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L3N1 Refresh Your Knowledge [Polleverywhere Poll]

In a tabular MDP asymptotically value iteration will always yield a policy

with the same value as the policy returned by policy iteration

1 True.

2 False

3 Not sure

Can value iteration require more iterations than |A||S| to compute the

optimal value function? (Assume |A| and |S | are small enough that each

round of value iteration can be done exactly).

1 True.

2 False

3 Not sure
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L3N1 Refresh Your Knowledge

In a tabular MDP asymptotically value iteration will always yield a policy

with the same value as the policy returned by policy iteration

Answer. True. Both are guaranteed to converge to the optimal value

function and a policy with an optimal value

Can value iteration require more iterations than |A||S| to compute the

optimal value function? (Assume |A| and |S | are small enough that each

round of value iteration can be done exactly).

Answer: True. As an example, consider a single state, single action MDP

where r(s, a) = 1, � = .9 and initialize V0(s) = 0. V
⇤
(s) =

1

1�� but after

the first iteration of value iteration, V1(s) = 1.
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Today’s Plan

Last Time:

Markov reward / decision processes

Policy evaluation & control when have true model (of how the world works)

Today

Policy evaluation without known dynamics & reward models

Next Time:

Control when don’t have a model of how the world works

Emma Brunskill (CS234 Reinforcement Learning)Lecture 3: Model-Free Policy Evaluation: Policy Evaluation Without Knowing How the World WorksWinter 2026 4 / 68



Evaluation through Direct Experience

Estimate expected return of policy ⇡

Only using data from environment
1
(direct experience)

Why is this important?

What properties do we want from policy evaluation algorithms?

1
Assume today this experience comes from executing the policy ⇡. Later will

consider how to do policy evaluation using data gathered from other policies.
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This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if don’t have access to

true MDP models

Monte Carlo policy evaluation

Policy evaluation when don’t have a model of how the world works

Given on-policy samples

Temporal Di↵erence (TD)

Certainty Equivalence with dynamic programming

Batch policy evaluation
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Recall

Definition of Return, Gt (for a MRP)

Discounted sum of rewards from time step t to horizon

Gt = rt + �rt+1 + �2
rt+2 + �3

rt+3 + · · ·

Definition of State Value Function, V
⇡
(s)

Expected return starting in state s under policy ⇡

V
⇡
(s) = E⇡[Gt |st = s] = E⇡[rt + �rt+1 + �2

rt+2 + �3
rt+3 + · · · |st = s]

Definition of State-Action Value Function, Q
⇡
(s, a)

Expected return starting in state s, taking action a and following policy ⇡

Q
⇡
(s, a) = E⇡[Gt |st = s, at = a]

= E⇡[rt + �rt+1 + �2rt+2 + �3rt+3 + · · · |st = s, at = a]
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Recall: Dynamic Programming for Policy Evaluation

In a Markov decision process

V
⇡
(s) = E⇡[Gt |st = s]

= E⇡[rt + �rt+1 + �2
rt+2 + �3

rt+3 + · · · |st = s]

= R(s,⇡(s)) + �
X

s02S

P(s
0|s,⇡(s))V ⇡

(s
0
)

If given dynamics and reward models, can do policy evaluation through

dynamic programming

V
⇡
k (s) = r(s,⇡(s)) + �

X

s02S

p(s
0|s,⇡(s))V ⇡

k�1
(s

0
) (1)

Note: before convergence, V
⇡
k is an estimate of V

⇡

In Equation 1 we are substituting
P

s02S p(s
0|s,⇡(s))V ⇡

k�1
(s

0
) for

E⇡[rt+1 + �rt+2 + �2
rt+3 + · · · |st = s].

