Lecture 4: Model Free Control and Function

Approximation

Emma Brunskill

CS234 Reinforcement Learning.

Winter 2026

@ Structure and content drawn in part from David Silver's Lecture 5
and Lecture 6. For additional reading please see SB Sections 5.2-5.4,
6.4, 6.5, 6.7

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026



Deep RL in Atari

action

3

<

\‘_' = /g:-,

¢
reward ‘ ry

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2/88




Class Structure

@ Last time: Policy evaluation with no knowledge of how the world
works (MDP model not given)

@ This time: first finish up policy evaluation when MDP model not
given

@ This time: Control (making decisions) without a model of how the
world works

@ Generalization — Value function approximation
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Today's Lecture

@ Model Free Policy Evaluation in Tabular Settings
@ Batch MC and TD Policy Evaluation

© Generalized Policy Improvement
@ Monte-Carlo Control with Tabular Representations
@ Greedy in the Limit of Infinite Exploration
@ Temporal Difference Methods for Control

9 Model Free Value Function Approximation
@ Policy Evaluation
@ Monte Carlo Policy Evaluation
@ Temporal Difference TD(0) Policy Evaluation

@ Control using Value Function Approximation
@ Control using General Value Function Approximators
@ Deep Q-Learning
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Recap: MC, TD(0) and Certainty Equivalence Policy

Evaluation

Policy evaluation: Estimate V7 (s) from executing 7 i

Trajectories 7: (s,a ~ m(s),r,s’,a ~ m(s'),...) or tuples (s,a,r,s’)
MC: Given a full trajectory 7: V™(s) < (1 — a(s))V™(s) + aG(s)
TD(0): Given (s,a,r,s’)

V7(s) < (1 = a(s))V7(s) + als)(r + 7 V7(s'))

e Certainty equivalence: Given a tuple (s,a,r,s'), update MLE dynamics

model and reward model and then use policy evaluation methods to
compute V7™(s) for all s
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Batch MC and TD

@ TD and MC methods shown use data once, then discard
e Batch (Offline) solution for finite dataset

o Given set of K episodes
o Repeatedly sample an episode from K
o Apply MC or TD(0) to the sampled episode

e What do MC and TD(0) converge to?
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AB Example: (Ex. 6.4, Sutton & Barto, 2018)

C =0
erO% @

25%

@ Two states A, B with y =1
@ Given 8 episodes of experience:
e A0,B,0
e B,1 (observed 6 times)
e B,0
@ Imagine running TD updates over data infinite number of times
e V(B)=
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AB Example: (Ex. 6.4, Sutton & Barto, 2018)

TD Update: V™(s¢) = V™(st) + a([re + YV (se4+1)] —V7(st))

TD target

@ Two states A, B with v =1
@ Given 8 episodes of experience:
e A0,B,0
e B,1 (observed 6 times)
e B,0
@ Imagine run TD updates over data infinite number of times
e V(B)=10.75 by TD or MC

What about V(A)?
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Check Your Understanding L3N3: AB Example: (Ex. 6.4,

Sutton & Barto, 2018)

TD Update: V7(s;) = V™(s:) + oz(Lrt + V™ (st41)] = V7 (st))

TD target

Two states A, B with v =1

Given 8 episodes of experience:
e A0,B,0
o B,1 (observed 6 times)
o B,0

Imagine run TD updates over data infinite number of times
V(B) =0.75 by TD or MC

What about V/(A)?

Respond in Poll
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Check Your Understanding L3N3: AB Example: (Ex. 6.4,

Sutton & Barto, 2018)

® TD Update: V™(s¢) = V™(st) + o([re + 7V (st41)] =V (st))

TD target

Two states A, B with v =1
Given 8 episodes of experience:
e A0,B,0
e B,1 (observed 6 times)
e B,0
Imagine run TD updates over data infinite number of times
V(B) =0.75 by TD or MC

What about V(A)?
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Batch MC and TD: Convergence
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Some Important Properties to Evaluate Model-free Policy

Evaluation Algorithms

o Data efficiency & Computational efficiency
@ In simple TD(0), use (s, a, r,s’) once to update V(s)
o O(1) operation per update
o In an episode of length L, O(L)
@ In MC have to wait till episode finishes, then also O(L)
@ MC can be more data efficient than simple TD
@ But TD exploits Markov structure
o If in Markov domain, leveraging this is helpful
@ Dynamic programming with certainty equivalence also uses Markov
structure
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Summary: Policy Evaluation

