

# Lecture 3: Model-Free Policy Evaluation: Policy Evaluation Without Knowing How the World Works

Emma Brunskill

CS234 Reinforcement Learning

Winter 2026

- Material builds on structure from David Silver's Lecture 4: Model-Free Prediction. Other resources: Sutton and Barto Jan 1 2018 draft Chapter/Sections: 5.1; 5.5; 6.1-6.3

- In a tabular MDP asymptotically value iteration will always yield a policy with the same value as the policy returned by policy iteration
  - ① True.
  - ② False
  - ③ Not sure
- Can value iteration require more iterations than  $|A|^{|S|}$  to compute the optimal value function? (Assume  $|A|$  and  $|S|$  are small enough that each round of value iteration can be done exactly).
  - ① True.
  - ② False
  - ③ Not sure

# L3N1 Refresh Your Knowledge

- In a tabular MDP asymptotically value iteration will always yield a policy with the same value as the policy returned by policy iteration
- Can value iteration require more iterations than  $|A|^{|S|}$  to compute the optimal value function? (Assume  $|A|$  and  $|S|$  are small enough that each round of value iteration can be done exactly).

# Today's Plan

- Last Time:
  - Markov reward / decision processes
  - Policy evaluation & control when have true model (of how the world works)
- **Today**
  - **Policy evaluation without known dynamics & reward models**
- Next Time:
  - Control when don't have a model of how the world works

# Evaluation through Direct Experience

- Estimate expected return of policy  $\pi$
- Only using data from environment<sup>1</sup> (direct experience)
- Why is this important?
- What properties do we want from policy evaluation algorithms?

---

<sup>1</sup>Assume today this experience comes from executing the policy  $\pi$ . Later will consider how to do policy evaluation using data gathered from other policies.

# This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Monte Carlo policy evaluation
  - Policy evaluation when don't have a model of how the world works
    - Given on-policy samples
- Temporal Difference (TD)
- Certainty Equivalence with dynamic programming
- Batch policy evaluation

# Recall

- Definition of Return,  $G_t$  (for a MRP)
  - Discounted sum of rewards from time step  $t$  to horizon

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots$$

- Definition of State Value Function,  $V^\pi(s)$ 
  - Expected return starting in state  $s$  under policy  $\pi$
- Definition of State-Action Value Function,  $Q^\pi(s, a)$ 
  - Expected return starting in state  $s$ , taking action  $a$  and following policy  $\pi$

$$\begin{aligned} Q^\pi(s, a) &= \mathbb{E}_\pi[G_t | s_t = s, a_t = a] \\ &= \mathbb{E}_\pi[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots | s_t = s, a_t = a] \end{aligned}$$

# Recall: Dynamic Programming for Policy Evaluation

- In a Markov decision process

$$\begin{aligned}V^\pi(s) &= \mathbb{E}_\pi[G_t | s_t = s] \\&= \mathbb{E}_\pi[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots | s_t = s] \\&= R(s, \pi(s)) + \gamma \sum_{s' \in S} P(s' | s, \pi(s)) V^\pi(s')\end{aligned}$$

- If given dynamics and reward models, can do policy evaluation through dynamic programming

$$V_k^\pi(s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s' | s, \pi(s)) V_{k-1}^\pi(s') \quad (1)$$

- **Note:** before convergence,  $V_k^\pi$  is an estimate of  $V^\pi$
- In Equation 1 we are substituting  $\sum_{s' \in S} p(s' | s, \pi(s)) V_{k-1}^\pi(s')$  for  $\mathbb{E}_\pi[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots | s_t = s]$ .
- This substitution is an instance of **bootstrapping**

# This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- **Monte Carlo policy evaluation**
  - Policy evaluation when don't have a model of how the world work
    - Given on-policy samples
  - Temporal Difference (TD)
  - Certainty Equivalence with dynamic programming
  - Batch policy evaluation

# Monte Carlo (MC) Policy Evaluation

- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots + \gamma^{T_i-t} r_{T_i}$  in MDP  $M$  under policy  $\pi$
- $V^\pi(s) = \mathbb{E}_{\tau \sim \pi}[G_t | s_t = s]$ 
  - Expectation over trajectories  $\tau$  generated by following  $\pi$
- Simple idea: Value = mean return
- If trajectories are all finite, sample set of trajectories & average returns
- Note: all trajectories may not be same length (e.g. consider MDP with terminal states)