This substitution is an instance of bootstrapping
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This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if don’t have access to

true MDP models

Monte Carlo policy evaluation

Policy evaluation when don’t have a model of how the world work

Given on-policy samples

Temporal Di↵erence (TD)

Certainty Equivalence with dynamic programming

Batch policy evaluation
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Monte Carlo (MC) Policy Evaluation

Gt = rt + �rt+1 + �2
rt+2 + �3

rt+3 + · · ·+ �Ti�t
rTi in MDP M under policy ⇡

V
⇡
(s) = E⌧⇠⇡[Gt |st = s]

Expectation over trajectories ⌧ generated by following ⇡

Simple idea: Value = mean return

If trajectories are all finite, sample set of trajectories & average returns

Note: all trajectories may not be same length (e.g. consider MDP with

terminal states)
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Monte Carlo (MC) Policy Evaluation

If trajectories are all finite, sample set of trajectories & average returns

Does not require MDP dynamics/rewards

Does not assume state is Markov

Can be applied to episodic MDPs

Averaging over returns from a complete episode

Requires each episode to terminate
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First-Visit Monte Carlo (MC) On Policy Evaluation

Initialize N(s) = 0, G (s) = 0 8s 2 S

Loop

Sample episode i = si,1, ai,1, ri,1, si,2, ai,2, ri,2, . . . , si,Ti , , ai,Ti , ri,Ti

Define Gi,t = ri,t + �ri,t+1 + �2
ri,t+2 + · · · �Ti�1

ri,Ti as return from time

step t onwards in ith episode

For each time step t until Ti ( the end of the episode i)

If this is the first time t that state s is visited in episode i

Increment counter of total first visits: N(s) = N(s) + 1

Increment total return G(s) = G(s) + Gi,t

Update estimate V
⇡
(s) = G(s)/N(s)
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Every-Visit Monte Carlo (MC) On Policy Evaluation

Initialize N(s) = 0, G (s) = 0 8s 2 S

Loop

Sample episode i = si,1, ai,1, ri,1, si,2, ai,2, ri,2, . . . , si,Ti , , ai,Ti , ri,Ti

Define Gi,t = ri,t + �ri,t+1 + �2
ri,t+2 + · · · �Ti�1

ri,Ti as return from time

step t onwards in ith episode

For each time step t until Ti ( the end of the episode i)

state s is the state visited at time step t in episodes i

Increment counter of total visits: N(s) = N(s) + 1

Increment total return G(s) = G(s) + Gi,t

Update estimate V
⇡
(s) = G(s)/N(s)
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Optional Worked Example: MC On Policy Evaluation

Initialize N(s) = 0, G(s) = 0 8s 2 S

Loop

Sample episode i = si,1, ai,1, ri,1, si,2, ai,2, ri,2, . . . , si,Ti , ai,Ti , ri,Ti

Gi,t = ri,t + �ri,t+1 + �2
ri,t+2 + · · · �Ti�1

ri,Ti

For each time step t until Ti ( the end of the episode i)

If this is the first time t that state s is visited in episode i (for first visit MC)

Increment counter of total first visits: N(s) = N(s) + 1

Increment total return G(s) = G(s) + Gi,t

Update estimate V
⇡
(s) = G(s)/N(s)

Mars rover: R(s) = [ 1 0 0 0 0 0 +10]

Trajectory = (s3, a1, 0, s2, a1, 0, s2, a1, 0, s1, a1, 1, terminal)

Let � < 1. Compute the first visit & every visit MC estimates of s2.

See solutions at the end of the slides
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Incremental Monte Carlo (MC) On Policy Evaluation

After each episode i = si ,1, ai ,1, ri ,1, si ,2, ai ,2, ri ,2, . . .

Define Gi,t = ri,t + �ri,t+1 + �2
ri,t+2 + · · · as return from time step t

onwards in ith episode

For state s visited at time step t in episode i

Increment counter of total visits: N(s) = N(s) + 1

Update estimate

V
⇡
(s) = V

⇡
(s)

N(s)� 1

N(s)
+

Gi ,t

N(s)
= V

⇡
(s) +

1

N(s)
(Gi ,t � V

⇡
(s))
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Incremental Monte Carlo (MC) On Policy Evaluation

Sample episode i = si,1, ai,1, ri,1, si,2, ai,2, ri,2, . . . , si,Ti , , ai,Ti , ri,Ti

