Lecture 4: Model Free Control and Function

Approximation

Emma Brunskill

CS234 Reinforcement Learning.

Winter 2026

@ Structure and content drawn in part from David Silver's Lecture 5
and Lecture 6. For additional reading please see SB Sections 5.2-5.4,
6.4, 6.5, 6.7

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Deep RL in Atari

action

3

<

\‘_' = /g:-,

¢
reward ‘ ry

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2/88

Class Structure

@ Last time: Policy evaluation with no knowledge of how the world
works (MDP model not given)

@ This time: first finish up policy evaluation when MDP model not
given

@ This time: Control (making decisions) without a model of how the
world works

@ Generalization — Value function approximation

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Today's Lecture

@ Model Free Policy Evaluation in Tabular Settings
@ Batch MC and TD Policy Evaluation

© Generalized Policy Improvement
@ Monte-Carlo Control with Tabular Representations
@ Greedy in the Limit of Infinite Exploration
@ Temporal Difference Methods for Control

9 Model Free Value Function Approximation
@ Policy Evaluation
@ Monte Carlo Policy Evaluation
@ Temporal Difference TD(0) Policy Evaluation

@ Control using Value Function Approximation
@ Control using General Value Function Approximators
@ Deep Q-Learning

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Recap: MC, TD(0) and Certainty Equivalence Policy

Evaluation

Policy evaluation: Estimate V7 (s) from executing 7 i

Trajectories 7: (s,a ~ m(s),r,s’,a ~ m(s'),...) or tuples (s,a,r,s’)
MC: Given a full trajectory 7: V™(s) < (1 — a(s))V™(s) + aG(s)
TD(0): Given (s,a,r,s’)

V7(s) < (1 = a(s))V7(s) + als)(r + 7 V7(s'))

e Certainty equivalence: Given a tuple (s,a,r,s'), update MLE dynamics

model and reward model and then use policy evaluation methods to
compute V7™(s) for all s

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Table of Contents

@ Model Free Policy Evaluation in Tabular Settings
@ Batch MC and TD Policy Evaluation

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Table of Contents

@ Model Free Policy Evaluation in Tabular Settings
@ Batch MC and TD Policy Evaluation

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Batch MC and TD

@ TD and MC methods shown use data once, then discard
e Batch (Offline) solution for finite dataset

o Given set of K episodes
o Repeatedly sample an episode from K
o Apply MC or TD(0) to the sampled episode

e What do MC and TD(0) converge to?

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

AB Example: (Ex. 6.4, Sutton & Barto, 2018)

C =0
erO% @

25%

@ Two states A, B with y =1
@ Given 8 episodes of experience:
e A0,B,0
e B,1 (observed 6 times)
e B,0
@ Imagine running TD updates over data infinite number of times
e V(B)=

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

AB Example: (Ex. 6.4, Sutton & Barto, 2018)

TD Update: V™(s¢) = V™(st) + a([re + YV (se4+1)] —V7(st))

TD target

@ Two states A, B with v =1
@ Given 8 episodes of experience:
e A0,B,0
e B,1 (observed 6 times)
e B,0
@ Imagine run TD updates over data infinite number of times
e V(B)=10.75 by TD or MC

What about V(A)?

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Check Your Understanding L3N3: AB Example: (Ex. 6.4,

Sutton & Barto, 2018)

TD Update: V7(s;) = V™(s:) + oz(Lrt + V™ (st41)] = V7 (st))

TD target

Two states A, B with v =1

Given 8 episodes of experience:
e A0,B,0
o B,1 (observed 6 times)
o B,0

Imagine run TD updates over data infinite number of times
V(B) =0.75 by TD or MC

What about V/(A)?

Respond in Poll

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Check Your Understanding L3N3: AB Example: (Ex. 6.4,

Sutton & Barto, 2018)

® TD Update: V™(s¢) = V™(st) + o([re + 7V (st41)] =V (st))

TD target

Two states A, B with v =1
Given 8 episodes of experience:
e A0,B,0
e B,1 (observed 6 times)
e B,0
Imagine run TD updates over data infinite number of times
V(B) =0.75 by TD or MC

What about V(A)?