Estimating the expected return of a particular policy if don't have access
to true MDP models. Ex. evaluating average purchases per session of new
product recommendation system
@ Monte Carlo policy evaluation
e Policy evaluation when we don’t have a model of how the world works

o Given on policy samples
@ Given off policy samples

Temporal Difference (TD)
Dynamic Programming with certainty equivalence

*Understand what MC vs TD methods compute in batch evaluations

Metrics / Qualities to evaluate and compare algorithms

Uses Markov assumption
Accuracy / MSE / bias / variance
Data efficiency

Computational efficiency

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026



Table of Contents

© Generalized Policy Improvement
@ Monte-Carlo Control with Tabular Representations
@ Greedy in the Limit of Infinite Exploration
@ Temporal Difference Methods for Control
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Model-free Policy lteration

Initialize policy 7

Repeat:

e Policy evaluation: compute Q™
e Policy improvement: update 7 given Q™

May need to modify policy evaluation:

o If 7 is deterministic, can't compute Q(s, a) for any a # 7(s)
@ How to interleave policy evaluation and improvement?
e Policy improvement is now using an estimated Q
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The Problem of Exploration

World

Observation
Reward Action

Agent

@ Goal: Learn to select actions to maximize total expected future reward
@ Problem: Can't learn about actions without trying them (need to
explore

@ Problem: But if we try new actions, spending less time taking actions
that our past experience suggests will yield high reward (need to
exploit knowledge of domain to achieve high rewards)
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e-greedy Policies

Simple idea to balance exploration and achieving rewards

Let |A| be the number of actions

Then an e-greedy policy w.r.t. a state-action value Q(s, a) is
n(als) =
o argmax, Q(s,a), w. prob 1 — e+ 5

€

o a' # argmax Q(s, a) w. prob Al

In words: select argmax action with probability 1 — ¢, else select
action uniformly at random
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Policy Improvement with e-greedy policies

@ Recall we proved that policy iteration using given dynamics and
reward models, was guaranteed to monotonically improve

@ That proof assumed policy improvement output a deterministic policy

@ Same property holds for e-greedy policies
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Monotonic e-greedy Policy Improvement

Theorem

For any e-greedy policy 7;, the e-greedy policy w.r.t. Q™, w1 is a
monotonic improvement V7i+l > \/7i

Q7i(s, mit1(s))

= > mipa(als)QTi(s, a)

acA

= (e/|A]) |:ZQ sa:|+(lfe)maa><Q'”i(s,a)

acA
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Recall Monte Carlo Policy Evaluation, Now for Q

1. Initialize Q(s,a) =0,N(s,a) =0V(s,a), k=1, Inpute=1, 7
2: loop

3:  Sample k-th episode (Sk1,ak 1, rk,1; k2, - - - » Sk, T) given

3. Compute Gyt = rie + Vrker1 + Vorieso + -y trer, Vt
4 fort=1,...,T do

5: if First visit to (s,a) in episode k then
6

7

8

9

N(s,a) = N(s,a) +1
Q(st,at) = Q(s¢, ar) + N(;a)(Gk,t — Q(st, ar))

end if
end for
100 k=k+1
11: end loop
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Monte Carlo Online Control / On Policy Improvement

1. Initialize Q(s,a) =0,N(s,a) =0V(s,a), Sete=1, k=1
2: x = e-greedy(Q) // Create initial e-greedy policy

3. loop

4:  Sample k-th episode (Sk 1, k.1, k1, Sk,2; - - - > Sk,T) given mk
4 Gip = e +Yresr + Vrierz + -y T,

5 fort=1,...,T do

6: if First visit to (s, a) in episode k then

7: N(s,a) = N(s,a) +1

8: Q(st,ar) = Q(s¢,ar) + N(i,a)(Gkvt — Q(st, ar))

o: end if

10:  end for

11: k=k+1l e=1/k

12: 7, = e-greedy(Q) // Policy improvement

13: end loop
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Optional Worked Example: MC for On Policy Control