Gi,t = ri,t + �ri,t+1 + �2
ri,t+2 + · · · �Ti�1

ri,Ti

for t = 1 : Ti where Ti is the length of the i-th episode

V
⇡
(sit) = V

⇡
(sit) + ↵(Gi,t � V

⇡
(sit))

We will see many algorithms of this form with a learning rate, target, and

incremental update
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Policy Evaluation Diagram
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Policy Evaluation Diagram
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Policy Evaluation Diagram
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Policy Evaluation Diagram
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MC Policy Evaluation

V
⇡
(s) = V

⇡
(s) + ↵(Gi ,t � V

⇡
(s))
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MC Policy Evaluation

V
⇡
(s) = V

⇡
(s) + ↵(Gi ,t � V

⇡
(s))
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Evaluation of the Quality of a Policy Estimation Approach

Consistency: with enough data, does the estimate converge to the true value

of the policy?

Computational complexity: as get more data, computational cost of

updating estimate

Memory requirements

Statistical e�ciency (intuitively, how does the accuracy of the estimate

change with the amount of data)

Empirical accuracy, often evaluated by mean squared error
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Evaluation of the Quality of a Policy Estimation Approach:
Bias, Variance and MSE

Consider a statistical model that is parameterized by ✓ and that determines

a probability distribution over observed data P(x |✓)

Consider a statistic ✓̂ that provides an estimate of ✓ and is a function of

observed data x

E.g. for a Gaussian distribution with known variance, the average of a set of

i.i.d data points is an estimate of the mean of the Gaussian

Definition: the bias of an estimator ✓̂ is:

Bias✓(✓̂) = Ex|✓[✓̂]� ✓

Definition: the variance of an estimator ✓̂ is:

Var(✓̂) = Ex|✓[(✓̂ � E[✓̂])2]

Definition: mean squared error (MSE) of an estimator ✓̂ is:

MSE (✓̂) = Var(✓̂) + Bias✓(✓̂)
2
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Evaluation of the Quality of a Policy Estimation Approach:
Consistent Estimator

Consider a statistical model that is parameterized by ✓ and that determines

a probability distribution over observed data P(x |✓)

Consider a statistic ✓̂ that provides an estimate of ✓ and is a function of

observed data x

Definition: the bias of an estimator ✓̂ is:

Bias✓(✓̂) = Ex|✓[✓̂]� ✓

Let n be the number of data points x used to estimate the parameter ✓ and

call the resulting estimate of ✓ using that data ✓̂n

Then the estimator ✓̂n is consistent if, for all ✏ > 0

lim
n!1

Pr(|✓̂n � ✓| > ✏) = 0

If an estimator is unbiased (bias = 0) is it consistent?
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Properties of Monte Carlo On Policy Evaluators

Properties:

First-visit Monte Carlo

V
⇡
estimator is an unbiased estimator of true E⇡[Gt |st = s]

By law of large numbers, as N(s) ! 1, V
⇡
(s) ! E⇡[Gt |st = s]

Every-visit Monte Carlo

V
⇡
every-visit MC estimator is a biased estimator of V

⇡

But consistent estimator and often has better MSE

Incremental Monte Carlo

Properties depends on the learning rate ↵
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Properties of Monte Carlo On Policy Evaluators

Update is: V
⇡
(sit) = V

⇡
(sit) + ↵k(sj)(Gi,t � V

⇡
(sit))

where we have allowed ↵ to vary (let k be the total number of updates done

so far, for state sit = sj)

If

1X

n=1

↵n(sj) = 1,

1X

n=1

↵2

n(sj) < 1

then incremental MC estimate will converge to true policy value V
⇡
(sj)
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Monte Carlo (MC) Policy Evaluation Key Limitations

Generally high variance estimator

Reducing variance can require a lot of data

In cases where data is very hard or expensive to acquire, or the stakes are

high, MC may be impractical

Requires episodic settings

Episode must end before data from episode can be used to update V
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Monte Carlo (MC) Policy Evaluation Summary

