Lecture 3: Model-Free Policy Evaluation: Policy

Evaluation Without Knowing How the World Works

Emma Brunskill

CS234 Reinforcement Learning

Winter 2026

@ Material builds on structure from David Silver's Lecture 4: Model-Free
Prediction. Other resources: Sutton and Barto Jan 1 2018 draft
Chapter/Sections: 5.1; 5.5; 6.1-6.3
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http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://incompleteideas.net/book/the-book-2nd.html

L3N1 Refresh Your Knowledge [Polleverywhere Poll]

@ In a tabular MDP asymptotically value iteration will always yield a policy
with the same value as the policy returned by policy iteration

Q True.

@ False
© Not sure

@ Can value iteration require more iterations than |A|l°l to compute the
optimal value function? (Assume |A| and |S| are small enough that each
round of value iteration can be done exactly).

Q True.
Q False
© Not sure
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L3N1 Refresh Your Knowledge

@ In a tabular MDP asymptotically value iteration will always yield a policy
with the same value as the policy returned by policy iteration

@ Can value iteration require more iterations than |A|I°l to compute the
optimal value function? (Assume |A| and |S| are small enough that each
round of value iteration can be done exactly).
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Today's Plan

@ Last Time:

@ Markov reward / decision processes
@ Policy evaluation & control when have true model (of how the world works)

@ Today
o Policy evaluation without known dynamics & reward models
@ Next Time:

@ Control when don’t have a model of how the world works
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Evaluation through Direct Experience

@ Estimate expected return of policy 7
@ Only using data from environment® (direct experience)
@ Why is this important?

@ What properties do we want from policy evaluation algorithms?

! Assume today this experience comes from executing the policy 7. Later will
consider how to do policy evaluation using data gathered from other policies:
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This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if don't have access to
true MDP models

Monte Carlo policy evaluation
@ Policy evaluation when don’'t have a model of how the world works

@ Given on-policy samples

Temporal Difference (TD)

Certainty Equivalence with dynamic programming

Batch policy evaluation
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Recall

@ Definition of Return, G; (for a MRP)

o Discounted sum of rewards from time step t to horizon
Gi=r+yrm+ ’Y2ft+2 + ’Y3I’t+3 + -

@ Definition of State Value Function, V7 (s)

o Expected return starting in state s under policy ™
VW(S) = ]ETr[Gt‘st = 5] = ]Efr[rt + Yrev1 + ’Yzf't+2 + 73rt+3 + - ‘St = 5]

@ Definition of State-Action Value Function, Q™ (s, a)

o Expected return starting in state s, taking action a and following policy 7

Q" (s,a) = Ex[G¢|s: = s,a: = a]

=Ex[r +yres1 +’72ft+2 +’73rt+3 +---|se=s,a; = a]
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Recall: Dynamic Programming for Policy Evaluation

@ In a Markov decision process
VW(S) = E-,‘—[Gt|5t = 5]
= Er [rt+fyrt+1+72rt+2+'y3rt+3+~-~|st=s]

— R(s.7(s)) +7 3 P(s']s, n(s)V"(s)

s’eS

@ If given dynamics and reward models, can do policy evaluation through
dynamic programming

Vi (s) = r(s,m(s)) +7 D p(s']s, 7(s)) Vila(s') (1)
s'eS

@ Note: before convergence, V[ is an estimate of V7

@ In Equation 1 we are substituting ) s p(s'ls, 7(s)) V/_(s") for
Er[re41 +yres2 + ’72rt+3 + st = 9]

@ This substitution is an instance of bootstrapping
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This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if don't have access to
true MDP models

Monte Carlo policy evaluation

@ Policy evaluation when don’'t have a model of how the world work
@ Given on-policy samples

Temporal Difference (TD)

Certainty Equivalence with dynamic programming

Batch policy evaluation
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nte Carlo (MC) Policy Evaluation

Gt =ri+7rq1 +'yzrt+2 +'y3rt+3 4+ 'yT"_trT,. in MDP M under policy 7
VW(S) = ETNTr[GtISt = S]

o Expectation over trajectories 7 generated by following 7

Simple idea: Value = mean return

If trajectories are all finite, sample set of trajectories & average returns

Note: all trajectories may not be same length (e.g. consider MDP with
terminal states)
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nte Carlo (MC) Policy Evaluation

If trajectories are all finite, sample set of trajectories & average returns

Does not require MDP dynamics/rewards

Does not assume state is Markov

Can be applied to episodic MDPs

o Averaging over returns from a complete episode
@ Requires each episode to terminate
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First-Visit Monte Carlo (MC) On Policy Evaluation