@ Mars rover with new actions:

o r(—,a1)=[100000+10], r(—,2) =[000000 +5], y = 1.
Assume current greedy 7(s) = a1 Vs, e=.5. Q(s,a) =0 for all (s, a)
Sample trajectory from e-greedy policy
Trajectory = (s3, a1, 0, s, a2, 0, s3, a1, 0, s, az, 0, s1, a1, 1, terminal)
First visit MC estimate of Q of each (s, a) pair?
Q“™(—,a1)=1[1010000]

After this trajectory (Select all)
Q™ (—,a2)=[0000000]
The new greedy policy would be: 7 = [1 tie 1 tie tie tie tie]

The new greedy policy would be: 7 = [1 2 1 tie tie tie tie]
If e =1/3, prob of selecting a; in s in the new e-greedy policy is 1/9.
If e =1/3, prob of selecting a; in s in the new e-greedy policy is 2/3.

If e =1/3, prob of selecting a; in s in the new e-greedy policy is 5/6.
o Not sure
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Properties of MC control with e-greedy policies

@ Computational complexity?
@ Converge to optimal Q* function?

@ Empirical performance?
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@ Monte Carlo Policy Evaluation
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Greedy in the Limit of Infinite Exploration (GLIE)

Definition of GLIE

@ All state-action pairs are visited an infinite number of times

lim N;(s,a) — oo
1—00

@ Behavior policy (policy used to act in the world) converges to greedy
policy
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Greedy in the Limit of Infinite Exploration (GLIE)

Definition of GLIE

@ All state-action pairs are visited an infinite number of times

lim Ni(s,a) = o0
1— 00

@ Behavior policy (policy used to act in the world) converges to greedy
policy

@ A simple GLIE strategy is e-greedy where € is reduced to 0 with the
following rate: ¢; = 1/i
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GLIE Monte-Carlo Control using Tabular Representations

GLIE Monte-Carlo control converges to the optimal state-action value
function Q(s,a) — Q*(s, a)
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@ Temporal Difference TD(0) Policy Evaluation
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Model-free Policy Iteration with TD Methods

@ Initialize policy w
@ Repeat:
e Policy evaluation: compute Q™ using temporal difference updating

with e-greedy policy
e Policy improvement: Same as Monte carlo policy improvement, set 7

to e-greedy (Q™)

Winter 2026
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On and Off-Policy Learning

@ On-policy learning
e Direct experience
e Learn to estimate and evaluate a policy from experience obtained from
following that policy

o Off-policy learning

o Learn to estimate and evaluate a policy using experience gathered from
following a different policy
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Q-Learning: Learning the Optimal State-Action Value

o Q-learning
e estimate the Q value of 7* while acting with another behavior policy 7,
o Key idea: Maintain @ estimates and bootstrap for best future value

@ Q-learning:

Q(st,ar) < Q(st,ar) + a(re + v maE}X Q(st+1,3)) — Q(st, at))
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Q-Learning with e-greedy Exploration

1: Initialize Q(s,a),Vs € S,a € A t =0, initial state s; = sp

2: Set 7y, to be e-greedy w.r.t. @

3: loop

4:  Take a; ~ mp(st) // Sample action from policy

5. Observe (rt, St+1)

6:  Q(st,ar) < Q(st,ar) + a(r: +vymaxs Q(st+1,a) — Q(st, at))
7. w(st) = arg max, Q(st, a) w.prob 1 — ¢, else random

8: t=t+1

9: end loop

See optional worked example and optional understanding check at the end
of the slides
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Convergence Properties of Q-Learning

Q-Learning for finite-state and finite-action MDPs converges to the
optimal action-value, Q(s,a) — Q*(s, a), under the following conditions:

@ The policy sequence m¢(al|s) satisfies the condition of GLIE

@ The step-sizes a; satisfy the Robbins-Munro sequence such that

[e%9)
E ar = o0
t=1
0
2
ay < o
t=1

@ For ex. ay = % satisfies the above condition.
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Properties of TD-Style Tabular Control with e-greedy

policies

Result builds on stochastic approximation

Relies on step sizes decreasing at the right rate

Relies on Bellman backup contraction property

Relies on bounded rewards and value function

Note: other variants exist. SARSA (on-policy algorithm)
SARSA

Q(st, ar) < Q(st, ar) + a(re + vQ(St4+1, ar41)) — Q(se, ar))
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Motivation for Function Approximation