# Monte Carlo (MC) Policy Evaluation

- If trajectories are all finite, sample set of trajectories & average returns
- Does not require MDP dynamics/rewards
- Does not assume state is Markov
- Can be applied to episodic MDPs
  - Averaging over returns from a complete episode
  - Requires each episode to terminate

# First-Visit Monte Carlo (MC) On Policy Evaluation

Initialize  $N(s) = 0$ ,  $G(s) = 0 \forall s \in S$

Loop

- Sample episode  $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$
- Define  $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \dots + \gamma^{T_i-1} r_{i,T_i}$  as return from time step  $t$  onwards in  $i$ th episode
- For each time step  $t$  until  $T_i$  (the end of the episode  $i$ )
  - If this is the **first** time  $t$  that state  $s$  is visited in episode  $i$ 
    - Increment counter of total first visits:  $N(s) = N(s) + 1$
    - Increment total return  $G(s) = G(s) + G_{i,t}$
    - Update estimate  $V^\pi(s) = G(s)/N(s)$

# Every-Visit Monte Carlo (MC) On Policy Evaluation

Initialize  $N(s) = 0, G(s) = 0 \forall s \in S$

Loop

- Sample episode  $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$
- Define  $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \dots + \gamma^{T_i-1} r_{i,T_i}$  as return from time step  $t$  onwards in  $i$ th episode
- For each time step  $t$  until  $T_i$  (the end of the episode  $i$ )
  - state  $s$  is the state visited at time step  $t$  in episodes  $i$
  - Increment counter of total visits:  $N(s) = N(s) + 1$
  - Increment total return  $G(s) = G(s) + G_{i,t}$
  - Update estimate  $V^\pi(s) = G(s)/N(s)$

# Optional Worked Example: MC On Policy Evaluation

Initialize  $N(s) = 0$ ,  $G(s) = 0 \forall s \in S$

Loop

- Sample episode  $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \dots + \gamma^{T_i-1} r_{i,T_i}$
- For each time step  $t$  until  $T_i$  (the end of the episode  $i$ )
  - If this is the **first** time  $t$  that state  $s$  is visited in episode  $i$  (for first visit MC)
    - Increment counter of total first visits:  $N(s) = N(s) + 1$
    - Increment total return  $G(s) = G(s) + G_{i,t}$
    - Update estimate  $V^\pi(s) = G(s)/N(s)$
- Mars rover:  $R(s) = [1 \ 0 \ 0 \ 0 \ 0 \ 0 \ +10]$
- Trajectory =  $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, \text{terminal})$
- Let  $\gamma < 1$ . Compute the first visit & every visit MC estimates of  $s_2$ .
- See solutions at the end of the slides

# Incremental Monte Carlo (MC) On Policy Evaluation

After each episode  $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots$

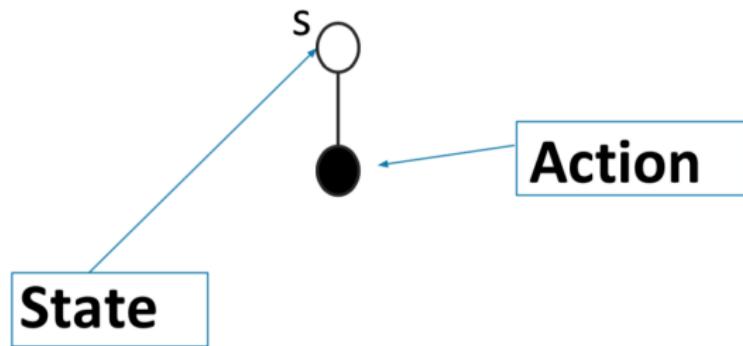
- Define  $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \dots$  as return from time step  $t$  onwards in  $i$ th episode
- For state  $s$  visited at time step  $t$  in episode  $i$ 
  - Increment counter of total visits:  $N(s) = N(s) + 1$
  - Update estimate

$$V^\pi(s) = V^\pi(s) \frac{N(s) - 1}{N(s)} + \frac{G_{i,t}}{N(s)} = V^\pi(s) + \frac{1}{N(s)}(G_{i,t} - V^\pi(s))$$