Initialize N(s) =0, G(s) =0Vse S
Loop

@ Sample episode i = 5;1,ai,1, 61,1, 5i2,3i2, 11,2y - - -, Si,Ti»» 30, Ti> 1i, T;

@ Define Gj; = ri s + 7l 41+ 72r;7t+2 + - ~-7T"_1r,-,TI. as return from time
step t onwards in ith episode

@ For each time step t until T; ( the end of the episode /)

o If this is the first time t that state s is visited in episode i
@ Increment counter of total first visits: N(s) = N(s) +1
@ Increment total return G(s) = G(s) + Gi,¢
o Update estimate V™(s) = G(s)/N(s)
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Every-Visit Monte Carlo (MC) On Policy Evaluation

Initialize N(s) =0, G(s) =0Vse S
Loop

@ Sample episode / = sj1,ai1,i1,5i2,3i2,[i.2, -, Si. Ty, i, T, li,T,

@ Define Gy = ris + Vriri1 +riera + -y 71r 1. as return from time
step t onwards in ith episode

@ For each time step t until T; ( the end of the episode i)

@ state s is the state visited at time step t in episodes i
@ Increment counter of total visits: N(s) = N(s) +1

@ Increment total return G(s) = G(s) + Gj:

e Update estimate V™ (s) = G(s)/N(s)
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Optional Worked Example: MC On Policy Evaluation

Initialize N(s) =0, G(s) =0Vse S

Loop
o Sample episode | = Si1,8i1,0i1,5,2,8i2,F2y 58 T;58i,Tis li,T;
® Git=rie + Vet + 7 2+ T,
@ For each time step t until T; ( the end of the episode /)
o If this is the first time t that state s is visited in episode i (for first visit MC)
@ Increment counter of total first visits: N(s) = N(s) +1
o Increment total return G(s) = G(s) + G,
o Update estimate V™ (s) = G(s)/N(s)
@ Mars rover: R(s) =[100000 +10]
@ Trajectory = (s3, a1, 0, s2, a1, 0, s, a1, 0, s1, a1, 1, terminal)
@ Let v < 1. Compute the first visit & every visit MC estimates of s,.

@ See solutions at the end of the slides
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Incremental Monte Carlo (MC) On Policy Evaluation

After each episode i = s;1,aj1,ri1,Si2,3i2,li2,---

@ Define Gj; = rj s +7rit+1 + 72r;7t+2 + - -+ as return from time step t
onwards in ith episode

@ For state s visited at time step t in episode |

@ Increment counter of total visits: N(s) = N(s) +1
o Update estimate

N(s)—1 Gt
NG T N(s)

V() = V7(s) VT(s) + 5oy (Gie = V7(s))

()
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Incremental Monte Carlo (MC) On Policy Evaluation

@ Sample episode i = s; 1, ai,1, 1,512,312, [i.2y -+ 5i, Ty 5 3i,T;s 17, T,
@ Gjt=rit+ Yl + 72fi,t+2 + - 'VT"_lfi,T,-
@ for t = 1: T; where T; is the length of the i-th episode

e V7(si) = V™(s) + aGie — V™ (st))

@ We will see many algorithms of this form with a learning rate, target, and
incremental update
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Policy Evaluation Diagram

— | Action

State
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Policy Evaluation Diagram

States

Action
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Policy Evaluation Diagram
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Policy Evaluation Diagram

.~ = Expectation
= Terminal state
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MC Policy Evaluation

V7(s) = V7(s) + a(Gir — V7(s))

-~ = Expectation
= Terminal state
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MC Policy Evaluation

V7(s) = V7(s) + a(Gir — V7(s))

MC updates the value estimate
using a sample of the return to
approximate an expectation

.~ = Expectation
= Terminal state
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Evaluation of the Quality of a Policy Estimation Approach

@ Consistency: with enough data, does the estimate converge to the true value
of the policy?