@ Avoid explicitly storing or learning the following for every single state

and action
e Dynamics or reward model
e Value
e State-action value
e Policy

@ Want more compact representation that generalizes across state or

states and actions
o Reduce memory needed to store (P,R)/V/Q/x

o Reduce computation needed to compute (P,R)/V/Q/x
e Reduce experience needed to find a good (P,R)/V/Q/x
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State Action Value Function Approximation for Policy

Evaluation with an Oracle

@ First assume we could query any state s and action a and an oracle
would return the true value for Q™ (s, a)

@ Similar to supervised learning: assume given ((s, a), Q" (s, a)) pairs

@ The objective is to find the best approximate representation of Q™
given a particular parameterized function Q(s, a; w)
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Stochastic Gradient Descent

@ Goal: Find the parameter vector w that minimizes the loss between a
true value function Q™ (s, a) and its approximation Q(s, a; w) as
represented with a particular function class parameterized by w.

@ Generally use mean squared error and define the loss as
J(w) = Ex[(Q7(s,2) — Q(s, 3, w))]
@ Can use gradient descent to find a local minimum
1

@ Stochastic gradient descent (SGD) uses a finite number of (often
one) samples to compute an approximate gradient:

@ Expected SGD is the same as the full gradient update
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Stochastic Gradient Descent

@ Goal: Find the parameter vector w that minimizes the loss between a
true value function Q" (s, a) and its approximation Q(s, a; w) as
represented with a particular function class parameterized by w.

@ Generally use mean squared error and define the loss as

J(w) = E[(Q7(s,2) — Q(s, a; w))?]
@ Can use gradient descent to find a local minimum
1
Aw = —EaVWJ(w)

@ Stochastic gradient descent (SGD) uses a finite number of (often
one) samples to compute an approximate gradient:

Vuwld(w) = VwE[Q"(s,a)— CA?A(s, a; w))? )
—2E;[(Q™(s,a) — Q(s,a; w)|VwQ(s, a, w)

@ Expected SGD is the same as the full gradient update
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Model Free VFA Policy Evaluation

@ No oracle to tell true Q7 (s, a) for any state s and action a

@ Use model-free state-action value function approximation
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Model Free VFA Prediction / Policy Evaluation

Recall model-free policy evaluation (Lecture 3)

o Following a fixed policy 7 (or had access to prior data)
o Goal is to estimate V™ and/or Q™

Maintained a lookup table to store estimates V™ and/or Q™

Updated these estimates after each episode (Monte Carlo methods)
or after each step (TD methods)

@ Now: in value function approximation, change the estimate
update step to include fitting the function approximator

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026



Table of Contents

@ Control using Value Function Approximation

@ Deep Q-Learning

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter



Monte Carlo Value Function Approximation

@ Return G; is an unbiased but noisy sample of the true expected return
Qﬂ-(sta at)

@ Therefore can reduce MC VFA to doing supervised learning on a set
of (state,action,return) pairs:

<(51, 81), G1>, ((52, 82), G2>, ey <(ST, aT), GT>

o Substitute G; for the true Q™ (s;, a;) when fit function approximator
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MC Value Function Approximation for Policy Evaluation

1. Initialize w, k=1

2: loop

3:  Sample k-th episode (Sk 1, ak1, k.15 k.25 - - - » Sk,L, ) given T

4 fort=1,...,L, do

5 if First visit to (s, a) in episode k then

6 Ge(s,a) = 2j%, i

7 Vwl(w) = —2[Ge(s, a)— Q(s¢, ar; w)]|Vw Q(st, ar; w) (Compute
Gradient)

8: Update weights Aw

9: end if

10:  end for

11: k=k+1

12: end loop
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Recall: Temporal Difference Learning w/ Lookup Table

Uses bootstrapping and sampling to approximate V™

Updates V™ (s) after each transition (s, a, r,s’):

VT(s) = V7™(s)+a(r+~yV7(s') - V(s))

Target is r +yV™(s’), a biased estimate of the true value V™ (s)

Represent value for each state with a separate table entry
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Temporal Difference TD(0) Learning with Value Function

Approximation

Uses bootstrapping and sampling to approximate true V7

Updates estimate V™ (s) after each transition (s, a, r, s’):

VT(s) = V7(s)+alr+ V() = V7(s))

Target is r +yV7™(s), a biased estimate of the true value V7(s)

In value function approximation, target is r + 7\7”(5’; w), a biased
and approximated estimate of the true value V7(s)

@ 3 forms of approximation:

© Sampling
@ Bootstrapping
© Value function approximation
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Temporal Difference TD(0) Learning with Value Function

Approximation

o In value function approximation, target is r +~V7(s"; w), a biased
and approximated estimate of the true value V7(s)

@ Can reduce doing TD(0) learning with value function approximation
to supervised learning on a set of data pairs:

o (s1,n + YV (s;w)), (52,12 + 7V (s3;w)), ...
@ Find weights to minimize mean squared error

J(w) = Ex[(r + 1V (551, w) = V(55 w))?]

