Lecture 3: Model-Free Policy Evaluation: Policy

Evaluation Without Knowing How the World Works

Emma Brunskill

CS234 Reinforcement Learning

Winter 2026

@ Material builds on structure from David Silver's Lecture 4: Model-Free
Prediction. Other resources: Sutton and Barto Jan 1 2018 draft
Chapter/Sections: 5.1; 5.5; 6.1-6.3
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http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://incompleteideas.net/book/the-book-2nd.html

L3N1 Refresh Your Knowledge [Polleverywhere Poll]

@ In a tabular MDP asymptotically value iteration will always yield a policy
with the same value as the policy returned by policy iteration

Q True. —_—
@ False /
© Not sure
@ Can value iteration require more iterations than |A|l°l to compute the

optimal value function? (Assume |A| and |S| are small enough that each
round of value iteration can be done exactly).

Q True.
Q False
© Not sure
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L3N1 Refresh Your Knowledge

@ In a tabular MDP asymptotically value iteration will always yield a policy
with the same value as the policy returned by policy iteration
Answer. True. Both are guaranteed to converge to the optimal value
function and a policy with an optimal value

@ Can value iteration require more iterations than |A|l°l to compute the
optimal value function? (Assume |A| and |S| are small enough that each
round of value iteration can be done exactly).

Answer: True. As an example, consider a single state, single action MDP
where r(s,a) =1, v = .9 and initialize Vo(s) =0. V*(s) = ﬁ but after
the first iteration of value iteration, V;(s) = 1.
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Today's Plan

@ Last Time:

@ Markov reward / decision processes
@ Policy evaluation & control when have true model (of how the world works)

@ Today
o Policy evaluation without known dynamics & reward models
@ Next Time:

@ Control when don’t have a model of how the world works
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Evaluation through Direct Experience

@ Estimate expected return of policy 7
@ Only using data from environment® (direct experience)
@ Why is this important?

@ What properties do we want from policy evaluation algorithms?

! Assume today this experience comes from executing the policy 7. Later will
consider how to do policy evaluation using data gathered from other policies:

Emma Brunskill (CS234 Reinforcement Learn Lecture 3: Model-Free Policy Evaluation: Po Winter 2026



This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if don't have access to
true MDP models

Monte Carlo policy evaluation
@ Policy evaluation when don’'t have a model of how the world works

@ Given on-policy samples

Temporal Difference (TD)

Certainty Equivalence with dynamic programming

Batch policy evaluation
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Recall

@ Definition of Return, G; (for a MRP)

o Discounted sum of rewards from time step t to horizon
Gi=r+yrm+ ’Y2ft+2 + ’Y3I’t+3 + -

@ Definition of State Value Function, V7 (s)

o Expected return starting in state s under policy ™
VW(S) = ]ETr[Gt‘st = 5] = ]Efr[rt + Yrev1 + ’Yzf't+2 + 73rt+3 + - ‘St = 5]

@ Definition of State-Action Value Function, Q™ (s, a)

o Expected return starting in state s, taking action a and following policy 7

Q" (s,a) = Ex[G¢|s: = s,a: = a]

=Ex[r +yres1 +’72ft+2 +’73rt+3 +---|se=s,a; = a]
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Recall: Dynamic Programming for Policy Evaluation

@ In a Markov decision process
VW(S) = E-,‘—[Gt|5t = 5]
= Er [rt+fyrt+1+72rt+2+'y3rt+3+~-~|st=s]

— R(s.7(s)) +7 3 P(s']s, n(s)V"(s)

s’eS

@ If given dynamics and reward models, can do policy evaluation through
dynamic programming

Vi (s) = r(s,m(s)) +7 D p(s']s, 7(s)) Vila(s') (1)
s'eS

@ Note: before convergence, V[ is an estimate of V7

@ In Equation 1 we are substituting ) s p(s'ls, 7(s)) V/_(s") for
Er[re41 +yres2 + ’72rt+3 + st = 9]

@ This substitution is an instance of bootstrapping
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This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if don't have access to
true MDP models

Monte Carlo policy evaluation

@ Policy evaluation when don’'t have a model of how the world work
@ Given on-policy samples

Temporal Difference (TD)

Certainty Equivalence with dynamic programming

Batch policy evaluation
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nte Carlo (MC) Policy Evaluation