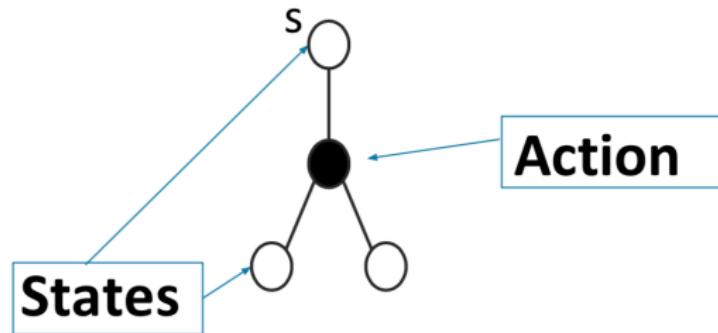
# Incremental Monte Carlo (MC) On Policy Evaluation

- Sample episode  $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}, a_{i,T_i}, r_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \dots + \gamma^{T_i-1} r_{i,T_i}$
- for  $t = 1 : T_i$  where  $T_i$  is the length of the  $i$ -th episode
  - $V^\pi(s_{it}) = V^\pi(s_{it}) + \alpha(G_{i,t} - V^\pi(s_{it}))$
- We will see many algorithms of this form with a learning rate, target, and incremental update