Aim: estimate V
⇡
(s) given episodes generated under policy ⇡

s1, a1, r1, s2, a2, r2, . . . where the actions are sampled from ⇡

Gt = rt + �rt+1 + �2
rt+2 + �3

rt+3 + · · · under policy ⇡

V
⇡
(s) = E⇡[Gt |st = s]

Simple: Estimates expectation by empirical average (given episodes sampled

from policy of interest)

Updates V estimate using sample of return to approximate the expectation

Does not assume Markov process

Converges to true value under some (generally mild) assumptions

Note: Sometimes is preferred over dynamic programming for policy

evaluation even if know the true dynamics model and reward
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This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if don’t have access to

true MDP models

Monte Carlo policy evaluation

Temporal Di↵erence (TD)

Certainty Equivalence with dynamic programming

Batch policy evaluation
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Temporal Di↵erence Learning

“If one had to identify one idea as central and novel to reinforcement

learning, it would undoubtedly be temporal-di↵erence (TD) learning.” –

Sutton and Barto 2017

Combination of Monte Carlo & dynamic programming methods

Model-free

Can be used in episodic or infinite-horizon non-episodic settings

Immediately updates estimate of V after each (s, a, r , s 0) tuple
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Temporal Di↵erence Learning for Estimating V

Aim: estimate V
⇡
(s) given episodes generated under policy ⇡

Gt = rt + �rt+1 + �2
rt+2 + �3

rt+3 + · · · in MDP M under policy ⇡

V
⇡
(s) = E⇡[Gt |st = s]

Recall Bellman operator (if know MDP models)

B
⇡
V (s) = r(s,⇡(s)) + �

X

s02S

p(s
0|s,⇡(s))V (s

0
)

In incremental every-visit MC, update estimate using 1 sample of return (for

the current ith episode)

V
⇡
(s) = V

⇡
(s) + ↵(Gi,t � V

⇡
(s))

Idea: have an estimate of V
⇡
, use to estimate expected return

V
⇡
(s) = V

⇡
(s) + ↵([rt + �V ⇡

(st+1)]� V
⇡
(s))
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Temporal Di↵erence [TD(0)] Learning

Aim: estimate V
⇡
(s) given episodes generated under policy ⇡

s1, a1, r1, s2, a2, r2, . . . where the actions are sampled from ⇡

TD(0) learning / 1-step TD learning: update estimate towards target

V
⇡
(st) = V

⇡
(st) + ↵([rt + �V ⇡

(st+1)]| {z }
TD target

�V ⇡
(st))

TD(0) error:

�t = rt + �V ⇡
(st+1)� V

⇡
(st)

Can immediately update value estimate after (s, a, r , s 0) tuple

Don’t need episodic setting
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Temporal Di↵erence [TD(0)] Learning Algorithm

Input: ↵
Initialize V

⇡
(s) = 0, 8s 2 S

Loop

Sample tuple (st , at , rt , st+1)

V
⇡
(st) = V

⇡
(st) + ↵([rt + �V ⇡

(st+1)]| {z }
TD target

�V ⇡
(st))
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Worked Example TD Learning

Input: ↵
Initialize V

⇡
(s) = 0, 8s 2 S

Loop

Sample tuple (st , at , rt , st+1)

V
⇡
(st) = V

⇡
(st) + ↵([rt + �V ⇡

(st+1)]| {z }
TD target

�V ⇡
(st))

Example Mars rover: R = [ 1 0 0 0 0 0 +10] for any action

⇡(s) = a1 8s, � = 1. any action from s1 and s7 terminates episode

Trajectory = (s3, a1, 0, s2, a1, 0, s2, a1, 0, s1, a1, 1, terminal)
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Worked Example TD Learning

Input: ↵
Initialize V

⇡
(s) = 0, 8s 2 S

Loop

Sample tuple (st , at , rt , st+1)

V
⇡
(st) = V

⇡
(st) + ↵([rt + �V ⇡

(st+1)]| {z }
TD target

�V ⇡
(st))

Example:

Mars rover: R = [ 1 0 0 0 0 0 +10] for any action

⇡(s) = a1 8s, � = 1. any action from s1 and s7 terminates episode

Trajectory = (s3, a1, 0, s2, a1, 0, s2, a1, 0, s1, a1, 1, terminal)

TD estimate of all states (init at 0) with ↵ = 1, � < 1 at end of this

episode?

