Lecture 5: Policy Gradient |

Emma Brunskill

CS234 Reinforcement Learning

Winter 2026

@ With many slides from or derived from David Silver and John
Schulman and Pieter Abbeel

o Additional reading: Sutton and Barto 2018 Chp. 13

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Refresh Your Knowledge. Polleverywhere Poll

@ Which of the following equations express a TD update? (optional)

V(st) = r(se,ar) +v 2 4 p(s'lse, a) V()
V(st) = (1 = a)V(s) + a(r(se, ar) + 7 V(se41))
V(se) = (1= a)V(se) +a X/, r(si,)
g NV(st) (1 —a)V(st) + amaxy(r(se, a) +vV(st+1))
ot sure

e Bootstrapping is (enter in poll)
© When samples of (s,a,s’) transitions are used to approximate the true
expectation over next states
@ When an estimate of the next state value is used instead of the true
next state value

© Used in Monte-Carlo policy evaluation
© Not sure

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Refresh Your Knowledge L4. Polleverywhere Poll

@ Which of the following equations express a TD update?
V(st) = (1 — a)V(st) + alr(st,ar) + vV (st+1))

@ Bootstrapping is when:

An estimate of the next state value is used instead of the true next
state value

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Class Structure

@ Last time: Learning to Control in Tabular MDPs to Deep RL /
Generalization to scale RL
o This time: DQN and Policy Search

o Next time: Policy Search Cont.

Winter 2026

Lecture 5: Policy Gradient |

Emma Brunskill (CS234 Reinforcement Learn

Recall: Incremental Model-Free Control Approaches

S1v5? do a backze)t we PpPpProx
@ Similar to policy evaluation, true state-action value function for a

state is unknown and so substitute a target value for true Q(st, at)

Aw = a(Q(st, ar) — (5t7 ag;, w))Vw@(sta ag; w)

@ In Monte Carlo methods, use a return G; as a substitute target
o« Feveg e .
Aw = oG — Q(Stv ar; w))VuwQ(st, ar; w)

@ SARSA: Use TD target r +~Q(s’, a; w) WhICh leverages the current
function approximation value s \“c"x\

Aw = or +vQ(s',a'; w) — Q(s, a; w))V,, Q(s, a; w)

@ Q-learning: Uses related TD target r + v maxy @(s’, a;w)
(A

Aw—a(r—ﬁ—fymaxQ(s a;w) — Q(s, a; w))VWCA)(s,a; w)
— /\—/o‘_r.:r pe Iccj

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

"Deadly Triad” which Can Cause Instability

e Informally, updates involve doing an (approximate) Bellman backup
followed by best trying to fit underlying value function to a particular
feature representation

@ Bellman operators are contractions, but value function approximation
fitting can be an expansion

e To learn more, see Baird example in Sutton and Barto 2018
@ "Deadly Triad” can lead to oscillations or lack of convergence

o Bootstrapping
e Function Approximation
o Off policy learning (e.g. Q-learning)

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Table of Contents

@ Deep Q-Learning

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient |

Using these ideas to do Deep RL in Atari

state 4\ 1 /| .) action

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient |

Q-Learning with Neural Networks

@ Q-learning converges to optimal Q*(s, a) using tabular representation
@ In value function approximation Q-learning minimizes MSE loss by
stochastic gradient descent using a target @ estimate instead of true
Q
@ But Q-learning with VFA can diverge
@ Two of the issues causing problems:
o Correlations between samples
o Non-stationary targets
@ Deep Q-learning (DQN) addresses these challenges by using

o Experience replay
o Fixed Q-targets

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

DQNs: Experience Replay

@ To help remove correlations, store dataset (called a replay buffer) D

from prior experience

S1,4d1,12,52

52,4d2,13,53

53,43, /4,54

Sty at, 't4+1, St+1

— s,a,r,s

@ To perform experience replay, repeat the following:
o (s,a,r,s’) ~ D: sample an experience tuple from the dataset

N

o Compute the target value for the sampled s: r + v maxy Q(s',a’; w)
o Use stochastic gradient descent to update the network weights

Aw = afr + v max Q(s',a; w) — Q(s, 3, w))Vw Q(s, a; w)

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

DQNs: Experience Replay

@ To help remove correlations, store dataset D from prior experience

S1,4d1,12,52

/
5$2,4d2,13,53 — Ss,a, rs
53,43, 14,54

Sty dt, t+1, St+1

@ To perform experience replay, repeat the following:
o (s,a,r,s’) ~ D: sample an experience tuple from the dataset