@ Use stochastic gradient descent, as in MC methods
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TD(0) Value Function Approximation for Policy Evaluation

1: Initialize w, s
2: loop
3:  Given s sample a ~ w(s), r(s,a),s’ ~ p(s'|s, a)

4 Vydw) = =2[r+~V(s';w) — V(s; W)V V(s; w)
5. Update weights Aw

6: if s’ is not a terminal state then

7: Set s =5

8: else

9: Restart episode, sample initial state s

10  end if

11: end loop
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Control using Value Function Approximation

@ Use value function approximation to represent state-action values
@’r(s, aw)x QT
o Interleave
e Approximate policy evaluation using value function approximation
o Perform e-greedy policy improvement
@ Can be unstable. Generally involves intersection of the following:

e Function approximation
e Bootstrapping
o Off-policy learning
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Action-Value Function Approximation with an Oracle

o Q7(s,aw)~ Q"
@ Minimize the mean-squared error between the true action-value
function Q7 (s, a) and the approximate action-value function:

J(w) = E-[(Q"(s,a) — Q7(s, a; w))’]

@ Use stochastic gradient descent to find a local minimum

Vwl(w) = —2B [(Q“(s,a)—oﬂ(s,a;w))vwéﬂ(s,a;w)]

@ Stochastic gradient descent (SGD) samples the gradient

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2026



Incremental Model-Free Control Approaches

@ Similar to policy evaluation, true state-action value function for a
state is unknown and so substitute a target value for true Q(st, at)

Aw = o(Q(st, ar) — Q(st, ar; w))Vw Q(st, ar; w)
@ In Monte Carlo methods, use a return G; as a substitute target

Aw = oGt — Q(st, ar; w))Vuw Q(st, ar; w)

@ SARSA: Use TD target r +~Q(s’, a; w) which leverages the current
function approximation value

Aw = a(r +~7Q(s',a"; w) — Q(s, a; w)) Vi Q(s, a; w)
o Q-learning: Uses related TD target r +~ maxy Q(s', a’; w)

Aw = a(r + vy max Q(s',a;w) — Q(s, a;,w))V, Q(s, a; w)
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"Deadly Triad” which Can Cause Instability

e Informally, updates involve doing an (approximate) Bellman backup
followed by best trying to fit underlying value function to a particular
feature representation

@ Bellman operators are contractions, but value function approximation
fitting can be an expansion

e To learn more, see Baird example in Sutton and Barto 2018
@ "Deadly Triad” can lead to oscillations or lack of convergence

o Bootstrapping
e Function Approximation
o Off policy learning (e.g. Q-learning)
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Using these ideas to do Deep RL in Atari

state 4\ 1 /| . ) action
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Q-Learning with Neural Networks

@ Q-learning converges to optimal Q*(s, a) using tabular representation
@ In value function approximation Q-learning minimizes MSE loss by
stochastic gradient descent using a target @ estimate instead of true
Q
@ But Q-learning with VFA can diverge
@ Two of the issues causing problems:
o Correlations between samples
o Non-stationary targets
@ Deep Q-learning (DQN) addresses these challenges by using

e Experience replay
o Fixed Q-targets
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DQNs: Experience Replay

@ To help remove correlations, store dataset (called a replay buffer) D

from prior experience

S1,4d1,12,52

52,4d2,13,53

53,43, /4,54

Sty at, 't4+1, St+1

— s,a,r,s

@ To perform experience replay, repeat the following:
o (s,a,r,s’) ~ D: sample an experience tuple from the dataset

N

o Compute the target value for the sampled s: r + v maxy Q(s',a"; w)
o Use stochastic gradient descent to update the network weights