V = [1 0 0 0 0 0 0 0]

First visit MC estimate of V of each state? [1 � �2
0 0 0 0]
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Temporal Di↵erence (TD) Policy Evaluation

V
⇡
(st) = r(st ,⇡(st)) + �

X

st+1

P(st+1|st ,⇡(st))V ⇡
(st+1)

V
⇡
(st) = V

⇡
(st) + ↵([rt + �V ⇡

(st+1)]� V
⇡
(st))
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Check Your Understanding L3N2: Polleverywhere Poll
Temporal Di↵erence [TD(0)] Learning Algorithm

Input: ↵
Initialize V

⇡
(s) = 0, 8s 2 S

Loop

Sample tuple (st , at , rt , st+1)

V
⇡
(st) = V

⇡
(st) + ↵([rt + �V ⇡

(st+1)]| {z }
TD target

�V ⇡
(st))

Select all that are true

1 If ↵ = 0 TD will weigh the TD target more than the past V estimate

2 If ↵ = 1 TD will update the V estimate to the TD target

3 If ↵ = 1 TD in MDPs where the policy goes through states with multiple

possible next states, V may oscillate forever

4 There exist deterministic MDPs where ↵ = 1 TD will converge
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Check Your Understanding L3N2: Polleverywhere Poll
Temporal Di↵erence [TD(0)] Learning Algorithm

Input: ↵
Initialize V

⇡
(s) = 0, 8s 2 S

Loop

Sample tuple (st , at , rt , st+1)

V
⇡
(st) = V

⇡
(st) + ↵([rt + �V ⇡

(st+1)]| {z }
TD target

�V ⇡
(st))

Answers. If ↵ = 1 TD will update to the TD target. If ↵ = 1 TD in

MDPs where the policy goes through states with multiple possible next

states, V may oscillate forever. There exist deterministic MDPs where

↵ = 1 TD will converge.
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Summary: Temporal Di↵erence Learning

Combination of Monte Carlo & dynamic programming methods

Model-free

Bootstraps and samples

Can be used in episodic or infinite-horizon non-episodic settings

Immediately updates estimate of V after each (s, a, r , s 0) tuple

Biased estimator (early on will be influenced by initialization, and won’t be

unibased estimator)

Generally lower variance than Monte Carlo policy evaluation

Consistent estimator if learning rate ↵ satisfies same conditions specified for

incremental MC policy evaluation to converge

Note: algorithm I introduced is TD(0). In general can have
approaches that interpolate between TD(0) and Monte Carlo
approach
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This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if don’t have access to

true MDP models

Monte Carlo policy evaluation

Temporal Di↵erence (TD)

Certainty Equivalence with dynamic programming

Batch policy evaluation
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Certainty Equivalence V ⇡ MLE MDP Model Estimates

Model-based option for policy evaluation without true models

After each (si , ai , ri , si+1) tuple

Recompute maximum likelihood MDP model for (s, a)

P̂(s
0|s, a) = 1

N(s, a)

iX

k=1

(sk = s, ak = a, sk+1 = s
0
)

r̂(s, a) =
1

N(s, a)

iX

k=1

(sk = s, ak = a)rk

Compute V
⇡
using MLE MDP

2
(using any dynamic programming method

from lecture 2))

Optional worked example at end of slides for Mars rover domain.