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Batch MC and TD: Convergence

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function

Some Important Properties to Evaluate Model-free Policy

Evaluation Algorithms

o Data efficiency & Computational efficiency
@ In simple TD(0), use (s, a, r,s’) once to update V(s)
o O(1) operation per update
o In an episode of length L, O(L)
@ In MC have to wait till episode finishes, then also O(L)
@ MC can be more data efficient than simple TD
@ But TD exploits Markov structure
o If in Markov domain, leveraging this is helpful
@ Dynamic programming with certainty equivalence also uses Markov
structure

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Summary: Policy Evaluation

Estimating the expected return of a particular policy if don't have access
to true MDP models. Ex. evaluating average purchases per session of new
product recommendation system
@ Monte Carlo policy evaluation
e Policy evaluation when we don’t have a model of how the world works

o Given on policy samples
@ Given off policy samples

Temporal Difference (TD)
Dynamic Programming with certainty equivalence

*Understand what MC vs TD methods compute in batch evaluations

Metrics / Qualities to evaluate and compare algorithms

Uses Markov assumption
Accuracy / MSE / bias / variance
Data efficiency

Computational efficiency

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Table of Contents

© Generalized Policy Improvement
@ Monte-Carlo Control with Tabular Representations
@ Greedy in the Limit of Infinite Exploration
@ Temporal Difference Methods for Control

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Model-free Policy lteration

Initialize policy 7

Repeat:

e Policy evaluation: compute Q™
e Policy improvement: update 7 given Q™

May need to modify policy evaluation:

o If 7 is deterministic, can't compute Q(s, a) for any a # 7(s)
@ How to interleave policy evaluation and improvement?
e Policy improvement is now using an estimated Q

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

The Problem of Exploration

World

Observation
Reward Action

Agent

@ Goal: Learn to select actions to maximize total expected future reward
@ Problem: Can't learn about actions without trying them (need to
explore

@ Problem: But if we try new actions, spending less time taking actions
that our past experience suggests will yield high reward (need to
exploit knowledge of domain to achieve high rewards)

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

e-greedy Policies

Simple idea to balance exploration and achieving rewards

Let |A| be the number of actions

Then an e-greedy policy w.r.t. a state-action value Q(s, a) is
n(als) =
o argmax, Q(s,a), w. prob 1 — e+ 5

€

o a' # argmax Q(s, a) w. prob Al

In words: select argmax action with probability 1 — ¢, else select
action uniformly at random

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Policy Improvement with e-greedy policies

@ Recall we proved that policy iteration using given dynamics and
reward models, was guaranteed to monotonically improve

@ That proof assumed policy improvement output a deterministic policy

@ Same property holds for e-greedy policies

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Monotonic e-greedy Policy Improvement

Theorem

For any e-greedy policy 7;, the e-greedy policy w.r.t. Q™, w1 is a
monotonic improvement V7i+l > \/7i

Q7i(s, mit1(s))

= > mipa(als)QTi(s, a)

acA

= (e/|A]) |:ZQ sa:|+(lfe)maa><Q'”i(s,a)

acA

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026 21/88

Table of Contents

9 Model Free Value Function Approximation
@ Policy Evaluation
@ Monte Carlo Policy Evaluation
@ Temporal Difference TD(0) Policy Evaluation

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Table of Contents

© Model Free Value Function Approximation
@ Policy Evaluation

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter

Recall Monte Carlo Policy Evaluation, Now for Q

1. Initialize Q(s,a) =0,N(s,a) =0V(s,a), k=1, Inpute=1, 7
2: loop

3: Sample k-th episode (Sk1,ak 1, rk,1; k2, - - - » Sk, T) given

3. Compute Gyt = rie + Vrker1 + Vorieso + -y trer, Vt
4 fort=1,...,T do

5: if First visit to (s,a) in episode k then
6

7

8

9

N(s,a) = N(s,a) +1
Q(st,at) = Q(s¢, ar) + N(;a)(Gk,t — Q(st, ar))

end if
end for
100 k=k+1
11: end loop

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Monte Carlo Online Control / On Policy Improvement

1. Initialize Q(s,a) =0,N(s,a) =0V(s,a), Sete=1, k=1
2: x = e-greedy(Q) // Create initial e-greedy policy

3. loop

4: Sample k-th episode (Sk 1, k.1, k1, Sk,2; - - - > Sk,T) given mk
4 Gip = e +Yresr + Vrierz + -y T,

5 fort=1,...,T do

6: if First visit to (s, a) in episode k then

7: N(s,a) = N(s,a) +1

8: Q(st,ar) = Q(s¢,ar) + N(i,a)(Gkvt — Q(st, ar))

o: end if

10: end for

11: k=k+1l e=1/k

12: 7, = e-greedy(Q) // Policy improvement

13: end loop

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Optional Worked Example: MC for On Policy Control