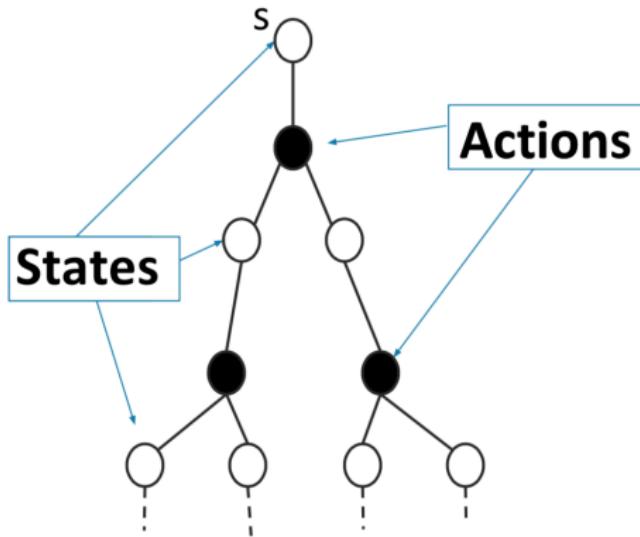
# Policy Evaluation Diagram



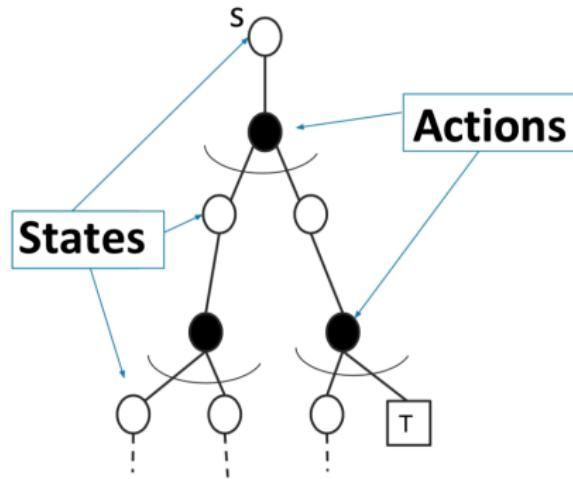
# Policy Evaluation Diagram



# Policy Evaluation Diagram



# Policy Evaluation Diagram

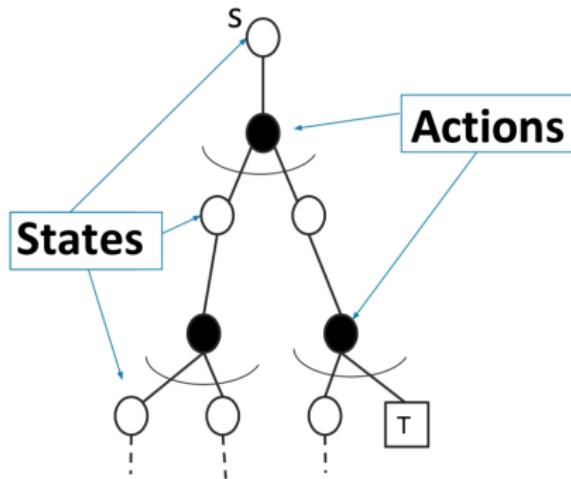


$\curvearrowright$  = Expectation

$T$  = Terminal state

# MC Policy Evaluation

$$V^\pi(s) = V^\pi(s) + \alpha(G_{i,t} - V^\pi(s))$$



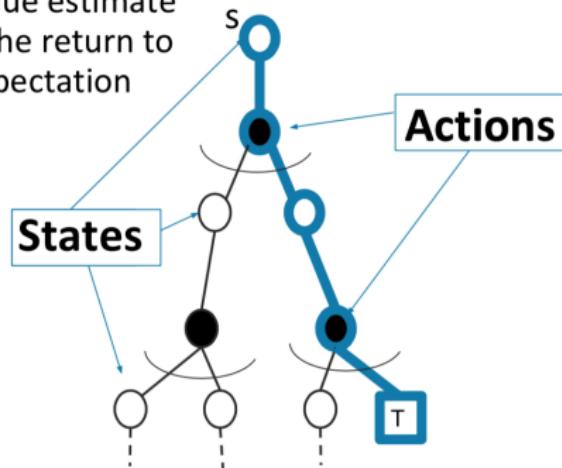
= Expectation

T = Terminal state

# MC Policy Evaluation

$$V^\pi(s) = V^\pi(s) + \alpha(G_{i,t} - V^\pi(s))$$

MC updates the value estimate using a **sample** of the return to approximate an expectation



$\smile$  = Expectation

$T$  = Terminal state

# Evaluation of the Quality of a Policy Estimation Approach

- Consistency: with enough data, does the estimate converge to the true value of the policy?
- Computational complexity: as get more data, computational cost of updating estimate
- Memory requirements
- Statistical efficiency (intuitively, how does the accuracy of the estimate change with the amount of data)
- Empirical accuracy, often evaluated by mean squared error

# Evaluation of the Quality of a Policy Estimation Approach: Bias, Variance and MSE

- Consider a statistical model that is parameterized by  $\theta$  and that determines a probability distribution over observed data  $P(x|\theta)$
- Consider a statistic  $\hat{\theta}$  that provides an estimate of  $\theta$  and is a function of observed data  $x$ 
  - E.g. for a Gaussian distribution with known variance, the average of a set of i.i.d data points is an estimate of the mean of the Gaussian
- Definition: the bias of an estimator  $\hat{\theta}$  is:

$$Bias_{\theta}(\hat{\theta}) = \mathbb{E}_{x|\theta}[\hat{\theta}] - \theta$$

- Definition: the variance of an estimator  $\hat{\theta}$  is:

$$Var(\hat{\theta}) = \mathbb{E}_{x|\theta}[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2]$$

- Definition: mean squared error (MSE) of an estimator  $\hat{\theta}$  is:

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + Bias_{\theta}(\hat{\theta})^2$$

# Evaluation of the Quality of a Policy Estimation Approach: Consistent Estimator

- Consider a statistical model that is parameterized by  $\theta$  and that determines a probability distribution over observed data  $P(x|\theta)$
- Consider a statistic  $\hat{\theta}$  that provides an estimate of  $\theta$  and is a function of observed data  $x$
- Definition: the bias of an estimator  $\hat{\theta}$  is:

$$Bias_{\theta}(\hat{\theta}) = \mathbb{E}_{x|\theta}[\hat{\theta}] - \theta$$

- Let  $n$  be the number of data points  $x$  used to estimate the parameter  $\theta$  and call the resulting estimate of  $\theta$  using that data  $\hat{\theta}_n$
- Then the estimator  $\hat{\theta}_n$  is consistent if, for all  $\epsilon > 0$

$$\lim_{n \rightarrow \infty} Pr(|\hat{\theta}_n - \theta| > \epsilon) = 0$$

- If an estimator is unbiased (bias = 0) is it consistent?