G =ri+req1 —|—'y2rt+2 —|—’y3rt+3 4+ 'yT"’trT,. in MDP M under policy 7
V”(S) = ETNW[thst = S]

o Expectation over trajectories 7 generated by following 7

Simple idea: Value = mean return

If trajectories are all finite, sample set of trajectories & average returns

@ Note: all trajectories may not be same length (e.g. consider MDP with
terminal states)
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nte Carlo (MC) Policy Evaluation

If trajectories are all finite, sample set of trajectories & average returns

Does not require MDP dynamics/rewards

Does not assume state is Markov

Can be applied to episodic MDPs

@ Averaging over returns from a complete episode
@ Requires each episode to terminate
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First-Visit Monte Carlo (MC) On Policy Evaluation

Initialize N(s) =0, G(s) =0Vse S
Loop

@ Sample episode i = 5;1,ai,1, 61,1, 5i2,3i2, 11,2y - - -, Si,Ti»» 30, Ti> 1i, T;

@ Define Gj; = ri s + 7l 41+ 72r;7t+2 + - ~-7T"_1r,-,TI. as return from time
step t onwards in ith episode

@ For each time step t until T; ( the end of the episode /)

o If this is the first time t that state s is visited in episode i
@ Increment counter of total first visits: N(s) = N(s) +1
@ Increment total return G(s) = G(s) + Gi,¢
o Update estimate V™(s) = G(s)/N(s)
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Every-Visit Monte Carlo (MC) On Policy Evaluation

Initialize N(s) =0, G(s) =0Vse S
Loop

@ Sample episode / = sj1,ai1,i1,5i2,3i2,[i.2, -, Si. Ty, i, T, li,T,

@ Define Gy = ris + Vriri1 +riera + -y 71r 1. as return from time
step t onwards in ith episode

@ For each time step t until T; ( the end of the episode i)

@ state s is the state visited at time step t in episodes i
@ Increment counter of total visits: N(s) = N(s) +1

@ Increment total return G(s) = G(s) + Gj:

e Update estimate V™ (s) = G(s)/N(s)
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Optional Worked Example: MC On Policy Evaluation

Initialize N(s) =0, G(s) =0Vse S

Loop
o Sample episode | = Si1,8i1,0i1,5,2,8i2,F2y 58 T;58i,Tis li,T;
® Git=rie + Vet + 7 2+ T,
@ For each time step t until T; ( the end of the episode /)
o If this is the first time t that state s is visited in episode i (for first visit MC)
@ Increment counter of total first visits: N(s) = N(s) +1
o Increment total return G(s) = G(s) + G,
o Update estimate V™ (s) = G(s)/N(s)
@ Mars rover: R(s) =[100000 +10]
@ Trajectory = (s3, a1, 0, s2, a1, 0, s, a1, 0, s1, a1, 1, terminal)
@ Let v < 1. Compute the first visit & every visit MC estimates of s,.

@ See solutions at the end of the slides
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Incremental Monte Carlo (MC) On Policy Evaluation

After each episode i = s;1,aj1,ri1,Si2,3i2,li2,---

@ Define Gj; = rj s +7rit+1 + 72r;7t+2 + - -+ as return from time step t
onwards in ith episode

@ For state s visited at time step t in episode |

@ Increment counter of total visits: N(s) = N(s) +1
o Update estimate

N(s)—1 Gt
NG T N(s)

V() = V7(s) VT(s) + 5oy (Gie = V7(s))

()
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Incremental Monte Carlo (MC) On Policy Evaluation

@ Sample episode i = s; 1, ai,1, 1,512,312, [i.2y -+ 5i, Ty 5 3i,T;s 17, T,
@ Gjt=rit+ Yl + 72fi,t+2 + - 'VT"_lfi,T,-
@ for t = 1: T; where T; is the length of the i-th episode

e V7(si) = V™(s) + aGie — V™ (st))

@ We will see many algorithms of this form with a learning rate, target, and
incremental update
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Policy Evaluation Diagram

— | Action

State
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Policy Evaluation Diagram

States

Action
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Policy Evaluation Diagram
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Policy Evaluation Diagram

.~ = Expectation
= Terminal state
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MC Policy Evaluation

V7(s) = V7(s) + a(Gir — V7(s))

-~ = Expectation
= Terminal state
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MC Policy Evaluation

V7(s) = V7(s) + a(Gir — V7(s))

MC updates the value estimate
using a sample of the return to
approximate an expectation

.~ = Expectation
= Terminal state

Emma Brunskill (CS234 Reinforcement Learn Lecture 3: Model-Free Policy Evaluation: Po Winter 2026



Evaluation of the Quality of a Policy Estimation Approach

@ Consistency: with enough data, does the estimate converge to the true value
of the policy?