@ Mars rover with new actions:

o r(—,a1)=[100000+10], r(—,2) =[000000 +5], y = 1.
Assume current greedy 7(s) = a1 Vs, e=.5. Q(s,a) =0 for all (s, a)
Sample trajectory from e-greedy policy
Trajectory = (s3, a1, 0, s, a2, 0, s3, a1, 0, s, az, 0, s1, a1, 1, terminal)
First visit MC estimate of Q of each (s, a) pair?
Q“™(—,a1)=1[1010000]

After this trajectory (Select all)
Q™ (—,a2)=[0000000]
The new greedy policy would be: 7 = [1 tie 1 tie tie tie tie]

The new greedy policy would be: 7 = [1 2 1 tie tie tie tie]
If e =1/3, prob of selecting a; in s in the new e-greedy policy is 1/9.
If e =1/3, prob of selecting a; in s in the new e-greedy policy is 2/3.

If e =1/3, prob of selecting a; in s in the new e-greedy policy is 5/6.
o Not sure

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Properties of MC control with e-greedy policies

@ Computational complexity?
@ Converge to optimal Q* function?

@ Empirical performance?

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Table of Contents

© Model Free Value Function Approximation

@ Monte Carlo Policy Evaluation

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter

Greedy in the Limit of Infinite Exploration (GLIE)

Definition of GLIE

@ All state-action pairs are visited an infinite number of times

lim N;(s,a) — oo
1—00

@ Behavior policy (policy used to act in the world) converges to greedy
policy

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Greedy in the Limit of Infinite Exploration (GLIE)

Definition of GLIE

@ All state-action pairs are visited an infinite number of times

lim Ni(s,a) = o0
1— 00

@ Behavior policy (policy used to act in the world) converges to greedy
policy

@ A simple GLIE strategy is e-greedy where € is reduced to 0 with the
following rate: ¢; = 1/i

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

GLIE Monte-Carlo Control using Tabular Representations

GLIE Monte-Carlo control converges to the optimal state-action value
function Q(s,a) — Q*(s, a)

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Table of Contents

© Model Free Value Function Approximation

@ Temporal Difference TD(0) Policy Evaluation

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter

Model-free Policy Iteration with TD Methods

@ Initialize policy w
@ Repeat:
e Policy evaluation: compute Q™ using temporal difference updating

with e-greedy policy
e Policy improvement: Same as Monte carlo policy improvement, set 7

to e-greedy (Q™)

Winter 2026

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function

On and Off-Policy Learning

@ On-policy learning
e Direct experience
e Learn to estimate and evaluate a policy from experience obtained from
following that policy

o Off-policy learning

o Learn to estimate and evaluate a policy using experience gathered from
following a different policy

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Q-Learning: Learning the Optimal State-Action Value

o Q-learning
e estimate the Q value of 7* while acting with another behavior policy 7,
o Key idea: Maintain @ estimates and bootstrap for best future value

@ Q-learning:

Q(st,ar) < Q(st,ar) + a(re + v maE}X Q(st+1,3)) — Q(st, at))

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Q-Learning with e-greedy Exploration

1: Initialize Q(s,a),Vs € S,a € A t =0, initial state s; = sp

2: Set 7y, to be e-greedy w.r.t. @

3: loop

4: Take a; ~ mp(st) // Sample action from policy

5. Observe (rt, St+1)

6: Q(st,ar) < Q(st,ar) + a(r: +vymaxs Q(st+1,a) — Q(st, at))
7. w(st) = arg max, Q(st, a) w.prob 1 — ¢, else random

8: t=t+1

9: end loop

See optional worked example and optional understanding check at the end
of the slides

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Convergence Properties of Q-Learning

Q-Learning for finite-state and finite-action MDPs converges to the
optimal action-value, Q(s,a) — Q*(s, a), under the following conditions:

@ The policy sequence m¢(al|s) satisfies the condition of GLIE

@ The step-sizes a; satisfy the Robbins-Munro sequence such that

[e%9)
E ar = o0
t=1
0
2
ay < o
t=1

@ For ex. ay = % satisfies the above condition.