2
Requires initializing for all (s, a) pairs
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Certainty Equivalence V ⇡ MLE MDP Model Estimates

Model-based option for policy evaluation without true models

After each (s, a, r , s 0) tuple

Recompute maximum likelihood MDP model for (s, a)

P̂(s
0|s, a) = 1

N(s, a)

KX

k=1

Tk�1X

t=1

1(sk,t = s, ak,t = a, sk,t+1 = s
0
)

r̂(s, a) =
1

N(s, a)

KX

k=1

Tk�1X

t=1

1(sk,t = s, ak,t = a)rt,k

Compute V
⇡
using MLE MDP

Cost: Updating MLE model and MDP planning at each update (O(|S |3) for
analytic matrix solution, O(|S |2|A|) for iterative methods)

Very data e�cient and very computationally expensive

Consistent (will converge to right estimate for Markov models)

Can also easily be used for o↵-policy evaluation (which we will shortly define

and discuss)
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Optional Worked Example MC On Policy Evaluation
Answers

Initialize N(s) = 0, G(s) = 0 8s 2 S

Loop

Sample episode i = si,1, ai,1, ri,1, si,2, ai,2, ri,2, . . . , si,Ti , ai,Ti , ri,Ti

Gi,t = ri,t + �ri,t+1 + �2
ri,t+2 + · · · �Ti�1

ri,Ti

For each time step t until Ti ( the end of the episode i)

If this is the first time t that state s is visited in episode i

Increment counter of total first visits: N(s) = N(s) + 1

Increment total return G(s) = G(s) + Gi,t

Update estimate V
⇡
(s) = G(s)/N(s)

Mars rover: R = [ 1 0 0 0 0 0 +10] for any action

Trajectory = (s3, a1, 0, s2, a1, 0, s2, a1, 0, s1, a1, 1, terminal)

Let � < 1. Compare the first visit & every visit MC estimates of s2.

First visit: V
MC

(s2) = �2
, Every visit: V

MC
(s2) =

�2
+�
2
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Optional Check Your Understanding L3: Incremental MC
(State if each is True or False)

First or Every Visit MC

Sample episode i = si,1, ai,1, ri,1, si,2, ai,2, ri,2, . . . , si,Ti , ai,Ti , ri,Ti

Gi,t = ri,t + �ri,t+1 + �2
ri,t+2 + · · · �Ti�1

ri,Ti

For all s, for first or every time t that state s is visited in episode i

N(s) = N(s) + 1, G(s) = G(s) + Gi,t

Update estimate V
⇡
(s) = G(s)/N(s)

Incremental MC

Sample episode i = si,1, ai,1, ri,1, si,2, ai,2, ri,2, . . . , si,Ti , ai,Ti , ri,Ti

Gi,t = ri,t + �ri,t+1 + �2
ri,t+2 + · · · �Ti�1

ri,Ti

for t = 1 : Ti where Ti is the length of the i-th episode

V
⇡
(sit) = V

⇡
(sit) + ↵(Gi,t � V

⇡
(sit))

1 Incremental MC with ↵ = 1 is the same as first visit MC

2 Incremental MC with ↵ =
1

N(sit )
is the same as every visit MC

3 Incremental MC with ↵ > 1

N(sit )
could be helpful in non-stationary domains
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Optional Check Your Understanding L3 Incremental MC
Answers

First or Every Visit MC

Sample episode i = si,1, ai,1, ri,1, si,2, ai,2, ri,2, . . . , si,Ti , ai,Ti , ri,Ti

Gi,t = ri,t + �ri,t+1 + �2ri,t+2 + · · · �Ti�1ri,Ti

For all s, for first or every time t that state s is visited in episode i
N(s) = N(s) + 1, G(s) = G(s) + Gi,t
Update estimate V⇡

(s) = G(s)/N(s)

Incremental MC

Sample episode i = si,1, ai,1, ri,1, si,2, ai,2, ri,2, . . . , si,Ti , ai,Ti , ri,Ti

for t = 1 : Ti where Ti is the length of the i-th episode

V⇡
(sit ) = V⇡

(sit ) + ↵(Gi,t � V⇡
(sit ))

1 Incremental MC with ↵ = 1 is the same as first visit MC

false

2 Incremental MC with ↵ =
1

N(sit )
is the same as every visit MC

true

3 Incremental MC with ↵ > 1

N(sit )
could help in non-stationary domains

true

Emma Brunskill (CS234 Reinforcement Learning)Lecture 3: Model-Free Policy Evaluation: Policy Evaluation Without Knowing How the World WorksWinter 2026 57 / 68