@ Computational complexity: as get more data, computational cost of
updating estimate

@ Memory requirements

@ Statistical efficiency (intuitively, how does the accuracy of the estimate
change with the amount of data)

@ Empirical accuracy, often evaluated by mean squared error
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Evaluation of the Quality of a Policy Estimation Approach:

Bias, Variance and MSE

@ Consider a statistical model that is parameterized by 6 and that determines
a probability distribution over observed data P(x|6)

@ Consider a statistic 6 that provides an estimate of # and is a function of
observed data x

o E.g. for a Gaussian distribution with known variance, the average of a set of
i.i.d data points is an estimate of the mean of the Gaussian

@ Definition: the bias of an estimator 6 is:

~

Biasy(0) = E,4[0] — 0

@ Definition: the variance of an estimator @ is:

Var(f) = Ex\e[(é — E[4])’]

o Definition: mean squared error (MSE) of an estimator @ is:

MSE () = Var() + Biass(0)?
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Evaluation of the Quality of a Policy Estimation Approach:

Consistent Estimator

@ Consider a statistical model that is parameterized by 6 and that determines
a probability distribution over observed data P(x|0)

@ Consider a statistic 6 that provides an estimate of 6 and is a function of
observed data x

@ Definition: the bias of an estimator § is:
BiaSQ(é) = Ex‘glé] -0

@ Let n be the number of data points x used to estimate the parameter 6 and
call the resulting estimate of 8 using that data 6,

@ Then the estimator én is consistent if, for all e > 0

nIer;o Pr(|6, — 6| >¢€)=0

@ If an estimator is unbiased (bias = 0) is it consistent?
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Properties of Monte Carlo On Policy Evaluators

Properties:
@ First-visit Monte Carlo

@ V7 estimator is an unbiased estimator of true E-[G|s; = s]
@ By law of large numbers, as N(s) — oo, V7 (s) = E,[G;|s: = s]

@ Every-visit Monte Carlo

o V™ every-visit MC estimator is a biased estimator of V™
o But consistent estimator and often has better MSE

@ Incremental Monte Carlo

@ Properties depends on the learning rate «
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Properties of Monte Carlo On Policy Evaluators

@ Updateis: V7™ (s;) = V™ (sit) + aw(s;)(Gi,t — V™ (sit))

@ where we have allowed « to vary (let k be the total number of updates done
so far, for state sj; = s;)

o If

oo
Zan(sj) = %
n=1
o0
> ai(s) < o
n=1

@ then incremental MC estimate will converge to true policy value V7 (s;)
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nte Carlo (MC) Policy Evaluation Key Limitations

@ Generally high variance estimator

@ Reducing variance can require a lot of data
@ In cases where data is very hard or expensive to acquire, or the stakes are
high, MC may be impractical

@ Requires episodic settings

o Episode must end before data from episode can be used to update V
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nte Carlo (MC) Policy Evaluation Summary

@ Aim: estimate V7 (s) given episodes generated under policy 7
e s1,a1,n,s,az, n,... where the actions are sampled from

@ Gi=r+"yrye1+ 72rt+2 + 73rt+3 + -+ under policy 7

o V7™(s) =E,[Gi|s: = 5]

@ Simple: Estimates expectation by empirical average (given episodes sampled
from policy of interest)

@ Updates V estimate using sample of return to approximate the expectation
@ Does not assume Markov process
@ Converges to true value under some (generally mild) assumptions

@ Note: Sometimes is preferred over dynamic programming for policy
evaluation even if know the true dynamics model and reward
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This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if don't have access to
true MDP models

Monte Carlo policy evaluation

Temporal Difference (TD)

Certainty Equivalence with dynamic programming

Batch policy evaluation
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Temporal Difference Learning

@ "“If one had to identify one idea as central and novel to reinforcement
learning, it would undoubtedly be temporal-difference (TD) learning.” —
Sutton and Barto 2017

@ Combination of Monte Carlo & dynamic programming methods
@ Model-free
@ Can be used in episodic or infinite-horizon non-episodic settings

@ Immediately updates estimate of V after each (s, a, r,s’) tuple
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Temporal Difference Learning for Estimating V

Aim: estimate V™ (s) given episodes generated under policy 7

Gy =ri+yrege1 + 72rt+2 + fy3rt+3 + -+ in MDP M under policy 7
V7™(s) = E,[Gt|s: = 9]

Recall Bellman operator (if know MDP models)

B™V(s) = r(s,m(s)) +v Y p(s'|s, m(s))V(s')
s’eS

In incremental every-visit MC, update estimate using 1 sample of return (for
the current ith episode)

VT(s) = V™(s) + a(Gjr — V7(s))
Idea: have an estimate of V™, use to estimate expected return

V7(s) = V7(s) + al[re + 7V (se41)] = V7 (5))
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(0)] Learning

@ Aim: estimate V™(s) given episodes generated under policy 7

@ s1,ai1,n,S,az, n,... where the actions are sampled from

TD(0) learning / 1-step TD learning: update estimate towards target

V7(st) = V7 (st) + a[re + vV (se41)] =V (st))