Aw = afr + v max Q(s',a; w) — Q(s, 3, w))Vw Q(s, a; w)
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DQNs: Experience Replay

@ To help remove correlations, store dataset D from prior experience

51,41, 12,52

/
52,4d2,13,53 — Ss,a, s
53,43, 4, 54

Sty Aty Mt+1, St+1

@ To perform experience replay, repeat the following:
o (s,a,r,s’") ~ D: sample an experience tuple from the dataset

N

o Compute the target value for the sampled s: r + ymaxy Q(s’,a’; w)
o Use stochastic gradient descent to update the network weights

Aw = ofr + v max Q(s',a;w) — Q(s,a; w))V, Q(s, a; w)

o Uses target as a scalar, but function weights will get updated
on the next round, changing the target value
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DQNs: Fixed Q-Targets

@ To help improve stability, fix the target weights used in the target
calculation for multiple updates

@ Target network uses a different set of weights than the weights being
updated
o Let parameters w— be the set of weights used in the target, and w
be the weights that are being updated
@ Slight change to computation of target value:
o (s,a,r,s') ~ D: sample an experience tuple from the dataset

PN

o Compute the target value for the sampled s: r + vy maxy Q(s',a’; w™)
o Use stochastic gradient descent to update the network weights

Aw = afr + ymax Q(s’,a;w™) — Q(s, 3, w))Vw Q(s, a; w)
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DQN Pseudocode

1: Input C, o, D = {}, Initialize w, w~ =w, t =0

2: Get initial state s

3: loop

4. Sample action a; given e-greedy policy for current é(st, a; w)
5: Observe reward r; and next state sy 1

6: Store transition (s¢, ar, rt, Se+1) in replay buffer D

7: Sample random minibatch of tuples (s;, a;, rj, sj+1) from D
8: for j in minibatch do

9: if episode terminated at step i + 1 then

10: Yi=r

11: else

12: yi =r +ymaxy Qsiy1,2a;w™)

13: end if

14: Do gradient descent step on (y; — Q(sj, aj; w))? for parameters w: Aw = a(y; — Q(sj, aj; w))Vw Q(s;, aj; w)
15: end for

160 t=t+1

17:  if mod(t,C) == 0 then

18: w4~ w

19:  endif

20: end loop

Note there are several hyperparameters and algorithm choices. One needs to choose the neural network architecture, the
learning rate, and how often to update the target network. Often a fixed size replay buffer is used for experience replay, which

introduces a parameter to control the size, and the need to decide how to populate it.
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Check Your Understanding L4N3: Fixed Targets

@ In DQN we compute the target value for the sAampIed (s,a,r,s) using
a separate set of target weights: r + vy maxy Q(s’,a’; w™)

@ Select all that are true

@ This doubles the computation time compared to a method that does
not have a separate set of weights

@ This doubles the memory requirements compared to a method that
does not have a separate set of weights

@ Not sure
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Check Your Understanding L4N3: Fixed Targets.

Solutions

@ In DQN we compute the target value for the sAampIed (s,a,r,s’) using
a separate set of target weights: r +ymaxy Q(s’,a’;w™)

@ Select all that are true

@ This doubles the computation time compared to a method that does
not have a separate set of weights

@ This doubles the memory requirements compared to a method that
does not have a separate set of weights

@ Not sure
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DQNs Summary

DQN uses experience replay and fixed Q-targets

Store transition (s, at, re41, St+1) in replay memory D
Sample random mini-batch of transitions (s, a, r,s’) from D
Compute Q-learning targets w.r.t. old, fixed parameters w—

Optimizes MSE between Q-network and Q-learning targets

Uses stochastic gradient descent
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DQNs in Atari

End-to-end learning of values Q(s, a) from pixels s
Input state s is stack of raw pixels from last 4 frames
Output is Q(s, a) for 18 joystick/button positions
Reward is change in score for that step

Used a deep neural network with CNN

Network architecture and hyperparameters fixed across all games
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Figure: Human-level control through deep reinforcement learning, Mnih et al,
2015
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DQN Results in Atari

Figure: Human-level control through deep reinforcement learning, Mnih et al,
2015
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Which Aspects of DQN were Important for Success?

. Deep
Game Linear Network
Breakout 3 3
Enduro 62 29

River Raid | 2345 1453
Seaquest 656 275

Space 301 302
Invaders

Note: just using a deep NN actually hurt performance sometimes!
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Which Aspects of DQN were Important for Success?