Optional Check Your Understanding L3 Incremental MC
(State if each is True or False)

First or Every Visit MC

Sample episode i = si,1, ai,1, ri,1, si,2, ai,2, ri,2, . . . , si,Ti , ai,Ti , ri,Ti

Gi,t = ri,t + �ri,t+1 + �2
ri,t+2 + · · · �Ti�1

ri,Ti

For all s, for first or every time t that state s is visited in episode i

N(s) = N(s) + 1, G(s) = G(s) + Gi,t

Update estimate V
⇡
(s) = G(s)/N(s)

Incremental MC

Sample episode i = si,1, ai,1, ri,1, si,2, ai,2, ri,2, . . . , si,Ti , ai,Ti , ri,Ti

Gi,t = ri,t + �ri,t+1 + �2
ri,t+2 + · · · �Ti�1

ri,Ti

for t = 1 : Ti where Ti is the length of the i-th episode

V
⇡
(sit) = V

⇡
(sit) + ↵(Gi,t � V

⇡
(sit))

1 Incremental MC with ↵ = 1 is the same as first visit MC

2 Incremental MC with ↵ =
1

N(sit )
is the same as every visit MC

3 Incremental MC with ↵ > 1

N(sit )
could be helpful in non-stationary domains
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Check Your Understanding L3N1: Polleverywhere Poll
Incremental MC Answers

First or Every Visit MC

Sample episode i = si,1, ai,1, ri,1, si,2, ai,2, ri,2, . . . , si,Ti , ai,Ti , ri,Ti

Gi,t = ri,t + �ri,t+1 + �2ri,t+2 + · · · �Ti�1ri,Ti

For all s, for first or every time t that state s is visited in episode i
N(s) = N(s) + 1, G(s) = G(s) + Gi,t
Update estimate V⇡

(s) = G(s)/N(s)

Incremental MC

Sample episode i = si,1, ai,1, ri,1, si,2, ai,2, ri,2, . . . , si,Ti , ai,Ti , ri,Ti

for t = 1 : Ti where Ti is the length of the i-th episode

V⇡
(sit ) = V⇡

(sit ) + ↵(Gi,t � V⇡
(sit ))

1 Incremental MC with ↵ = 1 is the same as first visit MC

false

2 Incremental MC with ↵ =
1

N(sit )
is the same as every visit MC

true

3 Incremental MC with ↵ > 1

N(sit )
could help in non-stationary domains

true
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Certainty Equivalence V ⇡ MLE MDP Worked Example

!" !# !$ !% !& !' !(

) !" = +1 ) !# = 0 ) !$ = 0 ) !% = 0 ) !& = 0 ) !' = 0 ) !( = +10
./01/!123
.2456 7214

89/:
.2456 7214

Mars rover: R = [ 1 0 0 0 0 0 +10] for any action

⇡(s) = a1 8s, � = 1. any action from s1 and s7 terminates episode

Trajectory = (s3, a1, 0, s2, a1, 0, s2, a1, 0, s1, a1, 1, terminal)

First visit MC estimate of V of each state? [1 � �2
0 0 0 0]

TD estimate of all states (init at 0) with ↵ = 1 is [1 0 0 0 0 0 0]

Optional exercise: What is the certainty equivalent estimate?
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Certainty Equivalence V ⇡ MLE MDP Worked Ex Solution

!" !# !$ !% !& !' !(

) !" = +1 ) !# = 0 ) !$ = 0 ) !% = 0 ) !& = 0 ) !' = 0 ) !( = +10
./01/!123
.2456 7214

89/:
.2456 7214

Mars rover: R = [ 1 0 0 0 0 0 +10] for any action

⇡(s) = a1 8s, � = 1. any action from s1 and s7 terminates episode

Trajectory = (s3, a1, 0, s2, a1, 0, s2, a1, 0, s1, a1, 1, terminal)