TD target

@ TD(0) error:
6r = re + YV (se41) — V7 (st)

@ Can immediately update value estimate after (s, a, r,s’) tuple

@ Don't need episodic setting
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Temporal Difference [TD(0)] Learning Algorithm

Input: «
Initialize V™(s) =0, Vs € S
Loop

@ Sample tuple (s;, a;, rt, St41)

© V7(st) = V7(st) + a[re + 7V (st41)] = V7 (st))

TD target
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Worked Example TD Learning

Input: «
Initialize V™(s) =0,Vs € S
Loop

@ Sample tuple (s, ar, re, St+1)
o V7™(st) = V™(st) + a[re + 7V (se41)] = V7™ (st))
TD target
Example Mars rover: R=[100 0 0 0 +10] for any action
@ 7(s) =a; Vs, v = 1. any action from s; and s; terminates episode

@ Trajectory = (s3, a1, 0, s, a1, 0, 5, a1, 0, s, a1, 1, terminal)
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Worked Example TD Learning

Input: «
Initialize V™(s) =0, Vs € S
Loop

@ Sample tuple (s;, ar, rt, St41)
@ V™(s;) = V™ (st) + al[rs + YV ™ (st41)] — V™ (5t))
TD target
Example:
@ Mars rover: R=[10000 0 +10] for any action
@ 7(s) = a; Vs, v = 1. any action from s; and s; terminates episode
® Trajectory = (s3, a1, 0, s2, a1, 0, 2, a1, 0, s1, a1, 1, terminal)

@ TD estimate of all states (init at 0) with & = 1, v < 1 at end of this
episode?

@ First visit MC estimate of V of each state? [1 v ~+2 000 0]
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nce (TD) Policy Evaluation

V7™ (st) = r(se, m(se)) + ’YZ P(sts1lse, m(se)) V™ (se+1)

St+1

V7(st) = V7 (st) + a[re + 7V (st41)] = V7 (st))

TD updates the value estimate S TD updates the value estimate by

using a sample of S, tO ) bootstrapping, uses estimate of V(s

approximate an expectation

o)

__~ = Expectation
= Terminal state

Emma Brunskill (CS234 Reinforcement Learn Lecture 3: Model-Free Policy Evaluation: Po Winter 2026



Check Your Understanding L3N2: Polleverywhere Poll

Temporal Difference [TD(0)] Learning Algorithm

Input: «
Initialize V™(s) =0, Vs € S
Loop

@ Sample tuple (s;, ar, rt, St41)
© V7(st) = V7™(st) + a[re + YV (se41)] V7 (st))
TD target
Select all that are true
© If « =0 TD will weigh the TD target more than the past V estimate
@ If a =1 TD will update the V estimate to the TD target

© If a=1TD in MDPs where the policy goes through states with multiple
possible next states, V may oscillate forever

© There exist deterministic MDPs where & = 1 TD will converge
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Check Your Understanding L3N2: Polleverywhere Poll

Temporal Difference [TD(0)] Learning Algorithm

Input: «
Initialize V™(s) =0, Vs € S
Loop

@ Sample tuple (s, a;, rt, St41)

© V7(st) = V7(st) + a[re + YV (st41)] = V7 (st))

TD target
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Summary: Temporal Difference Learning

@ Combination of Monte Carlo & dynamic programming methods
@ Model-free

@ Bootstraps and samples

@ Can be used in episodic or infinite-horizon non-episodic settings
@ Immediately updates estimate of V after each (s, a, r,s’) tuple

@ Biased estimator (early on will be influenced by initialization, and won't be
unibased estimator)

@ Generally lower variance than Monte Carlo policy evaluation

@ Consistent estimator if learning rate « satisfies same conditions specified for
incremental MC policy evaluation to converge

@ Note: algorithm | introduced is TD(0). In general can have
approaches that interpolate between TD(0) and Monte Carlo
approach
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This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if don't have access to
true MDP models

Monte Carlo policy evaluation

Temporal Difference (TD)

@ Certainty Equivalence with dynamic programming

Batch policy evaluation
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Certainty Equivalence V™ MLE MDP Model Estimates

@ Model-based option for policy evaluation without true models
@ After each (s, a;, ri, si+1) tuple

@ Recompute maximum likelihood MDP model for (s, a)

A 1 i
P(s15:) = g 3y 2o Lok = 5,0k = 2,501 =)
’ k=1

1 i
F = — ]l = =
(s, a) N(s. 3) kz:; (sk =s,ak = a)r
e Compute V™ using MLE MDP 2 (using any dynamic programming method
from lecture 2))

@ Optional worked example at end of slides for Mars rover domain.

