
Lecture 5: Policy Gradient I

Emma Brunskill

CS234 Reinforcement Learning

Winter 2026

With many slides from or derived from David Silver and John
Schulman and Pieter Abbeel

Additional reading: Sutton and Barto 2018 Chp. 13
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Refresh Your Knowledge. Polleverywhere Poll

Which of the following equations express a TD update? (optional)
1 V (st) = r(st , at) + �

P
s0 p(s

0|st , at)V (s 0)
2 V (st) = (1� ↵)V (st) + ↵(r(st , at) + �V (st+1))
3 V (st) = (1� ↵)V (st) + ↵

P
H

i=t
r(si , ai )

4 V (st) = (1� ↵)V (st) + ↵maxa(r(st , a) + �V (st+1))
5 Not sure

Bootstrapping is (enter in poll)
1 When samples of (s,a,s’) transitions are used to approximate the true

expectation over next states
2 When an estimate of the next state value is used instead of the true

next state value
3 Used in Monte-Carlo policy evaluation
4 Not sure
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Refresh Your Knowledge L4. Polleverywhere Poll

Which of the following equations express a TD update?
V (st) = (1� ↵)V (st) + ↵(r(st , at) + �V (st+1))

Bootstrapping is when:
An estimate of the next state value is used instead of the true next
state value
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Class Structure

Last time: Learning to Control in Tabular MDPs to Deep RL /
Generalization to scale RL

This time: DQN and Policy Search

Next time: Policy Search Cont.
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Recall: Incremental Model-Free Control Approaches

Similar to policy evaluation, true state-action value function for a
state is unknown and so substitute a target value for true Q(st , at)

�w = ↵(Q(st , at)� Q̂(st , at ;w))rw Q̂(st , at ;w)

In Monte Carlo methods, use a return Gt as a substitute target

�w = ↵(Gt � Q̂(st , at ;w))rw Q̂(st , at ;w)

SARSA: Use TD target r + �Q̂(s 0, a0;w) which leverages the current
function approximation value

�w = ↵(r + �Q̂(s 0, a0;w)� Q̂(s, a;w))rw Q̂(s, a;w)

Q-learning: Uses related TD target r + �maxa0 Q̂(s 0, a0;w)

�w = ↵(r + �max
a0

Q̂(s 0, a0;w)� Q̂(s, a;w))rw Q̂(s, a;w)
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”Deadly Triad” which Can Cause Instability

Informally, updates involve doing an (approximate) Bellman backup
followed by best trying to fit underlying value function to a particular
feature representation

Bellman operators are contractions, but value function approximation
fitting can be an expansion

To learn more, see Baird example in Sutton and Barto 2018

”Deadly Triad” can lead to oscillations or lack of convergence
Bootstrapping
Function Approximation
O↵ policy learning (e.g. Q-learning)
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Table of Contents

Deep Q-Learning
Temporal Structure
Baseline
Alternatives to MC Returns
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Using these ideas to do Deep RL in Atari
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Q-Learning with Neural Networks

Q-learning converges to optimal Q⇤(s, a) using tabular representation

In value function approximation Q-learning minimizes MSE loss by
stochastic gradient descent using a target Q estimate instead of true
Q

But Q-learning with VFA can diverge

Two of the issues causing problems:
Correlations between samples
Non-stationary targets

Deep Q-learning (DQN) addresses these challenges by using
Experience replay
Fixed Q-targets
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DQNs: Experience Replay

To help remove correlations, store dataset (called a replay bu↵er) D
from prior experience

To perform experience replay, repeat the following:
(s, a, r , s 0) ⇠ D: sample an experience tuple from the dataset
Compute the target value for the sampled s: r + �maxa0 Q̂(s 0, a0;w)
Use stochastic gradient descent to update the network weights

�w = ↵(r + �max
a0

Q̂(s 0, a0;w)� Q̂(s, a;w))rw Q̂(s, a;w)
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DQNs: Experience Replay

To help remove correlations, store dataset D from prior experience

To perform experience replay, repeat the following:
(s, a, r , s 0) ⇠ D: sample an experience tuple from the dataset
Compute the target value for the sampled s: r + �maxa0 Q̂(s 0, a0;w)
Use stochastic gradient descent to update the network weights

�w = ↵(r + �max
a0

Q̂(s 0, a0;w)� Q̂(s, a;w))rw Q̂(s, a;w)

Uses target as a scalar, but function weights will get updated

on the next round, changing the target value
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DQNs: Fixed Q-Targets

To help improve stability, fix the target weights used in the target
calculation for multiple updates

Target network uses a di↵erent set of weights than the weights being
updated

Let parameters w� be the set of weights used in the target, and w
be the weights that are being updated