N

o Compute the target value for the sampled s: r + v maxy Q(s',a"; w)
o Use stochastic gradient descent to update the network weights

Aw = or +ymax Q(s',a';w) — Q(s, 2, w))V, Q(s, a; w)

@ Uses target as a scalar, but function weights will get updated
on the next round, changing the target value

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

DQNs: Fixed Q-Targets

@ To help improve stability, fix the target weights used in the target
calculation for multiple updates

@ Target network uses a different set of weights than the weights being
updated

o Let parameters w— be the set of weights used in the target, and w
be the weights that are being updated

@ Slight change to computation of target value:

e (s,a,r,s’) ~ D: sample an experience tuple from the dataset
o Compute the target value for the sampled s: r + vy maxy Q(s',a’; w™)
o Use stochastic gradient descent to update the network weights

Aw = a(r + ymax Q(s’,a;w™) — Q(s,a;w)) VW Q(s, a; w)

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

DQN Pseudocode

1: Input C, o, D = {}, Initialize w, w~ =w, t =0

2: Get initial state sp

3: loop

4 Sample action a; given e-greedy policy for current O(Sf, a;w)

5: Observe reward ry and next state sy

6: Store transition (s¢, at, rt, se+1) in replay buffer D

7: Sample random minibatch of tuples (s;, aj, rj, si+1) from D

8: for j in minibatch do

9: if episode terminated at step i + 1 then

10: Yi=ri

11: else

12: yi = ri +ymax, @(si+1,a’;w_)

13: end if

14: Do gradient descent step on (y; — Q(s;, a;; w))2 for parameters w: Aw = a(y; — Q(s;, ai; w))Vw Q(s;, aj; w)
15: end for

160 t=t+1

17: if mod(t,C) == O then

18: wo o—w

19: endif

RO dmetdaop several hyperparameters and algorithm choices. One needs to choose the neural network architecture, the

learning rate, and how often to update the target network. Often a fixed size replay buffer is used for experience replay, which

introduces a parameter to control the size, and the need to decide how to populate it.

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient |

Check Your Understanding : Fixed Targets

@ In DQN we compute the target value for the sAampIed (s,a,r,s) using
a separate set of target weights: r + vy maxy Q(s’,a’; w™)

@ Select all that are true

@ This doubles the computation time compared to a method that does
not have a separate set of weights

@ This doubles the memory requirements compared to a method that
does not have a separate set of weights

@ Not sure

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Check Your Understanding : Fixed Targets. Solutions

In DQN we compute the target value for the sampled (s, a, r, s") using
a separate set of target weights: r +ymaxy Q(s',a’;w™)

Select all that are true

This doubles the computation time compared to a method that does
not have a separate set of weights

@ This doubles the memory requirements compared to a method that
does not have a separate set of weights

@ Not sure

Answer: It doubles the memory requirements.

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

DQNs Summary

DQN uses experience replay and fixed Q-targets

Store transition (s, at, re41, St+1) in replay memory D
Sample random mini-batch of transitions (s, a, r,s’) from D
Compute Q-learning targets w.r.t. old, fixed parameters w—

Optimizes MSE between Q-network and Q-learning targets

Uses stochastic gradient descent

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

DQNs in Atari

End-to-end learning of values Q(s, a) from pixels s
Input state s is stack of raw pixels from last 4 frames
Output is Q(s, a) for 18 joystick/button positions
Reward is change in score for that step

Used a deep neural network with CNN

Network architecture and hyperparameters fixed across all games

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Convolution Convolution Fully connected Fully connected

Vo
ER

ddgonan_ dddoshn dddonao

ANV A\ =
BPoezi-o: o
B o /e i O)

of] B\ = 7/1 !/ o

g Y/ 1)/ 8

o] B e Y =

1 network, outputs Q value for each action

Figure: Human-level control through deep reinforcement learning, Mnih et al,
2015

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient |

DQN Results in Atari

Figure: Human-level control through deep reinforcement learning, Mnih et al,
2015

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient |

Which Aspects of DQN were Important for Success?

. Deep DQN w DQN w DQN w/repla
Game Linear Network | fixed Q/ replay / and fixe{i Q ’
Breakout 3 3 10 241 317
Enduro 62 29 141 831 1006
River Raid | 2345 1453 2868 4102 7447
Seaquest 656 275 1003 823 2894
Space 301 302 373 | 826 1089
Invaders

@ Replay is hugely important

@ Why? Beyond helping with correlation between samples, what does
replaying do?