@ Computational complexity: as get more data, computational cost of
updating estimate

@ Memory requirements

@ Statistical efficiency (intuitively, how does the accuracy of the estimate
change with the amount of data)

@ Empirical accuracy, often evaluated by mean squared error
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Evaluation of the Quality of a Policy Estimation Approach:

Bias, Variance and MSE

@ Consider a statistical model that is parameterized by 6 and that determines
a probability distribution over observed data P(x|6)

@ Consider a statistic 6 that provides an estimate of # and is a function of
observed data x

o E.g. for a Gaussian distribution with known variance, the average of a set of
i.i.d data points is an estimate of the mean of the Gaussian

@ Definition: the bias of an estimator 6 is:

~

Biasy(0) = E,4[0] — 0

@ Definition: the variance of an estimator @ is:

Var(f) = Ex\e[(é — E[4])’]

o Definition: mean squared error (MSE) of an estimator @ is:

MSE () = Var() + Biass(0)?
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Evaluation of the Quality of a Policy Estimation Approach:

Consistent Estimator

@ Consider a statistical model that is parameterized by 6 and that determines
a probability distribution over observed data P(x|0)

@ Consider a statistic 6 that provides an estimate of 6 and is a function of
observed data x

@ Definition: the bias of an estimator § is:
BiaSQ(é) = Ex‘glé] -0

@ Let n be the number of data points x used to estimate the parameter 6 and
call the resulting estimate of 8 using that data 6,

@ Then the estimator én is consistent if, for all e > 0

nIer;o Pr(|6, — 6| >¢€)=0

@ If an estimator is unbiased (bias = 0) is it consistent?
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Properties of Monte Carlo On Policy Evaluators

Properties:
@ First-visit Monte Carlo

@ V7 estimator is an unbiased estimator of true E-[G|s; = s]
@ By law of large numbers, as N(s) — oo, V7 (s) = E,[G;|s: = s]

@ Every-visit Monte Carlo

o V™ every-visit MC estimator is a biased estimator of V™
o But consistent estimator and often has better MSE

@ Incremental Monte Carlo

@ Properties depends on the learning rate «
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Properties of Monte Carlo On Policy Evaluators

@ Updateis: V7™ (s;) = V™ (sit) + aw(s;)(Gi,t — V™ (sit))

@ where we have allowed « to vary (let k be the total number of updates done
so far, for state sj; = s;)

o If

oo
Zan(sj) = %
n=1
o0
> ai(s) < o
n=1

@ then incremental MC estimate will converge to true policy value V7 (s;)
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nte Carlo (MC) Policy Evaluation Key Limitations

@ Generally high variance estimator

@ Reducing variance can require a lot of data
@ In cases where data is very hard or expensive to acquire, or the stakes are
high, MC may be impractical

@ Requires episodic settings

o Episode must end before data from episode can be used to update V
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nte Carlo (MC) Policy Evaluation Summary

@ Aim: estimate V7 (s) given episodes generated under policy 7
@ si,a1,n, S, az, n,... where the actions are sampled from

® Gy =ri+Yres1 +72res2 +73rep3 + - -+ under policy m

o V™(s) =E,[G|s: = s]

@ Simple: Estimates expectation by empirical average (given episodes sampled
from policy of interest)

@ Updates V estimate using sample of return to approximate the expectation
@ Does not assume Markov process
@ Converges to true value under some (generally mild) assumptions

@ Note: Sometimes is preferred over dynamic programming for policy
evaluation even if know the true dynamics model and reward
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This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if don't have access to
true MDP models

Monte Carlo policy evaluation

Temporal Difference (TD)

Certainty Equivalence with dynamic programming

Batch policy evaluation
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Temporal Difference Learning

@ "“If one had to identify one idea as central and novel to reinforcement
learning, it would undoubtedly be temporal-difference (TD) learning.” —
Sutton and Barto 2017

@ Combination of Monte Carlo & dynamic programming methods
@ Model-free
@ Can be used in episodic or infinite-horizon non-episodic settings