Slight change to computation of target value:
(s, a, r , s 0) ⇠ D: sample an experience tuple from the dataset
Compute the target value for the sampled s: r + �maxa0 Q̂(s 0, a0;w�)
Use stochastic gradient descent to update the network weights

�w = ↵(r + �max
a0

Q̂(s 0, a0;w�)� Q̂(s, a;w))rw Q̂(s, a;w)
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DQN Pseudocode

1: Input C , ↵, D = {}, Initialize w , w�
= w , t = 0

2: Get initial state s0

3: loop

4: Sample action at given ✏-greedy policy for current Q̂(st , a;w)

5: Observe reward rt and next state st+1

6: Store transition (st , at , rt , st+1) in replay bu↵er D

7: Sample random minibatch of tuples (si , ai , ri , si+1) from D

8: for j in minibatch do

9: if episode terminated at step i + 1 then

10: yi = ri

11: else

12: yi = ri + � max
a0 Q̂(si+1, a

0
;w�

)

13: end if

14: Do gradient descent step on (yi � Q̂(si , ai ;w))
2
for parameters w : �w = ↵(yi � Q̂(si , ai ;w))rw Q̂(si , ai ;w)

15: end for

16: t = t + 1

17: if mod(t,C) == 0 then

18: w�  w
19: end if

20: end loopNote there are several hyperparameters and algorithm choices. One needs to choose the neural network architecture, the

learning rate, and how often to update the target network. Often a fixed size replay bu↵er is used for experience replay, which

introduces a parameter to control the size, and the need to decide how to populate it.
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Check Your Understanding : Fixed Targets

In DQN we compute the target value for the sampled (s, a, r , s) using
a separate set of target weights: r + �maxa0 Q̂(s 0, a0;w�)

Select all that are true

This doubles the computation time compared to a method that does
not have a separate set of weights

This doubles the memory requirements compared to a method that
does not have a separate set of weights

Not sure
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Check Your Understanding : Fixed Targets. Solutions

In DQN we compute the target value for the sampled (s, a, r , s 0) using
a separate set of target weights: r + �maxa0 Q̂(s 0, a0;w�)

Select all that are true

This doubles the computation time compared to a method that does
not have a separate set of weights

This doubles the memory requirements compared to a method that
does not have a separate set of weights

Not sure

Answer: It doubles the memory requirements.
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DQNs Summary

DQN uses experience replay and fixed Q-targets

Store transition (st , at , rt+1, st+1) in replay memory D
Sample random mini-batch of transitions (s, a, r , s 0) from D
Compute Q-learning targets w.r.t. old, fixed parameters w�

Optimizes MSE between Q-network and Q-learning targets

Uses stochastic gradient descent
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DQNs in Atari

End-to-end learning of values Q(s, a) from pixels s

Input state s is stack of raw pixels from last 4 frames

Output is Q(s, a) for 18 joystick/button positions

Reward is change in score for that step

Used a deep neural network with CNN

Network architecture and hyperparameters fixed across all games
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DQN

Figure: Human-level control through deep reinforcement learning, Mnih et al,
2015
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DQN Results in Atari

Figure: Human-level control through deep reinforcement learning, Mnih et al,
2015
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Which Aspects of DQN were Important for Success?

Game Linear
Deep

Network
DQN w/
fixed Q

DQN w/
replay

DQN w/replay
and fixed Q

Breakout 3 3 10 241 317
Enduro 62 29 141 831 1006
River Raid 2345 1453 2868 4102 7447
Seaquest 656 275 1003 823 2894
Space
Invaders

301 302 373 826 1089

Replay is hugely important

Why? Beyond helping with correlation between samples, what does
replaying do?
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What You Should Understand from Model-Free RL

Lectures

Be able to implement TD(0) and MC on policy evaluation

Be able to implement Q-learning and MC control algorithms

List the 3 issues that can cause instability and describe the problems
qualitatively: function approximation, bootstrapping and o↵-policy
learning

Know some of the key features in DQN that were critical (experience
replay, fixed targets)
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Class Structure

Last time and start of this time: Model-free reinforcement learning
with function approximation

Policy gradients
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Do We Need ”RL” at All? Can we Just do Online

Optimization?