First visit MC estimate of V of each state? [1 � �2
0 0 0 0]

TD estimate of all states (init at 0) with ↵ = 1 is [1 0 0 0 0 0 0]

Optional exercise: What is the certainty equivalent estimate?

r̂ = [1 0 0 0 0 0 0], p̂(terminate|s1, a1) = p̂(s2|s3, a1) = 1

p̂(s2|s2, a1) = 0.5 =p̂(s1|s2, a1)

V = [0
�⇤0.5
1�0.5�

�2⇤0.5
1�0.5� 0 0 0 0]
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Certainty Equivalence V π MLE MDP Worked Ex Solution

Trajectory = (s3, a1, 0, s2, a1, 0, s2, a1, 0, s1, a1, 1, terminal)

r̂ = [1 0 0 0 0 0 0], p̂(terminate|s1, a1) = p̂(s2|s3, a1) = 1

p̂(s2|s2, a1) = 0.5 =p̂(s1|s2, a1)

Recall V = R + γPV , which implies (I − γP)V = R or V = (I − γP)−1R

Doing this only for states s1 s2 s3 sterminal

(I−γP) =


1 0 0 −γ

−
γ

2
1−

γ

2
0 0

0 −γ 1 0
0 0 0 1− γ

 , (I−γP)−1 =



1 0 0 −
γ

γ − 1

γ

2− γ

2

2− γ
0

γ2

(γ − 1)(γ − 2)

γ2

2− γ

2γ

2− γ
1

γ3

(γ − 1)(γ − 2)

0 0 0 −
1

γ − 1


.

V =[1
γ

2− γ

γ2

2− γ
0 0 0]
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Recall: Dynamic Programming for Policy Evaluation

If we knew dynamics and reward model, we can do policy evaluation

Initialize V
⇡
0
(s) = 0 for all s

For k = 1 until convergence

For all s in S

V
⇡
k (s) = r(s,⇡(s)) + �

X

s02S

p(s
0|s,⇡(s))V ⇡

k�1
(s

0
)

V
⇡
k (s) is exactly the k-horizon value of state s under policy ⇡

V
⇡
k (s) is an estimate of the infinite horizon value of state s under policy ⇡

V
⇡
(s) = E⇡[Gt |st = s] ⇡ E⇡[rt + �Vk�1|st = s]
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Dynamic Programming Policy Evaluation
V ⇡(s) E⇡[rt + �Vk�1|st = s]

Bootstrapping: Update for V uses an estimate
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Dynamic Programming Policy Evaluation
V ⇡(s) E⇡[rt + �Vk�1|st = s]

Bootstrapping: Update for V uses an estimate
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What about when we don’t know the models?
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Bias/Variance of Model-free Policy Evaluation Algorithms

Return Gt is an unbiased estimate of V
⇡
(st)

TD target [rt + �V ⇡
(st+1)] is a biased estimate of V

⇡
(st)

But often much lower variance than a single return Gt

Return function of multi-step sequence of random actions, states & rewards

TD target only has one random action, reward and next state

MC

Unbiased (for first visit)

High variance

Consistent (converges to true) even with function approximation

TD

Some bias

Lower variance

TD(0) converges to true value with tabular representation

TD(0) does not always converge with function approximation
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!" !# !$ !% !& !' !(

) !" = +1 ) !# = 0 ) !$ = 0 ) !% = 0 ) !& = 0 ) !' = 0 ) !( = +10
./01/!123
.2456 7214

89/:
.2456 7214

Mars rover: R = [ 1 0 0 0 0 0 +10] for any action

⇡(s) = a1 8s, � = 1. any action from s1 and s7 terminates episode

Trajectory = (s3, a1, 0, s2, a1, 0, s2, a1, 0, s1, a1, 1, terminal)

First visit MC estimate of V of each state? [1 1 1 0 0 0 0]

TD estimate of all states (init at 0) with ↵ = 1 is [1 0 0 0 0 0 0]

TD(0) only uses a data point (s, a, r , s 0) once

Monte Carlo takes entire return from s to end of episode
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