# Properties of Monte Carlo On Policy Evaluators

## Properties:

- First-visit Monte Carlo
  - $V^\pi$  estimator is an unbiased estimator of true  $\mathbb{E}_\pi[G_t|s_t = s]$
  - By law of large numbers, as  $N(s) \rightarrow \infty$ ,  $V^\pi(s) \rightarrow \mathbb{E}_\pi[G_t|s_t = s]$
- Every-visit Monte Carlo
  - $V^\pi$  every-visit MC estimator is a **biased** estimator of  $V^\pi$
  - But consistent estimator and often has better MSE
- Incremental Monte Carlo
  - Properties depends on the learning rate  $\alpha$

# Properties of Monte Carlo On Policy Evaluators

- Update is:  $V^\pi(s_{it}) = V^\pi(s_{it}) + \alpha_k(s_j)(G_{i,t} - V^\pi(s_{it}))$
- where we have allowed  $\alpha$  to vary (let  $k$  be the total number of updates done so far, for state  $s_{it} = s_j$ )
- If

$$\sum_{n=1}^{\infty} \alpha_n(s_j) = \infty,$$

$$\sum_{n=1}^{\infty} \alpha_n^2(s_j) < \infty$$

- then incremental MC estimate will converge to true policy value  $V^\pi(s_j)$

# Monte Carlo (MC) Policy Evaluation Key Limitations

- Generally high variance estimator
  - Reducing variance can require a lot of data
  - In cases where data is very hard or expensive to acquire, or the stakes are high, MC may be impractical
- Requires episodic settings
  - Episode must end before data from episode can be used to update  $V$

# Monte Carlo (MC) Policy Evaluation Summary

- Aim: estimate  $V^\pi(s)$  given episodes generated under policy  $\pi$ 
  - $s_1, a_1, r_1, s_2, a_2, r_2, \dots$  where the actions are sampled from  $\pi$
- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots$  under policy  $\pi$
- $V^\pi(s) = \mathbb{E}_\pi[G_t | s_t = s]$
- Simple: Estimates expectation by empirical average (given episodes sampled from policy of interest)
- Updates  $V$  estimate using **sample** of return to approximate the expectation
- Does not assume Markov process
- Converges to true value under some (generally mild) assumptions
- **Note:** Sometimes is preferred over dynamic programming for policy evaluation *even if know the true dynamics model and reward*

# This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Monte Carlo policy evaluation
- **Temporal Difference (TD)**
- Certainty Equivalence with dynamic programming
- Batch policy evaluation

# Temporal Difference Learning

- “If one had to identify one idea as central and novel to reinforcement learning, it would undoubtedly be temporal-difference (TD) learning.” – Sutton and Barto 2017
- Combination of Monte Carlo & dynamic programming methods
- Model-free
- Can be used in episodic or infinite-horizon non-episodic settings
- Immediately updates estimate of  $V$  after each  $(s, a, r, s')$  tuple

# Temporal Difference Learning for Estimating $V$

- Aim: estimate  $V^\pi(s)$  given episodes generated under policy  $\pi$
- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots$  in MDP  $M$  under policy  $\pi$
- $V^\pi(s) = \mathbb{E}_\pi[G_t | s_t = s]$
- Recall Bellman operator (if know MDP models)

$$B^\pi V(s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s))V(s')$$

- In incremental every-visit MC, update estimate using 1 sample of return (for the current  $i$ th episode)

$$V^\pi(s) = V^\pi(s) + \alpha(G_{i,t} - V^\pi(s))$$

- **Idea:** have an estimate of  $V^\pi$ , use to estimate expected return

$$V^\pi(s) = V^\pi(s) + \alpha([r_t + \gamma V^\pi(s_{t+1})] - V^\pi(s))$$

# Temporal Difference [ $TD(0)$ ] Learning

- Aim: estimate  $V^\pi(s)$  given episodes generated under policy  $\pi$ 
  - $s_1, a_1, r_1, s_2, a_2, r_2, \dots$  where the actions are sampled from  $\pi$
- TD(0) learning / 1-step TD learning: update estimate towards target

$$V^\pi(s_t) = V^\pi(s_t) + \alpha \underbrace{[r_t + \gamma V^\pi(s_{t+1})] - V^\pi(s_t)}_{\text{TD target}}$$