Policy gradient methods have been very influential
In NLP (Sequence Level Training with Recurrent Neural Networks
built on REINFORCE)
End-to-End Training of Deep Visuomotor Policies
https://arxiv.org/abs/1504.00702

ChatGPT and beyond!
In homework 2 you will be implementing Proximal Policy
Optimization (PPO) which was used in training ChatGPT

Figure: Early example of policy gradient methods: training a AIBO to have a
faster walk. Paper: Kohl and Stone, ICRA 2004
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Policy-Based Reinforcement Learning

In the last lecture we approximated the value or action-value function
using parameters w ,

Vw (s) ⇡ V ⇡(s)

Qw (s, a) ⇡ Q⇡(s, a)

A policy was generated directly from the value function
e.g. using ✏-greedy

In this lecture we will directly parametrize the policy, and will typically
use ✓ to show parameterization:

⇡✓(s, a) = P[a|s; ✓]

Goal is to find a policy ⇡ with the highest value function V ⇡

We will focus again on model-free reinforcement learning
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Value-Based and Policy-Based RL

Value Based
learned Value Function
Implicit policy (e.g.
✏-greedy)

Policy Based
No Value Function
Learned Policy

Actor-Critic
Learned Value Function
Learned Policy
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Types of Policies to Search Over

So far have focused on deterministic policies or ✏-greedy policies

Now we are thinking about direct policy search in RL, will focus
heavily on stochastic policies
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Example: Aliased Gridword (1)

The agent cannot di↵erentiate the grey states

Consider features of the following form (for all N, E, S, W)

�(s, a) = (wall to N, a = move E)

Compare value-based RL, using an approximate value function

Q✓(s, a) = f (�(s, a); ✓)

To policy-based RL, using a parametrized policy

⇡✓(s, a) = g(�(s, a); ✓)
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Example: Aliased Gridworld (2)

Under aliasing, an optimal deterministic policy will either
move W in both grey states (shown by red arrows)
move E in both grey states

Either way, it can get stuck and never reach the money

Value-based RL learns a near-deterministic policy
e.g. greedy or ✏-greedy

So it will traverse the corridor for a long time
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Example: Aliased Gridworld (3)

An optimal stochastic policy will randomly move E or W in grey states

⇡✓(wall to N and S, move E) = 0.5

⇡✓(wall to N and S, move W) = 0.5

It will reach the goal state in a few steps with high probability

Policy-based RL can learn the optimal stochastic policy
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Policy optimization

Policy based reinforcement learning is an optimization problem

Find policy parameters ✓ that maximize V (s0, ✓)

Can use gradient free optimization:

Greater e�ciency often possible using gradient
Gradient descent
Conjugate gradient
Quasi-newton

We focus on gradient descent, many extensions possible

And on methods that exploit sequential structure
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Policy Gradient

Define V ⇡✓ = V (s0, ✓) to make explicit the dependence of the value
on the policy parameters

Assume episodic MDPs

Policy gradient algorithms search for a local maximum in V (s0, ✓) by
ascending the gradient of the policy, w.r.t parameters ✓

�✓ = ↵r✓V (s0, ✓)

Where r✓V (s0, ✓) is the policy gradient

r✓V (s0, ✓) =

0

BB@

@V (s0,✓)
@✓1
...

@V (s0,✓)
@✓n

1

CCA

and ↵ is a step-size parameter
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Value of a Parameterized Policy

Now assume policy ⇡✓ is di↵erentiable whenever it is non-zero and we
know the gradient r✓⇡✓(s, a)

Recall policy value is V (s0, ✓) = E⇡✓

hP
T

t=0
R(st , at);⇡✓, s0

i
where

the expectation is taken over the states & actions visited by ⇡✓
We can re-express this in multiple ways

V (s0, ✓) =
P

a
⇡✓(a|s0)Q(s0, a, ✓)
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Value of a Parameterized Policy

Assume policy ⇡✓ is di↵erentiable whenever it is non-zero and we can
compute the gradient r✓⇡✓(s, a)

Recall policy value is V (s0, ✓) = E⇡✓

hP
T

t=0
R(st , at);⇡✓, s0

i
where

the expectation is taken over the states & actions visited by ⇡✓
We can re-express this in multiple ways

V (s0, ✓) =
P

a
⇡✓(a|s0)Q(s0, a, ✓)

V (s0, ✓) =
P

⌧ P(⌧ ; ✓)R(⌧)
where ⌧ = (s0, a0, r0, ..., sT�1, aT�1, rT�1, sT ) is a state-action
trajectory,
P(⌧ ; ✓) is used to denote the probability over trajectories when
executing policy ⇡(✓) starting in state s0, and
R(⌧) =

P
T

t=0
R(st , at) the sum of rewards for a trajectory ⌧

To start will focus on this latter definition. See Chp 13.1-13.3 of SB
for a nice discussion starting with the other definition
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Likelihood Ratio Policies

Denote a state-action trajectory as
⌧ = (s0, a0, r0, ..., sT�1, aT�1, rT�1, sT )

Use R(⌧) =
P

T

t=0
R(st , at) to be the sum of rewards for a trajectory ⌧

Policy value is

V (✓) = E⇡✓

"
TX

t=0

R(st , at);⇡✓

#
=
X

⌧

P(⌧ ; ✓)R(⌧)

where P(⌧ ; ✓) is used to denote the probability over trajectories when
executing policy ⇡(✓)