Emma Brunskill (CS234 Reinforcement Learn

Lecture 5: Policy Gradient |

Winter 2026

What You Should Understand from Model-Free RL

Lectures

@ Be able to implement TD(0) and MC on policy evaluation
@ Be able to implement Q-learning and MC control algorithms

o List the 3 issues that can cause instability and describe the problems
qualitatively: function approximation, bootstrapping and off-policy
learning

e Know some of the key features in DQN that were critical (experience
replay, fixed targets)

+ 05‘ e QPPIOK'

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Class Structure

o Last time and start of this time: Model-free reinforcement learning
with function approximation

@ Policy gradients

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Do We Need "RL" at All? Can we Just do Online

Optimization?

Policy gradient methods have been very influential

In NLP (Sequence Level Training with Recurrent Neural Networks
built on REINFORCE)

End-to-End Training of Deep Visuomotor Policies
https://arxiv.org/abs/1504.00702

ChatGPT and beyond!

@ In homework 2 you will be implementing Proximal Policy
Optimization (PPO) which was used in training ChatGPT

Figure: Early example of poI|cy gradient methods: training a AIBO to have a

5 o A Q0
Emma Brunskill (CS234 Remforcement Learn Lecture 5: Pollcy Gradlent | Winter 2026

https://arxiv.org/abs/1504.00702

Policy-Based Reinforcement Learning

@ In the last lecture we approximated the value or action-value function
using parameters w,

Viu(s) = V7™(s)
Qu(s,a) = Q"(s, a)
@ A policy was generated directly from the value function
e e.g. using e-greedy

@ In this lecture we will directly parametrize the policy, and will typically
use @ to show parameterization:

mo(s,a) = Plals; 0]

@ Goal is to find a policy m with the highest value function V™

o We will focus again on model-free reinforcement learning

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Value-Based and Policy-Based RL

@ Value Based
o learned Value Function

o Implicit policy (e.g. Value Fungtion Palicy
e-greedy)

@ Policy Based
o No Value Function
o Learned Policy

@ Actor-Critic

o Learned Value Function
e Learned Policy

Actor

Value-Based Critic Policy-Based

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Types of Policies to Search Over

@ So far have focused on deterministic policies or e-greedy policies

@ Now we are thinking about direct policy search in RL, will focus
heavily on stochastic policies

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Example: Aliased Gridword (1)
5 =

The agent cannot differentiate the grey states
Consider features of the following form (for all N, E, S, W)

@(s,a) = I(wall to N, a = move E)
@ Compare value-based RL, using an approximate value function
Qo(s; a) = f(¢(s, a); 0)

To policy-based RL, using a parametrized policy

7T9(5a a) = g(¢(57 a); 9)

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Example: Aliased Gridworld (2)

!
2 & =

@ Under aliasing, an optimal deterministic policy will either

e move W in both grey states (shown by red arrows)
e move E in both grey states

@ Either way, it can get stuck and never reach the money
@ Value-based RL learns a near-deterministic policy

e e.g. greedy or e-greedy
@ So it will traverse the corridor for a long time

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Example: Aliased Gridworld (3)

—> -> l <> -
O

@ An optimal stochastic policy will randomly move E or W in grey states

mp(wall to N and S, move E) = 0.5

mp(wall to N and S, move W) = 0.5

o It will reach the goal state in a few steps with high probability

@ Policy-based RL can learn the optimal stochastic policy

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Policy optimization

@ Policy based reinforcement learning is an optimization problem
e Find policy parameters 6 that maximize V/(sp,)
@ Can use gradient free optimization:
o Greater efficiency often possible using gradient
o Gradient descent
o Conjugate gradient
o Quasi-newton
@ We focus on gradient descent, many extensions possible

@ And on methods that exploit sequential structure

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Policy Gradient

@ Define V™ = V/(sp,) to make explicit the dependence of the value
on the policy parameters
@ Assume episodic MDPs

@ Policy gradient algorithms search for a local maximum in V(sp,6) by
ascending the gradient of the policy, w.r.t parameters 6

Af = OZVQ V(So, (9)

@ Where VyV/(sp,0) is the policy gradient
AV(sp,0)
061
Vo V(So, 9) =
OV (50,0)

0n

@ and « is a step-size parameter

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Value of a Parameterized Policy

@ Now assume policy my is differentiable whenever it is non-zero and we
know the gradient Vymy(s, a)