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Properties of TD-Style Tabular Control with e-greedy

policies

Result builds on stochastic approximation

Relies on step sizes decreasing at the right rate

Relies on Bellman backup contraction property

Relies on bounded rewards and value function

Note: other variants exist. SARSA (on-policy algorithm)
SARSA

Q(st, ar) < Q(st, ar) + a(re + vQ(St4+1, ar41)) — Q(se, ar))

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Table of Contents

@ Control using Value Function Approximation
@ Control using General Value Function Approximators
@ Deep Q-Learning

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Motivation for Function Approximation

@ Avoid explicitly storing or learning the following for every single state

and action
e Dynamics or reward model
e Value
e State-action value
e Policy

@ Want more compact representation that generalizes across state or

states and actions
o Reduce memory needed to store (P,R)/V/Q/x

o Reduce computation needed to compute (P,R)/V/Q/x
e Reduce experience needed to find a good (P,R)/V/Q/x

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function

Winter 2026

State Action Value Function Approximation for Policy

Evaluation with an Oracle

@ First assume we could query any state s and action a and an oracle
would return the true value for Q™ (s, a)

@ Similar to supervised learning: assume given ((s, a), Q" (s, a)) pairs

@ The objective is to find the best approximate representation of Q™
given a particular parameterized function Q(s, a; w)

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Stochastic Gradient Descent

@ Goal: Find the parameter vector w that minimizes the loss between a
true value function Q™ (s, a) and its approximation Q(s, a; w) as
represented with a particular function class parameterized by w.

@ Generally use mean squared error and define the loss as
J(w) = Ex[(Q7(s,2) — Q(s, 3, w))]
@ Can use gradient descent to find a local minimum
1

@ Stochastic gradient descent (SGD) uses a finite number of (often
one) samples to compute an approximate gradient:

@ Expected SGD is the same as the full gradient update

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Stochastic Gradient Descent

@ Goal: Find the parameter vector w that minimizes the loss between a
true value function Q" (s, a) and its approximation Q(s, a; w) as
represented with a particular function class parameterized by w.

@ Generally use mean squared error and define the loss as

J(w) = E[(Q7(s,2) — Q(s, a; w))?]
@ Can use gradient descent to find a local minimum
1
Aw = —EaVWJ(w)

@ Stochastic gradient descent (SGD) uses a finite number of (often
one) samples to compute an approximate gradient:

Vuwld(w) = VwE[Q"(s,a)— CA?A(s, a; w))?)
—2E;[(Q™(s,a) — Q(s,a; w)|VwQ(s, a, w)

@ Expected SGD is the same as the full gradient update

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Table of Contents

@ Control using Value Function Approximation
@ Control using General Value Function Approximators

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Model Free VFA Policy Evaluation

@ No oracle to tell true Q7 (s, a) for any state s and action a

@ Use model-free state-action value function approximation

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Model Free VFA Prediction / Policy Evaluation

Recall model-free policy evaluation (Lecture 3)

o Following a fixed policy 7 (or had access to prior data)
o Goal is to estimate V™ and/or Q™

Maintained a lookup table to store estimates V™ and/or Q™

Updated these estimates after each episode (Monte Carlo methods)
or after each step (TD methods)

@ Now: in value function approximation, change the estimate
update step to include fitting the function approximator

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Table of Contents

@ Control using Value Function Approximation

@ Deep Q-Learning

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter

Monte Carlo Value Function Approximation

@ Return G; is an unbiased but noisy sample of the true expected return
Qﬂ-(sta at)

@ Therefore can reduce MC VFA to doing supervised learning on a set
of (state,action,return) pairs:

<(51, 81), G1>, ((52, 82), G2>, ey <(ST, aT), GT>

o Substitute G; for the true Q™ (s;, a;) when fit function approximator

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

MC Value Function Approximation for Policy Evaluation

1. Initialize w, k=1

2: loop

3: Sample k-th episode (Sk 1, ak1, k.15 k.25 - - - » Sk,L,) given T

4 fort=1,...,L, do

5 if First visit to (s, a) in episode k then

6 Ge(s,a) = 2j%, i

7 Vwl(w) = —2[Ge(s, a)— Q(s¢, ar; w)]|Vw Q(st, ar; w) (Compute
Gradient)

8: Update weights Aw

9: end if

10: end for

11: k=k+1

12: end loop

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Table of Contents

@ Control using Value Function Approximation

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function

Recall: Temporal Difference Learning w/ Lookup Table

Uses bootstrapping and sampling to approximate V™

Updates V™ (s) after each transition (s, a, r,s’):

VT(s) = V7™(s)+a(r+~yV7(s') - V(s))

Target is r +yV™(s’), a biased estimate of the true value V™ (s)

Represent value for each state with a separate table entry

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Temporal Difference TD(0) Learning with Value Function

Approximation

Uses bootstrapping and sampling to approximate true V7

Updates estimate V™ (s) after each transition (s, a, r, s’):

VT(s) = V7(s)+alr+ V() = V7(s))

Target is r +yV7™(s), a biased estimate of the true value V7(s)

In value function approximation, target is r + 7\7”(5’; w), a biased
and approximated estimate of the true value V7(s)

@ 3 forms of approximation:

© Sampling
@ Bootstrapping
© Value function approximation

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Temporal Difference TD(0) Learning with Value Function

Approximation

o In value function approximation, target is r +~V7(s"; w), a biased
and approximated estimate of the true value V7(s)

@ Can reduce doing TD(0) learning with value function approximation
to supervised learning on a set of data pairs:

o (s1,n + YV (s;w)), (52,12 + 7V (s3;w)), ...
@ Find weights to minimize mean squared error

J(w) = Ex[(r + 1V (551, w) = V(55 w))?]