2Requires initializing for all (s, a) pairs

Emma Brunskill (CS234 Reinforcement Learn Lecture 3: Model-Free Policy Evaluation: Po Winter 2026



Certainty Equivalence V™ MLE MDP Model Estimates

@ Model-based option for policy evaluation without true models
@ After each (s, a, r,s’) tuple
e Recompute maximum likelihood MDP model for (s, a)

K Te—1

~ 1
P(s'|s,a) = L(ske =S, akt = a,Sk,t41 =)
NG 3) 2 2
1 K Tyx—1
F = —_— 1 = -

e Compute V™ using MLE MDP

@ Cost: Updating MLE model and MDP planning at each update (O(|S|?) for
analytic matrix solution, O(|S|?|A]|) for iterative methods)

@ Very data efficient and very computationally expensive
@ Consistent (will converge to right estimate for Markov models)

@ Can also easily be used for off-policy evaluation (which we will shortly define
and discuss)
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This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if don't have access to
true MDP models

Monte Carlo policy evaluation
@ Policy evaluation when don’'t have a model of how the world work

@ Given on-policy samples

Temporal Difference (TD)

Certainty Equivalence with dynamic programming

Batch policy evaluation

Emma Brunskill (CS234 Reinforcement Learn Lecture 3: Model-Free Policy Evaluation: Po Winter 2026



Batch MC and TD

@ Batch (Offline) solution for finite dataset

@ Given set of K episodes
@ Repeatedly sample an episode from K
e Apply MC or TD(0) to the sampled episode

@ What do MC and TD(0) converge to?
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AB Example: (Ex. 6.4, Sutton & Barto, 2018)

C =0
erO% @

25%

@ Two states A, B with y =1
@ Given 8 episodes of experience:
e A0,B,0
o B,1 (observed 6 times)
e B,0
@ Imagine running TD updates over data infinite number of times
e V(B)=
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AB

Example: (Ex. 6.4, Sutton & Barto, 2018)

TD Update: V7(s;) = V™(s;) + a([re + vV (st+1)] =V 7 (st))
—_——
TD target

Two states A, B with v =1

Given 8 episodes of experience:

e A0, B,0
o B,1 (observed 6 times)
e B,0

Imagine run TD updates over data infinite number of times
V(B) =0.75 by TD or MC
What about V/(A)?
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Check Your Understanding L3N3: AB Example: (Ex. 6.4,

Sutton & Barto, 2018)

@ TD Update: V7™(s;) = V™(st) + a([re + YV ™ (se+1)] — V7 (s¢))
—_——
TD target

@ Two states A, B with vy =1

@ Given 8 episodes of experience:

e A0, B,0
e B,1 (observed 6 times)
e B,0

@ Imagine run TD updates over data infinite number of times
@ V(B)=0.75 by TD or MC

© What about V(A)?

@ Respond in Poll
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Check Your Understanding L3N3: AB Example: (Ex. 6.4,

Sutton & Barto, 2018)

@ TD Update: V™(s;) = V™(s¢) + a([re + vV (st+1)] = V7 (st))
—_———
TD target

@ Two states A, B with v =1
@ Given 8 episodes of experience:

e AO0,B,0

o B,1 (observed 6 times)

e B,0
@ Imagine run TD updates over data infinite number of times
@ V(B)=0.75 by TD or MC

What about V/(A)?
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Batch MC and TD: Convergence
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Batch MC and TD: Convergence
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Summary: Policy Evaluation

Estimating the expected return of a particular policy if don't have access
to true MDP models. Ex. evaluating average purchases per session of new
product recommendation system

@ Monte Carlo policy evaluation

@ Policy evaluation when we don't have a model of how the world works

@ Given on policy samples
@ Given off policy samples

Temporal Difference (TD)

@ Dynamic Programming with certainty equivalence

*Understand what MC vs TD methods compute in batch evaluations

Metrics / Qualities to evaluate and compare algorithms

@ Uses Markov assumption

@ Accuracy / MSE / bias / variance
o Data efficiency

o Computational efficiency

Emma Brunskill (CS234 Reinforcement Learn Lecture 3: Model-Free Policy Evaluation: Po Winter 2026



Today's Plan

@ Last Time:

@ Markov reward / decision processes
@ Policy evaluation & control when have true model (of how the world works)

@ Today
@ Policy evaluation without known dynamics & reward models
@ Next Time:

@ Control when don’t have a model of how the world works
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