@ Recall policy value is V(sg,6) = E, { tT:o R(St,at);ﬂg,SO} where
the expectation is taken over the states & actions visited by 7y
@ We can re-express this in multiple ways 7 = 7(,,,‘)' /€P‘5°°):

4 V(So,e):Zaﬂ'a(a|50)Q(So,a,0) . 6 :
e 2o ds jnalre

=<(-"Y' Pf‘f‘/ﬁ)ﬁ(‘fé 5[54:;32.}“@([-J

~ - G4 Inpne

apprex a/seeplon T [e

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Value of a Parameterized Policy

@ Assume policy 7y is differentiable whenever it is non-zero and we can
compute the gradient Vymy(s, a)

@ Recall policy value is V(sg,8) = Er, {ZLO R(st, at); 7['9,50} where
the expectation is taken over the states & actions visited by 7y
@ We can re-express this in multiple ways
o V(sp,0)=>",ms(also)Q(s0,a,0)
o V(sp,0)=>_ P(r;0)R(7)
o where 7 = (s, a0, ro, ..., ST—1, aT—1, F'T—1, ST) IS a state-action
trajectory,
e P(7;0) is used to denote the probability over trajectories when
executing policy () starting in state so, and
e R(7)= Z:T:o R(st, ar) the sum of rewards for a trajectory 7
@ To start will focus on this latter definition. See Chp 13.1-13.3 of SB
for a nice discussion starting with the other definition

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Likelihood Ratio Policies

@ Denote a state-action trajectory as
T = (50,20, 10y -+, ST—1, 3T 1, F'T—1, ST)
e Use R(7) = EZ—:O R(st, a¢) to be the sum of rewards for a trajectory T

@ Policy value is

T

Z (st:at);] = ZP(T;Q)R(T)

t=0

@ where P(7;0) is used to denote the probability over trajectories when
executing policy 7(6)
@ In this new notation, our goal is to find the policy parameters 6:

VI(§) = P(T:0)R
arg max (9) arngaXzT: (T 0)R(7)

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Likelihood Ratio Policy Gradient

@ Goal is to find the policy parameters 6:
V(0) = P(7;0)R
arg max (0) = arg max ET: (T 0)R(7)

@ Take the gradient with respect to 0:

VoV() = VoY P(ri0)R(r)
:Syﬁf‘f)Ve P(T,B) T >
= RErY PlLr;0) VyPiv; 0

<<-1'Y Pl; 0)

= A PCe> plr: 03 Vo g A7 6)

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Likelihood Ratio Policy Gradient

@ Goal is to find the policy parameters 6:

arg max V(0) = arg max ET: P(7;0)R(T)

@ Take the gradient with respect to 0:
VoV(0) = Vo> P(ri0)R(7)

=) VeP(r;0)R(r)

S

VQP(T 0)
ZP(O)R(T “Prd)

likelihood ratio

Z P(7;0)R(T)Vglog P(T;0)

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Likelihood Ratio Policy Gradient

@ Goal is to find the policy parameters 6:

arg max V(0) = arg meaxz: P(7;0)R(T)

@ Take the gradient with respect to 0:

VoV(0 Z P(7;0)R(7)Vylog P(7; 6)

@ Approximate using m sample trajectories under policy 7g:

m

VoV(0) ~ &=(1/m)> R(=(N)Vylog P(r(;0)
i=1 —

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Decomposing the Trajectories Into States and Actions

@ Approximate using m sample paths under policy my:

VoV(0) ~ g=(1/m) ZR))Vg log P(r(1)
=1

Vilog P(0:0) = Vp /"j [/"(“3 T p Bro [s1)2 ae>‘“a(“"9f)
= Ve 103 M(sé X 2, Qb\owcs‘,,\ssm\r 2,15\%[“\:

- Ca =
= 37 Vo logwe (24152
t=c

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Decomposing the Trajectories Into States and Actions

@ Approximate using m sample paths under policy 7y:

m
VoV(0) ~ &=(1/m))_R(r))Vqlog P(r")
i=1
. T-1
Volog P(7();0) = Vylog 1(s0) H mo(at|se) P(Set1lst, ar)
—~— -0 —_—————— ——
Initial state distrib. policy dynamics model
T-1
= Vo |logu(so) + Z log mg(at|st) + log P(St+1|st, ar)
t=0
T-1
= Vo log mg(a|st)
t=0

no dynamics model required!