@ Use stochastic gradient descent, as in MC methods

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

TD(0) Value Function Approximation for Policy Evaluation

1: Initialize w, s
2: loop
3: Given s sample a ~ w(s), r(s,a),s’ ~ p(s'|s, a)

4 Vydw) = =2[r+~V(s';w) — V(s; W)V V(s; w)
5. Update weights Aw

6: if s’ is not a terminal state then

7: Set s =5

8: else

9: Restart episode, sample initial state s

10 end if

11: end loop

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Table of Contents

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function

Table of Contents

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function

Control using Value Function Approximation

@ Use value function approximation to represent state-action values
@’r(s, aw)x QT
o Interleave
e Approximate policy evaluation using value function approximation
o Perform e-greedy policy improvement
@ Can be unstable. Generally involves intersection of the following:

e Function approximation
e Bootstrapping
o Off-policy learning

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Action-Value Function Approximation with an Oracle

o Q7(s,aw)~ Q"
@ Minimize the mean-squared error between the true action-value
function Q7 (s, a) and the approximate action-value function:

J(w) = E-[(Q"(s,a) — Q7(s, a; w))’]

@ Use stochastic gradient descent to find a local minimum

Vwl(w) = —2B [(Q“(s,a)—oﬂ(s,a;w))vwéﬂ(s,a;w)]

@ Stochastic gradient descent (SGD) samples the gradient

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Incremental Model-Free Control Approaches

@ Similar to policy evaluation, true state-action value function for a
state is unknown and so substitute a target value for true Q(st, at)

Aw = o(Q(st, ar) — Q(st, ar; w))Vw Q(st, ar; w)
@ In Monte Carlo methods, use a return G; as a substitute target

Aw = oGt — Q(st, ar; w))Vuw Q(st, ar; w)

@ SARSA: Use TD target r +~Q(s’, a; w) which leverages the current
function approximation value

Aw = a(r +~7Q(s',a"; w) — Q(s, a; w)) Vi Q(s, a; w)
o Q-learning: Uses related TD target r +~ maxy Q(s', a’; w)

Aw = a(r + vy max Q(s',a;w) — Q(s, a;,w))V, Q(s, a; w)

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

"Deadly Triad” which Can Cause Instability

e Informally, updates involve doing an (approximate) Bellman backup
followed by best trying to fit underlying value function to a particular
feature representation

@ Bellman operators are contractions, but value function approximation
fitting can be an expansion

e To learn more, see Baird example in Sutton and Barto 2018
@ "Deadly Triad” can lead to oscillations or lack of convergence

o Bootstrapping
e Function Approximation
o Off policy learning (e.g. Q-learning)

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Table of Contents

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function

Using these ideas to do Deep RL in Atari

state 4\ 1 /| .) action

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function

Q-Learning with Neural Networks

@ Q-learning converges to optimal Q*(s, a) using tabular representation
@ In value function approximation Q-learning minimizes MSE loss by
stochastic gradient descent using a target @ estimate instead of true
Q
@ But Q-learning with VFA can diverge
@ Two of the issues causing problems:
o Correlations between samples
o Non-stationary targets
@ Deep Q-learning (DQN) addresses these challenges by using

e Experience replay
o Fixed Q-targets

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

DQNs: Experience Replay

@ To help remove correlations, store dataset (called a replay buffer) D

from prior experience

S1,4d1,12,52

52,4d2,13,53

53,43, /4,54

Sty at, 't4+1, St+1

— s,a,r,s

@ To perform experience replay, repeat the following:
o (s,a,r,s’) ~ D: sample an experience tuple from the dataset

N

o Compute the target value for the sampled s: r + v maxy Q(s',a"; w)
o Use stochastic gradient descent to update the network weights

Aw = afr + v max Q(s',a; w) — Q(s, 3, w))Vw Q(s, a; w)

