-|SN) P(SI\.IISN) V(sn)
V=R+~yPV
V —~PV =R
(I —yP)V =R

V=>-+vP)R

e Solving directly requires taking a matrix inverse ~ O(N3)
@ Requires that (/ — v P) is invertible
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