@ Immediately updates estimate of V after each (s, a, r,s’) tuple
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Temporal Difference Learning for Estimating V

@ Aim: estimate V™(s) given episodes generated under policy 7
@ G =r +rei1 +7?rp2 + Y33+ -+ in MDP M under policy
o V™(s) =E,[G|s: = s]

@ Recall Bellman operator (if know MDP models)

"V(s) = r(s,7(s)) +v Y p(s']s,m(s)) V(s

s’eS

@ In incremental every-visit MC, update estimate using 1 sample of return (for
the current ith episode)

V7(s) = V7(s) + a(Gj e — V7(s))
@ lIdea: have an estimate of V™, use to estimate expected return

V7(s) = V7 (s) + allre + 7V (st41)] — V7(s))
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(0)] Learning

@ Aim: estimate V™(s) given episodes generated under policy 7

@ s1,ai1,n,S,az, n,... where the actions are sampled from

TD(0) learning / 1-step TD learning: update estimate towards target

V7(st) = V7 (st) + a[re + vV (se41)] =V (st))

TD target

@ TD(0) error:
6r = re + YV (se41) — V7 (st)

@ Can immediately update value estimate after (s, a, r,s’) tuple

@ Don't need episodic setting
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Temporal Difference [TD(0)] Learning Algorithm

Input: «
Initialize V™(s) =0, Vs € S

e

@ Sample tuple (s;, a;, rt, Se41)

© V7(st) = V7(st) + a[re + vV (st41)] =V (st))

TD target
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Worked Example TD Learning

Input: «
Initialize V™(s) =0,Vs€ S
Loop

@ Sample tuple (s, ar, re, Se+1)

® V7™(s) = V™(st) + a[re + vV (se41)] = V7 (st))
TD target

Example Mars rover: R =100 00 0 +10] for any action

o nn(s)=a Vs, y=1. any action from s; ane\s; terminates episode
@ Trajectory = (s3, a1, 0, 52 ai, 0, 52 a1, 0,|sif a1, 1, termlnali
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Worked Example TD Learning

Input: «
Initialize V™(s) =0,Vs€ S
Loop

@ Sample tuple (s;, a;, rt, St41)
® V7™(st) = V™(st) + a([re + 7V (se41)] = V7™ (st))
TD target
Example:
@ Mars rover: R=[10000 0 +10] for any action
@ 7(s) = a; Vs, v = 1. any action from s; and s; terminates episode
@ Trajectory = (s3, a1, 0, %, a1, 0, 5, a1, 0, s1, a1, 1, terminal)

@ TD estimate of all states (init at 0) with & = 1, v < 1 at end of this
episode?
V=[10000000]

@ First visit MC estimate of V of each state? [L v ~v2 00 0 0]
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nce (TD) Policy Evaluation

V7™ (st) = r(se, m(se)) + ’YZ P(sts1lse, m(se)) V™ (se+1)

St+1

V7(st) = V7 (st) + a[re + 7V (st41)] = V7 (st))

TD updates the value estimate S TD updates the value estimate by

using a sample of S, tO ) bootstrapping, uses estimate of V(s

approximate an expectation

o)

__~ = Expectation
= Terminal state
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Check Your Understanding L3N2: Polleverywhere Poll

Temporal Difference [TD(0)] Learning Algorithm

Input: «
Initialize V™(s) =0, Vs € S
Loop

@ Sample tuple (s;, ar, rt, St41)
© V7(st) = V7™(st) + a[re + YV (se41)] V7 (st))
TD target
Select all that are true
© If « =0 TD will weigh the TD target more than the past V estimate
@ If a =1 TD will update the V estimate to the TD target

© If a=1TD in MDPs where the policy goes through states with multiple
possible next states, V may oscillate forever

© There exist deterministic MDPs where & = 1 TD will converge
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Check Your Understanding L3N2: Polleverywhere Poll

Temporal Difference [TD(0)] Learning Algorithm

Input: «
Initialize V™(s) =0,Vs e S
Loop

@ Sample tuple (s;, ar, rt, St41)

© V7(st) = V7™(st) + a[re + YV (se41)] V7 (st))
TD target
Answers. If & =1 TD will update to the TD target. If a =1 TD in
MDPs where the policy goes through states with multiple possible next
states, V may oscillate forever. There exist deterministic MDPs where
a =1 TD will converge.
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Summary: Temporal Difference Learning