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

DQNs: Experience Replay

@ To help remove correlations, store dataset D from prior experience

51,41, 12,52

/
52,4d2,13,53 — Ss,a, s
53,43, 4, 54

Sty Aty Mt+1, St+1

@ To perform experience replay, repeat the following:
o (s,a,r,s’") ~ D: sample an experience tuple from the dataset

N

o Compute the target value for the sampled s: r + ymaxy Q(s’,a’; w)
o Use stochastic gradient descent to update the network weights

Aw = ofr + v max Q(s',a;w) — Q(s,a; w))V, Q(s, a; w)

o Uses target as a scalar, but function weights will get updated
on the next round, changing the target value

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

DQNs: Fixed Q-Targets

@ To help improve stability, fix the target weights used in the target
calculation for multiple updates

@ Target network uses a different set of weights than the weights being
updated
o Let parameters w— be the set of weights used in the target, and w
be the weights that are being updated
@ Slight change to computation of target value:
o (s,a,r,s') ~ D: sample an experience tuple from the dataset

PN

o Compute the target value for the sampled s: r + vy maxy Q(s',a’; w™)
o Use stochastic gradient descent to update the network weights

Aw = afr + ymax Q(s’,a;w™) — Q(s, 3, w))Vw Q(s, a; w)

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

DQN Pseudocode

1: Input C, o, D = {}, Initialize w, w~ =w, t =0

2: Get initial state s

3: loop

4. Sample action a; given e-greedy policy for current é(st, a; w)
5: Observe reward r; and next state sy 1

6: Store transition (s¢, ar, rt, Se+1) in replay buffer D

7: Sample random minibatch of tuples (s;, a;, rj, sj+1) from D
8: for j in minibatch do

9: if episode terminated at step i + 1 then

10: Yi=r

11: else

12: yi =r +ymaxy Qsiy1,2a;w™)

13: end if

14: Do gradient descent step on (y; — Q(sj, aj; w))? for parameters w: Aw = a(y; — Q(sj, aj; w))Vw Q(s;, aj; w)
15: end for

160 t=t+1

17: if mod(t,C) == 0 then

18: w4~ w

19: endif

20: end loop

Note there are several hyperparameters and algorithm choices. One needs to choose the neural network architecture, the
learning rate, and how often to update the target network. Often a fixed size replay buffer is used for experience replay, which

introduces a parameter to control the size, and the need to decide how to populate it.

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter

Check Your Understanding L4N3: Fixed Targets

@ In DQN we compute the target value for the sAampIed (s,a,r,s) using
a separate set of target weights: r + vy maxy Q(s’,a’; w™)

@ Select all that are true

@ This doubles the computation time compared to a method that does
not have a separate set of weights

@ This doubles the memory requirements compared to a method that
does not have a separate set of weights

@ Not sure

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Check Your Understanding L4N3: Fixed Targets.

Solutions

@ In DQN we compute the target value for the sAampIed (s,a,r,s’) using
a separate set of target weights: r +ymaxy Q(s’,a’;w™)

@ Select all that are true

@ This doubles the computation time compared to a method that does
not have a separate set of weights

@ This doubles the memory requirements compared to a method that
does not have a separate set of weights

@ Not sure

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

DQNs Summary

DQN uses experience replay and fixed Q-targets

Store transition (s, at, re41, St+1) in replay memory D
Sample random mini-batch of transitions (s, a, r,s’) from D
Compute Q-learning targets w.r.t. old, fixed parameters w—

Optimizes MSE between Q-network and Q-learning targets

Uses stochastic gradient descent

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

DQNs in Atari

End-to-end learning of values Q(s, a) from pixels s
Input state s is stack of raw pixels from last 4 frames
Output is Q(s, a) for 18 joystick/button positions
Reward is change in score for that step

Used a deep neural network with CNN

Network architecture and hyperparameters fixed across all games

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Convolution Convolution Fully connected Fully connected

Vo
ER

ddgonan_ dddoshn dddonao

ANV A\ =
BPoezi-o: o
B o /e i O)

of] B\ = 7/1 !/ o

g Y/ 1)/ 8

o] B e Y =

1 network, outputs Q value for each action

Figure: Human-level control through deep reinforcement learning, Mnih et al,
2015

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function

DQN Results in Atari

Figure: Human-level control through deep reinforcement learning, Mnih et al,
2015

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function

Which Aspects of DQN were Important for Success?

. Deep
Game Linear Network
Breakout 3 3
Enduro 62 29

River Raid | 2345 1453
Seaquest 656 275

Space 301 302
Invaders

Note: just using a deep NN actually hurt performance sometimes!

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Which Aspects of DQN were Important for Success?