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Decomposing the Trajectories Into States and Actions

@ Approximate using m sample paths under policy my:

m

VoV(0) ~ &=(1/m)d R(7)Vylog P(r))
i=1
) T-1
Volog P(r1);0) = Vglog | p(so)] mo(aclse) P(sesalse, a:)
SN T T
Initial state distrib. policy dynamics model
T-1
=V |logu(so) + Y _ logmo(at|st) + log P(sts1lst, ar)
t=0

T-1
= Z Vo log mg(at|st)
t=0 g

score function

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Score Function

@ A score function is the derivative of the log of a parameterized
probability / likelihood

e Example: let 7(s; 6) be the probability of state s under parameter 6
@ Then the score function would be

Vo log m(s; 0) (1)

@ For many policy classes, it is not hard to compute the score function

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Softmax Policy

o Weight actions using linear combination of features ¢(s,a)’6

@ Probability of action is proportional to exponentiated weight

mls.a) = CNT) e e

@ The score function is Vg log my(s, a) Vb 2 Pl33) 70

- ve [4,{5“)-(9 / (2“ e‘f’(s.a)fo)

_ | Tp efoes~0
‘P("AB WQ 2 cp(s,.\)r'e

#[s‘é) _ [Z')K Pls,2De

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Softmax Policy

@ Weight actions using linear combination of features ¢(s,a)’ 6
@ Probability of action is proportional to exponentiated weight

mo(s,a) = e?AT/ (3 0o

@ The score function is

e¢(s,a)T9
Vologmy(s,a) = Vi |log T edeaTo (2)
= Vo [d)(s, a)0 — log [Z ed’(s’a)w” 3)
v ¢(s,a)T6
= ¢(57 a) - Zi 22573)T9 (4)
¢>(s,a)T0
= ¢(s,a) — —Z"g(séz():a)w (5)
= ¢(s,a) = Exy[o(s,)] (6)

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Softmax Policy

@ Weight actions using linear combination of features ¢(s,a)’#

@ Probability of action is proportional to exponentiated weight

71_9(57 a) = e(b(sva)Te/(Z e¢(5:a)T0)
a

@ The score function is

Vo logmy(s,a) = ¢(s,a) — Ex,[6(s,)]

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Gaussian Policy

In continuous action spaces, a Gaussian policy is natural
Mean is a linear combination of state features y(s) = ¢(s)"8
Variance may be fixed o2, or can also parametrised

Policy is Gaussian a ~ N (y(s), 02)

The score function is

(a — u(s))o(s)

Vo |Og W@(Sa a) = 72

@ Deep neural networks (and other models where can compute the
gradient) can also be used to represent the policy

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Likelihood Ratio / Score Function Policy Gradient

o Putting this together

@ Goal is to find the policy parameters 6:

V(0) = P(r;0)R
arg max (9) argm;xZT: (m;0)R(7)

@ Approximate with empirical estimate for m sample paths under policy
g using score function:

VeV(0) =~ z:rz(1/m)2mjR(T(")VelogP(T(");e)
m = T-1))
= (1/m) Y RED) " Vylogme(al|st)

i=1 t

I
<)

@ Do not need to know dynamics model

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

L5N2 Check Your Understanding L5: Score functions

m T-1
Vov(9) = (1/m) > R(ED) S Vglogme(al’|s”)
i=1 t=0

The likelihood ratio / score function policy gradient (select one):
(a) requires reward functions that are differentiable
@ (b) can only be used with Markov decision processes
(c) Is useful mostly for infinite horizon tasks
e (a) and (b)
@ a,band c
@ None of the above

@ Not sure

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

L5N2 Check Your Understanding L5: Score functions

Solution

m T-1
VoV(8) = (1/m)Y R(D) D" Vglogmo(at|s”)
i=1 t=0

The likelihood ratio / score function policy gradient (select one):
(a) requires reward functions that are differentiable

(b) can only be used with Markov decision processes

(c) Is useful mostly for infinite horizon tasks

(a) and (b)

a,band c

None of the above
@ Not sure
None of the above

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Score Function Gradient Estimator: Intuition

o Consider generic form of R(7(1))Vylog P(7(7;):
8i = f(xi)Vy log p(xi|0)
@ f(x) measures how good the sample x is.