- TD(0) error:
$$\delta_t = r_t + \gamma V^\pi(s_{t+1}) - V^\pi(s_t)$$
- Can immediately update value estimate after  $(s, a, r, s')$  tuple
- Don't need episodic setting

# Temporal Difference [ $TD(0)$ ] Learning Algorithm

Input:  $\alpha$

Initialize  $V^\pi(s) = 0, \forall s \in S$

Loop

- Sample **tuple**  $(s_t, a_t, r_t, s_{t+1})$
- $V^\pi(s_t) = V^\pi(s_t) + \underbrace{\alpha([r_t + \gamma V^\pi(s_{t+1})] - V^\pi(s_t))}_{\text{TD target}}$

# Worked Example TD Learning

Input:  $\alpha$

Initialize  $V^\pi(s) = 0, \forall s \in S$

Loop

- Sample **tuple**  $(s_t, a_t, r_t, s_{t+1})$
- $V^\pi(s_t) = V^\pi(s_t) + \alpha(\underbrace{[r_t + \gamma V^\pi(s_{t+1})]}_{\text{TD target}} - V^\pi(s_t))$

Example Mars rover:  $R = [1 0 0 0 0 0 +10]$  for any action

- $\pi(s) = a_1 \forall s, \gamma = 1$ . any action from  $s_1$  and  $s_7$  terminates episode
- Trajectory =  $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, \text{terminal})$

# Worked Example TD Learning

Input:  $\alpha$

Initialize  $V^\pi(s) = 0, \forall s \in S$

Loop

- Sample **tuple**  $(s_t, a_t, r_t, s_{t+1})$
- $$V^\pi(s_t) = V^\pi(s_t) + \alpha \underbrace{([r_t + \gamma V^\pi(s_{t+1})])}_{\text{TD target}} - V^\pi(s_t)$$

Example:

- Mars rover:  $R = [1 0 0 0 0 0 +10]$  for any action
- $\pi(s) = a_1 \forall s, \gamma = 1$ . any action from  $s_1$  and  $s_7$  terminates episode
- Trajectory =  $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, \text{terminal})$
- TD estimate of all states (init at 0) with  $\alpha = 1, \gamma < 1$  at end of this episode?
- First visit MC estimate of  $V$  of each state?  $[1 \gamma \gamma^2 0 0 0 0]$

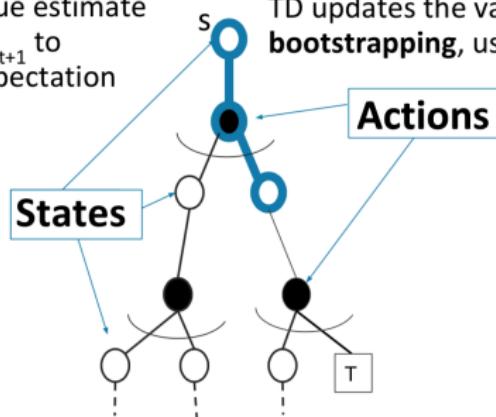
# Temporal Difference (TD) Policy Evaluation

$$V^\pi(s_t) = r(s_t, \pi(s_t)) + \gamma \sum_{s_{t+1}} P(s_{t+1}|s_t, \pi(s_t)) V^\pi(s_{t+1})$$

$$V^\pi(s_t) = V^\pi(s_t) + \alpha([r_t + \gamma V^\pi(s_{t+1})] - V^\pi(s_t))$$

TD updates the value estimate using a **sample** of  $s_{t+1}$  to approximate an expectation

TD updates the value estimate by **bootstrapping**, uses estimate of  $V(s_{t+1})$