. Deep | DQN w/
Game Linear Network | fixed Q
Breakout 3 3 10
Enduro 62 29 141
River Raid | 2345 1453 2868
Seaquest 656 275 1003
Space 301 302 373
Invaders
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Which Aspects of DQN were Important for Success?

. Deep DQN w DQN w DQN w/repla
Game Linear Network | fixed Q/ replay / and fixe{i Q ’
Breakout 3 3 10 241 317
Enduro 62 29 141 831 1006
River Raid | 2345 1453 2868 4102 7447
Seaquest 656 275 1003 823 2894
Space 301 302 373 | 826 1089
Invaders

@ Replay is hugely important

@ Why? Beyond helping with correlation between samples, what does
replaying do?
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@ Success in Atari has led to huge excitement in using deep neural
networks to do value function approximation in RL
@ Some immediate improvements (many others!)
o Double DQN (Deep Reinforcement Learning with Double Q-Learning,
Van Hasselt et al, AAAI 2016)
o Prioritized Replay (Prioritized Experience Replay, Schaul et al, ICLR
2016)
o Dueling DQN (best paper ICML 2016) (Dueling Network Architectures
for Deep Reinforcement Learning, Wang et al, ICML 2016)
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What You Should Understand

@ Be able to implement TD(0) and MC on policy evaluation
@ Be able to implement Q-learning and SARSA and MC control
algorithms

@ List the 3 issues that can cause instability and describe the problems
qualitatively: function approximation, bootstrapping and off-policy
learning

@ Know some of the key features in DQN that were critical (experience
replay, fixed targets)
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Class Structure

o Last time and start of this time: Model-free reinforcement learning
with function approximation

o Next time: Policy gradients
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Monotonic e-greedy Policy Improvement

For any e-greedy policy 7;, the e-greedy policy w.r.t. Q™, wiy1 is a
monotonic improvement V7i+l > V/7i

@ Therefore V7i+1 > V™ (from the policy improvement theorem)
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SARSA Initialization Conceptual Question

@ Mars rover with new actions:
o r(—a)=[100000+10], r(—,a) =[000000 +5], v = 1.
Initialize e = 1/k, k=1, and « = 0.5, Q(—, a1) = r(—, a1),
Q(*7 ‘92) = r(*v 32)
SARSA: (se, a1, 0, s7,a2,5, s7).
Does how Q is initialized matter (initially? asymptotically?)?
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Optional Worked Example: MC for On Policy Control

Solution

Mars rover with new actions:
o r(—a)=[100000+10], r(—,a) =[000000 +5], v = 1.
Assume current greedy 7(s) = a1 Vs, e=.5. Q(s,a) = 0 for all (s, a)

Sample trajectory from e-greedy policy
Trajectory = (s3, a1, 0, s, a2, 0, s3, a1, 0, s, a2, 0, s1, a1, 1, terminal)
First visit MC estimate of Q of each (s, a) pair?
Q< ™(—,a1)=1[1010000]
After this trajectory:
@ Q"(—,a2)=[0100000]
@ The new greedy policy would be: m = [1 2 1 tie tie tie tie]

e If e =1/3, prob of selecting a; in s1 in the new e-greedy policy is 5/6.
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Optional Worked Example SARSA for Mars Rover

1: Set initial e-greedy policy 7, t = 0, initial state s; = sp
2: Take a; ~ 7(s:) // Sample action from policy
3: Observe (¢, St+1)
4: loop
5: Take action ary1 ~ 7(se41)
6: Observe (rey1,5e+2)
7 Q(St, at) <~ Q(St, at) + Oé(rt + ’YQ(SHI, 3t+1) - Q(St, at))
8:  m(st) = argmaxa Q(st, a) w.prob 1 — ¢, else random
9: t=t+1
10: end loop

@ Initialize e =1/k, k=1, and « =0.5, Q(—,a;)=[10000 0 +10],
Q(—,a)=[100000+5],v=1
@ Assume starting state is sg and sample a;
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Worked Example: SARSA for Mars Rover