@ Moving in the direction g; pushes up the logprob of the sample, in
proportion to how good it is

o Valid even if f(x) is discontinuous, and unknown, or sample space
(containing x) is a discrete set

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Policy Gradient Theorem

@ The policy gradient theorem generalizes the likelihood ratio approach

For any differentiable policy my(s, a),

for any of the policy objective function J = J1, (episodic reward), Jar
(average reward per time step), or ﬁJavv (average value),

the policy gradient is

VoJ(0) = Er,[Vglog mp(s,a) Q™ (s, a)]

@ Chapter 13.2 in SB has a nice derivation of the policy gradient
theorem for episodic tasks and discrete states

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Table of Contents

© Policy Gradient Algorithms and Reducing Variance
@ Temporal Structure

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Likelihood Ratio / Score Function Policy Gradient

m T-1
Vov(9) ~ (1/m) > R(D) S Vglogme(al’|s”)
= t=0

@ Unbiased but very noisy
@ Fixes that can make it practical

e Temporal structure
o Baseline

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Policy Gradient: Use Temporal Structure

@ Previously:

T-1 T-1
VoE-[R] = E; [(Z ft) (Z Vy log we(at]st)>]

t=0 t=0

@ We can repeat the same argument to derive the gradient estimator for
a single reward term ry.

t/
VoE[re] =E |re Y Vglog Wa(atlst)]

t=0

@ To see this, recall V(sp,0) = E, [ZLO R(st, at); ma, so} where the
expectation is taken over the states & actions visited by 7y

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Policy Gradient: Use Temporal Structure

=2 (Ao -,\03 LY

@ Previously:

T-1 T-1
VoE-[R] =E. [(Z rt) (Z Vg log 7r9(at!st)>]

t=0 t=0
@ We can repeat the same argument to derive the gradient estimator for
a single reward term ry.

t/
VoE[re] =E |re Y _ Vglog We(atlst)]

t=0

@ Summing this formula over t, we obtain

T-1 ¢
Z ry Z Vi log we(at]st)]
t’'=0 t=0

VoV(0) = V4E[R] = E

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Policy Gradient: Use Temporal Structure

@ Previously:

T-1 T-1
VoE-[R] = E- [(Z ft) (Z Vy log 7T(9(f3t|5t)>]

t=0 t=0
@ We can repeat the same argument to derive the gradient estimator for
a single reward term ry.

VQE[I}/] — E

¢
ry Z V@ IOg W@(at’St)]

t=0
@ Summing this formula over t, we obtain

T-1 t/
Z ry Z Vg log 7r9(at|st)]

VoV(0) = V4E[R] = E

t’=0 t=0

T-1 T-1
=E Z Vg log mg(at, st) Z rt’]

t=0 t'=t

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Policy Gradient: Use Temporal Structure

o Recall for a particular trajectory (7, Zt/) is the return Gt(i)

_t t/
m T-1)
VoE[R] ~ (1/m) > 3" Vlog me(ar, st) G
i=1 t=0

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Monte-Carlo Policy Gradient (REINFORCE)

@ Leverages likelihood ratio / score function and temporal structure

A9t = aVe IOg W@(St, at)Gt

REINFORCE:
Initialize policy parameters @ arbitrarily
for each episode {s1,a1,r, - ,sT_1,ar_1,r7} ~ Ty do

fort=1to T —1do
0 < 0+ aVglogmy(st, at) G
endfor
endfor
return 0

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Likelihood Ratio / Score Function Policy Gradient

m T-1
VoV(0) ~ (1/m) > R(D) S Vglogme(al’|s”)
=1 t=0

@ Unbiased but very noisy
@ Fixes that can make it practical

e Temporal structure
o Baseline
o Alternatives to using Monte Carlo returns R(7()) as targets

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Desired Properties of a Policy Gradient RL Algorithm

@ Goal: Converge as quickly as possible to a local optima

o Incurring reward / cost as execute policy, so want to minimize number
of iterations / time steps until reach a good policy

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Table of Contents

e Policy Gradient Algorithms and Reducing Variance
@ Baseline

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

Policy Gradient: Introduce Baseline

@ Reduce variance by introducing a baseline b(s)

T-1 T-1
Z Vo logm(a¢|st;) <Z re — b(&))]

t=0 t'=t

VoE,[R] = E,

For any choice of b, gradient estimator is unbiased.

Near optimal choice is the expected return,

b(st) =~ E[re + req1+ -+ + rr—1]

Interpretation: increase logprob of action a; proportionally to how
much returns ZtT,;g rv are better than expected

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Policy Gradient | Winter 2026

	Deep Q-Learning
	Introduction to Policy Search Methods for RL
	Score functions and Policy Gradient
	Policy Gradient Algorithms and Reducing Variance
	Temporal Structure

	Policy Gradient Algorithms and Reducing Variance
	Baseline

	Policy Gradient Algorithms and Reducing Variance
	Alternatives to MC Returns