$\smile$  = Expectation

$\square$  = Terminal state

## Check Your Understanding L3N2: Polleverywhere Poll Temporal Difference [ $TD(0)$ ] Learning Algorithm

Input:  $\alpha$

Initialize  $V^\pi(s) = 0, \forall s \in S$

Loop

- Sample **tuple**  $(s_t, a_t, r_t, s_{t+1})$
- $$V^\pi(s_t) = V^\pi(s_t) + \underbrace{\alpha([r_t + \gamma V^\pi(s_{t+1})] - V^\pi(s_t))}_{\text{TD target}}$$

Select all that are true

- ① If  $\alpha = 0$  TD will weigh the TD target more than the past  $V$  estimate
- ② If  $\alpha = 1$  TD will update the  $V$  estimate to the TD target
- ③ If  $\alpha = 1$  TD in MDPs where the policy goes through states with multiple possible next states,  $V$  may oscillate forever
- ④ There exist deterministic MDPs where  $\alpha = 1$  TD will converge

## Check Your Understanding L3N2: Polleverywhere Poll Temporal Difference [ $TD(0)$ ] Learning Algorithm

Input:  $\alpha$

Initialize  $V^\pi(s) = 0, \forall s \in S$

Loop

- Sample **tuple**  $(s_t, a_t, r_t, s_{t+1})$
- $V^\pi(s_t) = V^\pi(s_t) + \underbrace{\alpha([r_t + \gamma V^\pi(s_{t+1})] - V^\pi(s_t))}_{\text{TD target}}$

# Summary: Temporal Difference Learning

- Combination of Monte Carlo & dynamic programming methods
- Model-free
- **Bootstraps and samples**
- Can be used in episodic or infinite-horizon non-episodic settings
- Immediately updates estimate of  $V$  after each  $(s, a, r, s')$  tuple
- Biased estimator (early on will be influenced by initialization, and won't be unbiased estimator)
- Generally lower variance than Monte Carlo policy evaluation
- Consistent estimator if learning rate  $\alpha$  satisfies same conditions specified for incremental MC policy evaluation to converge
- **Note: algorithm I introduced is TD(0). In general can have approaches that interpolate between TD(0) and Monte Carlo approach**

# This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Monte Carlo policy evaluation
- Temporal Difference (TD)
- **Certainty Equivalence with dynamic programming**
- Batch policy evaluation

# Certainty Equivalence $V^\pi$ MLE MDP Model Estimates

- Model-based option for policy evaluation without true models
- After each  $(s_i, a_i, r_i, s_{i+1})$  tuple
  - Recompute maximum likelihood MDP model for  $(s, a)$

$$\hat{P}(s'|s, a) = \frac{1}{N(s, a)} \sum_{k=1}^i \mathbb{1}(s_k = s, a_k = a, s_{k+1} = s')$$

$$\hat{r}(s, a) = \frac{1}{N(s, a)} \sum_{k=1}^i \mathbb{1}(s_k = s, a_k = a) r_k$$

- Compute  $V^\pi$  using MLE MDP <sup>2</sup> (using any dynamic programming method from lecture 2))
- Optional worked example at end of slides for Mars rover domain.

---

<sup>2</sup>Requires initializing for all  $(s, a)$  pairs

# Certainty Equivalence $V^\pi$ MLE MDP Model Estimates

- Model-based option for policy evaluation without true models
- After each  $(s, a, r, s')$  tuple
  - Recompute maximum likelihood MDP model for  $(s, a)$

$$\hat{P}(s' | s, a) = \frac{1}{N(s, a)} \sum_{k=1}^K \sum_{t=1}^{T_k-1} \mathbf{1}(s_{k,t} = s, a_{k,t} = a, s_{k,t+1} = s')$$

$$\hat{r}(s, a) = \frac{1}{N(s, a)} \sum_{k=1}^K \sum_{t=1}^{T_k-1} \mathbf{1}(s_{k,t} = s, a_{k,t} = a) r_{t,k}$$

- Compute  $V^\pi$  using MLE MDP
- Cost: Updating MLE model and MDP planning at each update ( $O(|S|^3)$  for analytic matrix solution,  $O(|S|^2|A|)$  for iterative methods)
- Very data efficient and very computationally expensive
- Consistent (will converge to right estimate for Markov models)
- Can also easily be used for off-policy evaluation (which we will shortly define and discuss)