@ Combination of Monte Carlo & dynamic programming methods
@ Model-free

@ Bootstraps and samples

@ Can be used in episodic or infinite-horizon non-episodic settings
@ Immediately updates estimate of V after each (s, a, r,s’) tuple

@ Biased estimator (early on will be influenced by initialization, and won't be
unibased estimator)

@ Generally lower variance than Monte Carlo policy evaluation

@ Consistent estimator if learning rate « satisfies same conditions specified for
incremental MC policy evaluation to converge

@ Note: algorithm | introduced is TD(0). In general can have
approaches that interpolate between TD(0) and Monte Carlo
approach

Emma Brunskill (CS234 Reinforcement Learn Lecture 3: Model-Free Policy Evaluation: Po Winter 2026



This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if don't have access to
true MDP models

Monte Carlo policy evaluation

Temporal Difference (TD)

@ Certainty Equivalence with dynamic programming

Batch policy evaluation
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Certainty Equivalence V™ MLE MDP Model Estimates

@ Model-based option for policy evaluation without true models
@ After each (s, a;, ri, si+1) tuple

@ Recompute maximum likelihood MDP model for (s, a)

A 1 i
P(s15:) = g 3y 2o Lok = 5,0k = 2,501 =)
’ k=1

1 i
F = — ]l = =
(s, a) N(s. 3) kz:; (sk =s,ak = a)r
e Compute V™ using MLE MDP 2 (using any dynamic programming method
from lecture 2))

@ Optional worked example at end of slides for Mars rover domain.

2Requires initializing for all (s, a) pairs
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Certainty Equivalence V™ MLE MDP Model Estimates

@ Model-based option for policy evaluation without true models
@ After each (s, a, r,s’) tuple
e Recompute maximum likelihood MDP model for (s, a)

K Te—1

~ 1
P(s'|s,a) = L(ske =S, akt = a,Sk,t41 =)
NG 3) 2 2
1 K Tyx—1
F = —_— 1 = -

e Compute V™ using MLE MDP

@ Cost: Updating MLE model and MDP planning at each update (O(|S|?) for
analytic matrix solution, O(|S|?|A]|) for iterative methods)

@ Very data efficient and very computationally expensive
@ Consistent (will converge to right estimate for Markov models)

@ Can also easily be used for off-policy evaluation (which we will shortly define
and discuss)
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Optional Worked Example MC On Policy Evaluation

Answers

Initialize N(s) =0, G(s) =0Vse S
Loop

@ Sample episode i = s; 1,31, i,1,5i2,3,2, 11,2, - Si,T;> @i, T:» [0, T;

Ti—1

_ 2
@ Gie="rit+ Vi1 + Y i+ T

@ For each time step t until T; ( the end of the episode /)
o If this is the first time t that state s is visited in episode 7
@ Increment counter of total first visits: N(s) = N(s) +1

@ Increment total return G(s) = G(s) + Gi,¢
e Update estimate V™ (s) = G(s)/N(s)

@ Mars rover: R=[10000 0 +10] for any action
@ Trajectory = (s3, a1, 0, s2, a1, 0, s, a1, 0, s1, a1, 1, terminal)
@ Let v < 1. Compare the first visit & every visit MC estimates of s;.

: e \yMC 2 e \/MC _ 2+
First visit: VV(sy) =2, Every visit: V"¢ (sy) = 157
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Optional Check Your Understanding L3: Incremental MC

(State if each is True or False)

First or Every Visit MC
@ Sample episode i = s;1,ai1,i1,5i2,3i 2,12,

_ 2 Ti—1
@ Gie=rit+Vries1+ Y i+ 7T
o For all s, for first or every time t that state s is visited in episode i

e N(s)=N(s)+1, G(s) = G(s) + G,
e Update estimate V™ (s) = G(s)/N(s)

-y Si, T i, T M, T;

Incremental MC

@ Sample episode / = sj1,ai1,i,1,5i2,2i2, .2, -+, Si, T, @i, T, 11, T:

_ 2 T—1
@ Git=rit+ Vi1 +Ylieq2+ -y TnT

@ for t = 1: T; where T; is the length of the i-th episode
° VW(S[t) = V"(Sit) + Oé(G[}t — VW(S[t))
0 Incremental MC with «« = 1 is the same as first visit MC
e Incremental MC with o = 2 is the same as every visit MC
N(sit)

e Incremental MC with o« > N(i- ) could be helpful in non-stationary domains
it

Winter 2026
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Optional Check Your Understanding L3 Incremental MC