. Deep | DQN w/
Game Linear Network | fixed Q
Breakout 3 3 10
Enduro 62 29 141
River Raid | 2345 1453 2868
Seaquest 656 275 1003
Space 301 302 373
Invaders

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Which Aspects of DQN were Important for Success?

. Deep DQN w DQN w DQN w/repla
Game Linear Network | fixed Q/ replay / and fixe{i Q ’
Breakout 3 3 10 241 317
Enduro 62 29 141 831 1006
River Raid | 2345 1453 2868 4102 7447
Seaquest 656 275 1003 823 2894
Space 301 302 373 | 826 1089
Invaders

@ Replay is hugely important

@ Why? Beyond helping with correlation between samples, what does
replaying do?

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function

Winter 2026

@ Success in Atari has led to huge excitement in using deep neural
networks to do value function approximation in RL
@ Some immediate improvements (many others!)
o Double DQN (Deep Reinforcement Learning with Double Q-Learning,
Van Hasselt et al, AAAI 2016)
o Prioritized Replay (Prioritized Experience Replay, Schaul et al, ICLR
2016)
o Dueling DQN (best paper ICML 2016) (Dueling Network Architectures
for Deep Reinforcement Learning, Wang et al, ICML 2016)

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

What You Should Understand

@ Be able to implement TD(0) and MC on policy evaluation
@ Be able to implement Q-learning and SARSA and MC control
algorithms

@ List the 3 issues that can cause instability and describe the problems
qualitatively: function approximation, bootstrapping and off-policy
learning

@ Know some of the key features in DQN that were critical (experience
replay, fixed targets)

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Class Structure

o Last time and start of this time: Model-free reinforcement learning
with function approximation

o Next time: Policy gradients

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Monotonic e-greedy Policy Improvement

For any e-greedy policy 7;, the e-greedy policy w.r.t. Q™, wiy1 is a
monotonic improvement V7i+l > V/7i

@ Therefore V7i+1 > V™ (from the policy improvement theorem)

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

SARSA Initialization Conceptual Question

@ Mars rover with new actions:
o r(—a)=[100000+10], r(—,a) =[000000 +5], v = 1.
Initialize e = 1/k, k=1, and « = 0.5, Q(—, a1) = r(—, a1),
Q(*7 ‘92) = r(*v 32)
SARSA: (se, a1, 0, s7,a2,5, s7).
Does how Q is initialized matter (initially? asymptotically?)?

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Optional Worked Example: MC for On Policy Control

Solution

Mars rover with new actions:
o r(—a)=[100000+10], r(—,a) =[000000 +5], v = 1.
Assume current greedy 7(s) = a1 Vs, e=.5. Q(s,a) = 0 for all (s, a)

Sample trajectory from e-greedy policy
Trajectory = (s3, a1, 0, s, a2, 0, s3, a1, 0, s, a2, 0, s1, a1, 1, terminal)
First visit MC estimate of Q of each (s, a) pair?
Q< ™(—,a1)=1[1010000]
After this trajectory:
@ Q"(—,a2)=[0100000]
@ The new greedy policy would be: m = [1 2 1 tie tie tie tie]

e If e =1/3, prob of selecting a; in s1 in the new e-greedy policy is 5/6.

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Optional Worked Example SARSA for Mars Rover

1: Set initial e-greedy policy 7, t = 0, initial state s; = sp
2: Take a; ~ 7(s:) // Sample action from policy
3: Observe (¢, St+1)
4: loop
5: Take action ary1 ~ 7(se41)
6: Observe (rey1,5e+2)
7 Q(St, at) <~ Q(St, at) + Oé(rt + ’YQ(SHI, 3t+1) - Q(St, at))
8: m(st) = argmaxa Q(st, a) w.prob 1 — ¢, else random
9: t=t+1
10: end loop

@ Initialize e =1/k, k=1, and « =0.5, Q(—,a;)=[10000 0 +10],
Q(—,a)=[100000+5],v=1
@ Assume starting state is sg and sample a;

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Worked Example: SARSA for Mars Rover

1: Set initial e-greedy policy 7, t = 0, initial state s; = sp
2: Take a; ~ 7(s:) // Sample action from policy
3: Observe (¢, St+1)
4: loop
5: Take action ary1 ~ 7(se41)
6: Observe (rey1,5e+2)
7 Q(St, at) <~ Q(St, at) + Oé(rt + ’YQ(SHI, 3t+1) - Q(St, at))
8: m(st) = argmaxa Q(st, a) w.prob 1 — ¢, else random
9: t=t+1
10: end loop