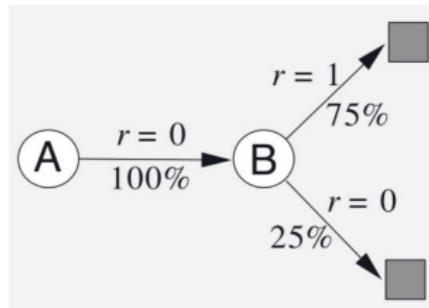
# This Lecture: Policy Evaluation

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Monte Carlo policy evaluation
  - Policy evaluation when don't have a model of how the world work
    - Given on-policy samples
- Temporal Difference (TD)
- Certainty Equivalence with dynamic programming
- **Batch policy evaluation**

# Batch MC and TD

- Batch (Offline) solution for finite dataset
  - Given set of  $K$  episodes
  - Repeatedly sample an episode from  $K$
  - Apply MC or TD(0) to the sampled episode
- What do MC and TD(0) converge to?

## AB Example: (Ex. 6.4, Sutton & Barto, 2018)



- Two states  $A, B$  with  $\gamma = 1$
- Given 8 episodes of experience:
  - $A, 0, B, 0$
  - $B, 1$  (observed 6 times)
  - $B, 0$
- Imagine running TD updates over data infinite number of times
- $V(B) =$

## AB Example: (Ex. 6.4, Sutton & Barto, 2018)

- TD Update:  $V^\pi(s_t) = V^\pi(s_t) + \alpha(\underbrace{[r_t + \gamma V^\pi(s_{t+1})]}_{\text{TD target}}) - V^\pi(s_t))$
- Two states  $A, B$  with  $\gamma = 1$
- Given 8 episodes of experience:
  - $A, 0, B, 0$
  - $B, 1$  (observed 6 times)
  - $B, 0$
- Imagine run TD updates over data infinite number of times
- $V(B) = 0.75$  by TD or MC
- What about  $V(A)$ ?

## Check Your Understanding L3N3: AB Example: (Ex. 6.4, Sutton & Barto, 2018)

- TD Update:  $V^\pi(s_t) = V^\pi(s_t) + \alpha(\underbrace{[r_t + \gamma V^\pi(s_{t+1})]}_{\text{TD target}}) - V^\pi(s_t))$
- Two states  $A, B$  with  $\gamma = 1$
- Given 8 episodes of experience:
  - $A, 0, B, 0$
  - $B, 1$  (observed 6 times)
  - $B, 0$
- Imagine run TD updates over data infinite number of times
- $V(B) = 0.75$  by TD or MC
- What about  $V(A)$ ?
- Respond in Poll

## Check Your Understanding L3N3: AB Example: (Ex. 6.4, Sutton & Barto, 2018)

- TD Update:  $V^\pi(s_t) = V^\pi(s_t) + \underbrace{\alpha([r_t + \gamma V^\pi(s_{t+1})])}_{\text{TD target}} - V^\pi(s_t)$
- Two states  $A, B$  with  $\gamma = 1$
- Given 8 episodes of experience:
  - $A, 0, B, 0$
  - $B, 1$  (observed 6 times)
  - $B, 0$
- Imagine run TD updates over data infinite number of times
- $V(B) = 0.75$  by TD or MC
- What about  $V(A)$ ?

# Batch MC and TD: Convergence

# Batch MC and TD: Convergence

# Summary: Policy Evaluation

Estimating the expected return of a particular policy if don't have access to true MDP models. Ex. evaluating average purchases per session of new product recommendation system

- Monte Carlo policy evaluation
  - Policy evaluation when we don't have a model of how the world works
    - Given on policy samples
    - Given off policy samples
- Temporal Difference (TD)
- Dynamic Programming with certainty equivalence
- \*Understand what MC vs TD methods compute in batch evaluations
- Metrics / Qualities to evaluate and compare algorithms
  - Uses Markov assumption
  - Accuracy / MSE / bias / variance
  - Data efficiency
  - Computational efficiency

# Today's Plan

- Last Time:
  - Markov reward / decision processes
  - Policy evaluation & control when have true model (of how the world works)
- Today
  - Policy evaluation without known dynamics & reward models
- Next Time:
  - Control when don't have a model of how the world works