Answers

First or Every Visit MC
@ Sample episode i = sj,1,a;,1, 1,1, 51,25 3,2, 11,2, - - - » Si, T;» 3, T;5 11, T;

2 -1
@ Gi=rit+vinn+ V2t T

@ For all s, for first or every time t that state s is visited in episode i
@ N(s)=N(s)+1, G(s) = G(s) + Gj ¢
@ Update estimate V™ (s) = G(s)/N(s)
Incremental MC
@ Sample episode i = sj,1,8),1, 11,1, 51,25 3,25 1,25+ - = » Si,T; 30, T i T;
@ fort=1: T; where T; is the length of the i-th episode
@ V7T(sit) = V7 (sit) + (Gj,e — V7 (sit))

Incremental MC with « = 1 is the same as first visit MC

false

Incremental MC with o = N(i- j is the same as every visit MC
it

true

Incremental MC with o« > N(i- ) could help in non-stationary domains
it

© © o

true
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Optional Check Your Understanding L3 Incremental MC

(State if each is True or False)

First or Every Visit MC
@ Sample episode i = s;1,ai1,i1,5i2,3i 2,12,

_ 2 Ti—1
@ Gie=rit+Vries1+ Y i+ 7T
o For all s, for first or every time t that state s is visited in episode i

e N(s)=N(s)+1, G(s) = G(s) + G,
e Update estimate V™ (s) = G(s)/N(s)

-y Si, T i, T M, T;

Incremental MC

@ Sample episode / = sj1,ai1,i,1,5i2,2i2, .2, -+, Si, T, @i, T, 11, T:

_ 2 T—1
@ Git=rit+ Vi1 +Ylieq2+ -y TnT

@ for t = 1: T; where T; is the length of the i-th episode
° VW(S[t) = V"(Sit) + Oé(G[}t — VW(S[t))
0 Incremental MC with «« = 1 is the same as first visit MC
e Incremental MC with o = 2 is the same as every visit MC
N(sit)

e Incremental MC with o« > N(i- ) could be helpful in non-stationary domains
it

Winter 2026
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Check Your Understanding L3N1: Polleverywhere Poll

Incremental MC Answers

First or Every Visit MC
@ Sample episode i = sj,1,a;,1, 1,1, 51,25 3,2, 11,2, - - - » Si, T;» 3, T;5 11, T;

2 -1
@ Gi=rit+vinn+ V2t T

@ For all s, for first or every time t that state s is visited in episode i
@ N(s)=N(s)+1, G(s) = G(s) + Gj ¢
@ Update estimate V™ (s) = G(s)/N(s)
Incremental MC
@ Sample episode i = sj,1,8),1, 11,1, 51,25 3,25 1,25+ - = » Si,T; 30, T i T;
@ fort=1: T; where T; is the length of the i-th episode
@ V7T(sit) = V7 (sit) + (Gj,e — V7 (sit))

Incremental MC with « = 1 is the same as first visit MC

false

Incremental MC with o = N(i- j is the same as every visit MC
it

true

Incremental MC with o« > N(i- ) could help in non-stationary domains
it

© © o

true
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Certainty Equivalence V™ MLE MDP Worked Example

S1 S2 S3 Sa Ss Se 57

Ris)=+1] RG) =0 | RGs) =0
Okay
Field Site

R =0 | RGD=0 |G = +10

Fantastic
Field Site

Mars rover: R=[1000 0 0 +10] for any action

7(s) = a1 Vs, v = 1. any action from s, and s; terminates episode

Trajectory = (s3, a1, 0, s, a1, 0, s, a1, 0, s1, a1, 1, terminal)
@ First visit MC estimate of V of each state? [1 v ~+2 000 0]

@ TD estimate of all states (init at 0) with a =1is[1 0000 0 0]

Optional exercise: What is the certainty equivalent estimate?
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Certainty Equivalence V™ MLE MDP Worked Ex Solution

1 Sz S3 S4 Ss Se 7
Rep=+1[ =0 | ren=0 | mep=0| reo=0| RGI=0 [R6 =419
Okay —— Fantastic
Ficld Site = Field Site

Mars rover: R =100 00 0 +10] for any action

m(s) = a1 Vs, v = 1. any action from s; and s; terminates episode
Trajectory = (s3, a1, 0, s, a1, 0, s, a1, 0, s1, a1, 1, terminal)
First visit MC estimate of V of each state? [1 v 2 000 0]

TD estimate of all states (init at 0) with a =1is[1 0000 0 0]

Optional exercise: What is the certainty equivalent estimate?