@ Initialize e =1/k, k=1, and « =0.5, Q(—,a;)=[10000 0 +10],
Q(—,a)=[100000+5],v=1
@ Assume starting state is sg and sample a;

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Worked Example: SARSA for Mars Rover

1: Set initial e-greedy policy 7, t = 0, initial state s; = sp
2: Take a; ~ 7(s:) // Sample action from policy
3: Observe (¢, St+1)
4: loop
5: Take action ary1 ~ 7(se41)
6: Observe (rey1,5e+2)
7 Q(St, at) <~ Q(St, at) + Oé(rt + ’YQ(SHI, 3t+1) - Q(St, at))
8: m(st) = argmaxa Q(st, a) w.prob 1 — ¢, else random
9: t=t+1
10: end loop

@ Initialize e =1/k, k=1, and « =0.5, Q(—,a;)=[10000 0 +10],
Q(—,a)=[100000+5],v=1

@ Tuple: (sg,a1,0,s7,a2,5,57).

o Q(S5, 81) =5%x0+.5% (0 +’YQ(S7,32)) =25

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Worked Example: e-greedy Q-Learning Mars

1: Initialize Q(s,a),Vs € S,a € A t =0, initial state sy = s

2: Set 7p to be e-greedy w.r.t. @

3: loop

4: Take a; ~ 7p(s:) // Sample action from policy

5. Observe (rt, St+1)

6: Q(st,ar) « Q(st,ar) + alr: + v maxa Q(se11,a) — Q(st, ar))
7: w(s:) = argmaxa Q(st, a) w.prob 1 — ¢, else random

8: t=t+1

9: end loop

@ Initializee=1/k, k=1, and @« =0.5, Q(—,a;)=[1000 0 0 +10],
Q(—,a2)=[100000+5],y=1
@ Like in SARSA example, start in sg and take a;.

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Worked Example: e-greedy Q-Learning Mars

1: Initialize Q(s,a),Vs € S,a € A t =0, initial state s; = s

2: Set 7 to be e-greedy w.r.t. Q

3: loop

4: Take a; ~ mp(s:) // Sample action from policy

5: Observe (r¢, se+1)

6: Q(st,ar) «+ Q(st,ar) + alre + vy maxa Q(Se+1,a) — Q(st, ar))
7: w(s:) = argmax, Q(st,a) w.prob 1 — ¢, else random

8: t=t+1

9: end loop

@ Initialize e =1/k, k=1, and a = 0.5, Q(—,a;)=[1000 0 0 +10],
Q(—,a2)=[100000+5],y=1

@ Tuple: (sg,a1,0, s7).

Q(ss,a1) =0+ .5% (04 ymaxy Q(s7,a") —0) = .5*¥10 =5

@ Recall that in the SARSA update we saw Q(ss, a1) = 2.5 because we used
the actual action taken at s; instead of the max

@ Does how Q is initialized matter (initially? asymptotically?)?

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Optional Check Your Understanding L4: SARSA and

Q-Learning

o SARSA: Q(st, at) < Q(st, ar) + are + vYQ(St+1, ar+1) — Q(st, at))
@ Q-Learning:
Q(st, ar) + Q(st, ar) + alr: +ymaxy Q(st+1,3) — Q(st, at))
Select all that are true
@ Both SARSA and Q-learning may update their policy after every step

@ If e =0 for all time steps, and Q is initialized randomly, a SARSA Q
state update will be the same as a Q-learning Q state update

© Not sure

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

Optional Check Your Understanding SARSA and

Q-Learning Solutions

@ SARSA: Q(st,at) < Q(st,ar) + a(r + YQ(St+1, ar+1) — Q(st, ar))
@ Q-Learning:
Q(st, at) « Q(st,ar) + ar: +ymaxy Q(st+1,3") — Q(st, at))
Select all that are true
@ Both SARSA and Q-learning may update their policy after every step

@ If € =0 for all time steps, and Q is initialized randomly, a SARSA Q
state update will be the same as a Q-learning Q state update

© Not sure

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026

	Model Free Policy Evaluation in Tabular Settings
	Batch MC and TD Policy Evaluation

	Generalized Policy Improvement
	Monte-Carlo Control with Tabular Representations
	Greedy in the Limit of Infinite Exploration
	Temporal Difference Methods for Control

	Model Free Value Function Approximation
	Policy Evaluation
	Monte Carlo Policy Evaluation
	Temporal Difference TD(0) Policy Evaluation

	Control using Value Function Approximation
	Control using General Value Function Approximators
	Deep Q-Learning