1: Set initial e-greedy policy 7, t = 0, initial state s; = sp
2: Take a; ~ 7(s:) // Sample action from policy
3: Observe (¢, St+1)
4: loop
5: Take action ary1 ~ 7(se41)
6: Observe (rey1,5e+2)
7 Q(St, at) <~ Q(St, at) + Oé(rt + ’YQ(SHI, 3t+1) - Q(St, at))
8:  m(st) = argmaxa Q(st, a) w.prob 1 — ¢, else random
9: t=t+1
10: end loop

@ Initialize e =1/k, k=1, and « =0.5, Q(—,a;)=[10000 0 +10],
Q(—,a)=[100000+5],v=1
@ Assume starting state is sg and sample a;
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Worked Example: SARSA for Mars Rover

1: Set initial e-greedy policy 7, t = 0, initial state s; = sp
2: Take a; ~ 7(s:) // Sample action from policy
3: Observe (¢, St+1)
4: loop
5: Take action ary1 ~ 7(se41)
6: Observe (rey1,5e+2)
7 Q(St, at) <~ Q(St, at) + Oé(rt + ’YQ(SHI, 3t+1) - Q(St, at))
8:  m(st) = argmaxa Q(st, a) w.prob 1 — ¢, else random
9: t=t+1
10: end loop

@ Initialize e =1/k, k=1, and « =0.5, Q(—,a;)=[10000 0 +10],
Q(—,a)=[100000+5],v=1

@ Tuple: (sg,a1,0,s7,a2,5,57).

o Q(S5, 81) =5%x0+.5% (0 +’YQ(S7,32)) =25
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Worked Example: e-greedy Q-Learning Mars

1: Initialize Q(s,a),Vs € S,a € A t =0, initial state sy = s

2: Set 7p to be e-greedy w.r.t. @

3: loop

4:  Take a; ~ 7p(s:) // Sample action from policy

5. Observe (rt, St+1)

6:  Q(st,ar) « Q(st,ar) + alr: + v maxa Q(se11,a) — Q(st, ar))
7:  w(s:) = argmaxa Q(st, a) w.prob 1 — ¢, else random

8: t=t+1

9: end loop

@ Initializee=1/k, k=1, and @« =0.5, Q(—,a;)=[1000 0 0 +10],
Q(—,a2)=[100000+5],y=1
@ Like in SARSA example, start in sg and take a;.
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Worked Example: e-greedy Q-Learning Mars

1: Initialize Q(s,a),Vs € S,a € A t =0, initial state s; = s

2: Set 7 to be e-greedy w.r.t. Q

3: loop

4: Take a; ~ mp(s:) // Sample action from policy

5: Observe (r¢, se+1)

6:  Q(st,ar) «+ Q(st,ar) + alre + vy maxa Q(Se+1,a) — Q(st, ar))
7:  w(s:) = argmax, Q(st,a) w.prob 1 — ¢, else random

8: t=t+1

9: end loop

@ Initialize e =1/k, k=1, and a = 0.5, Q(—,a;)=[1000 0 0 +10],
Q(—,a2)=[100000+5],y=1

@ Tuple: (sg,a1,0, s7).

Q(ss,a1) =0+ .5% (04 ymaxy Q(s7,a") —0) = .5*¥10 =5

@ Recall that in the SARSA update we saw Q(ss, a1) = 2.5 because we used
the actual action taken at s; instead of the max

@ Does how Q is initialized matter (initially? asymptotically?)?
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Optional Check Your Understanding L4: SARSA and

Q-Learning

o SARSA: Q(st, at) < Q(st, ar) + are + vYQ(St+1, ar+1) — Q(st, at))
@ Q-Learning:
Q(st, ar) + Q(st, ar) + alr: +ymaxy Q(st+1,3) — Q(st, at))
Select all that are true
@ Both SARSA and Q-learning may update their policy after every step

@ If e =0 for all time steps, and Q is initialized randomly, a SARSA Q
state update will be the same as a Q-learning Q state update

© Not sure
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Optional Check Your Understanding SARSA and

Q-Learning Solutions

@ SARSA: Q(st,at) < Q(st,ar) + a(r + YQ(St+1, ar+1) — Q(st, ar))
@ Q-Learning:
Q(st, at) « Q(st,ar) + ar: +ymaxy Q(st+1,3") — Q(st, at))
Select all that are true
@ Both SARSA and Q-learning may update their policy after every step

@ If € =0 for all time steps, and Q is initialized randomly, a SARSA Q
state update will be the same as a Q-learning Q state update

© Not sure
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