7=1[100000 0], p(terminate|sy, ar) = p(sz|s3,a1) =1
p(s2]s2, a1) = 0.5 =p(s1]s2, a1)

_ ~v%0.5  4°%0.5 Typo: V(s1) should = 1
V= [O 1-0.5v 1-0.5v 000 0] see next slide for derivation
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Typo: V(s1) should = 1
see next slide for derivation


Certainty Equivalence V™ MLE MDP Worked Ex Solution

Trajectory = (s3, a1, 0, 55, a1, 0, , a1, 0, s1, a1, 1, terminal)
7=1[1000000], p(terminate|sy,a1) = p(sz|s3,a1) =1

B(s2]52,a1) = 0.5 =p(s1]s2, a1)

@ Recall V = R+ PV, which implies (/ —yP)Y = Ror V = (I —yP)"R

@ Doing this only for states s1 52 s3 Sterminal

-1
1 0 0 —y v 2 7
Y, - 2- (v=1(r-2)
1 ) B v v v v
(I—yP)=| 2 2 (=P =, 3
0 — 1 Y 2y ol
0 0 0 1-7v 2—-y 2-79 (r=1(r-2)
1
0 0o 0 -—
y—1
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Recall: Dynamic Programming for Policy Evaluation

If we knew dynamics and reward model, we can do policy evaluation

Initialize V' (s) =0 for all s

For k =1 until convergence

@ Forallsin$S

Vi (s) = r(s,m(s) +’YZ (s'ls, m(s)) Vi_1(s")
s’eS

@ V[ (s) is exactly the k-horizon value of state s under policy 7

@ V[ (s) is an estimate of the infinite horizon value of state s under policy 7

V7(s) = Ex[Gt|sy = s] = Ex[re + v V1|5t = 5]
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Dynamic Programming Policy Evaluation

V™ (s) < E[r + v Vi_1|s: = 5]

DP computes this, bootstrapping
the rest of the expected return by
the value estimate V, |

-~ = Expectation

@ Bootstrapping: Update for V' uses an estimate
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Dynamic Programming Policy Evaluation

V™ (s) < E[r + v Vi_1|s: = 5]

DP computes this, bootstrapping
the rest of the expected return by
the value estimate V,__

Know model P(s’ |s,a):
reward and expectation
over next states
computed exactly

-~ = Expectation

@ Bootstrapping: Update for V' uses an estimate
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What about when we don’t know the models?

DP computes this, bootstrapping
the rest of the expected return by
the value estimate V, |

Know model P(s’ | s,a):
reward and expectation

over next states
computed exactly

__~ = Expectation
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Bias/Variance of Model-free Policy Evaluation Algorithms

@ Return G; is an unbiased estimate of V™ (s;)

@ TD target [r; + vV ™(st+1)] is a biased estimate of V™ (s;)

@ But often much lower variance than a single return G;

@ Return function of multi-step sequence of random actions, states & rewards
@ TD target only has one random action, reward and next state

e MC

@ Unbiased (for first visit)
o High variance
o Consistent (converges to true) even with function approximation

Some bias

Lower variance

TD(0) converges to true value with tabular representation
TD(0) does not always converge with function approximation
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S1 S S3 Sy Ss Se Sy

R(s)=+1]| R(s;)=0 | R(s3)=0 | R(ss)=0| R(ss)=0 | R(se) =0 |R(s7) =+10]
Okay —— Fantastic

Field Site = Field Site

@ Mars rover: R=[1000 00 +10] for any action

@ 7(s) =a; Vs, v = 1. any action from s; and s; terminates episode
@ Trajectory = (s3, a1, 0, 52, a1, 0, s, a1, 0, s1, a1, 1, terminal)

@ First visit MC estimate of V of each state? [11100 0 0]

@ TD estimate of all states (init at 0) with « =1is[1 0000 0 0]
@ TD(0) only uses a data point (s, a, r,s’) once

@ Monte Carlo takes entire return from s to end of episode
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