In this new notation, our goal is to find the policy parameters ✓:

argmax
✓

V (✓) = argmax
✓

X

⌧

P(⌧ ; ✓)R(⌧)
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Likelihood Ratio Policy Gradient

Goal is to find the policy parameters ✓:

argmax
✓

V (✓) = argmax
✓

X

⌧

P(⌧ ; ✓)R(⌧)

Take the gradient with respect to ✓:

r✓V (✓) = r✓

X

⌧

P(⌧ ; ✓)R(⌧)
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Likelihood Ratio Policy Gradient

Goal is to find the policy parameters ✓:

argmax
✓

V (✓) = argmax
✓

X

⌧

P(⌧ ; ✓)R(⌧)

Take the gradient with respect to ✓:

r✓V (✓) = r✓

X

⌧

P(⌧ ; ✓)R(⌧)

=
X

⌧

r✓P(⌧ ; ✓)R(⌧)

=
X

⌧

P(⌧ ; ✓)

P(⌧ ; ✓)
r✓P(⌧ ; ✓)R(⌧)

=
X

⌧

P(⌧ ; ✓)R(⌧)
r✓P(⌧ ; ✓)

P(⌧ ; ✓)| {z }
likelihood ratio

=
X

⌧

P(⌧ ; ✓)R(⌧)r✓ logP(⌧ ; ✓)
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Likelihood Ratio Policy Gradient

Goal is to find the policy parameters ✓:

argmax
✓

V (✓) = argmax
✓

X

⌧

P(⌧ ; ✓)R(⌧)

Take the gradient with respect to ✓:

r✓V (✓) =
X

⌧

P(⌧ ; ✓)R(⌧)r✓ logP(⌧ ; ✓)

Approximate using m sample trajectories under policy ⇡✓:

r✓V (✓) ⇡ ĝ = (1/m)
mX

i=1

R(⌧ (i))r✓ logP(⌧
(i); ✓)
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Decomposing the Trajectories Into States and Actions

Approximate using m sample paths under policy ⇡✓:

r✓V (✓) ⇡ ĝ = (1/m)
mX

i=1

R(⌧ (i))r✓ logP(⌧
(i))

r✓ logP(⌧ (i); ✓) =
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Decomposing the Trajectories Into States and Actions

Approximate using m sample paths under policy ⇡✓:

r✓V (✓) ⇡ ĝ = (1/m)
mX

i=1

R(⌧ (i))r✓ logP(⌧
(i))

r✓ logP(⌧
(i); ✓) = r✓ log

2

64 µ(s0)| {z }
Initial state distrib.

T�1Y

t=0

⇡✓(at |st)| {z }
policy

P(st+1|st , at)| {z }
dynamics model

3

75

= r✓

"
logµ(s0) +

T�1X

t=0

log ⇡✓(at |st) + logP(st+1|st , at)
#

=
T�1X

t=0

r✓ log ⇡✓(at |st)| {z }
no dynamics model required!
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Decomposing the Trajectories Into States and Actions

Approximate using m sample paths under policy ⇡✓:

r✓V (✓) ⇡ ĝ = (1/m)
mX

i=1

R(⌧ (i))r✓ logP(⌧
(i))

r✓ logP(⌧
(i); ✓) = r✓ log

2

64 µ(s0)| {z }
Initial state distrib.

T�1Y

t=0

⇡✓(at |st)| {z }
policy

P(st+1|st , at)| {z }
dynamics model

3

75

= r✓

"
logµ(s0) +

T�1X

t=0

log ⇡✓(at |st) + logP(st+1|st , at)
#

=
T�1X

t=0

r✓ log ⇡✓(at |st)| {z }
score function
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Score Function

A score function is the derivative of the log of a parameterized
probability / likelihood

Example: let ⇡(s; ✓) be the probability of state s under parameter ✓

Then the score function would be

r✓ log ⇡(s; ✓) (1)

For many policy classes, it is not hard to compute the score function
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Softmax Policy

Weight actions using linear combination of features �(s, a)T ✓

Probability of action is proportional to exponentiated weight

⇡✓(s, a) = e�(s,a)
T ✓/(

X

a

e�(s,a)
T ✓)

The score function is r✓ log ⇡✓(s, a) =
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Softmax Policy

Weight actions using linear combination of features �(s, a)T ✓

Probability of action is proportional to exponentiated weight

⇡✓(s, a) = e�(s,a)
T ✓/(

X

a

e�(s,a)
T ✓)

The score function is

r✓ log ⇡✓(s, a) = r✓

"
log

"
e�(s,a)

T ✓

P
a
e�(s,a)T ✓

##
(2)

= r✓

"
�(s, a)✓ � log

"
X

a

e�(s,a)
T ✓

##
(3)

= �(s, a)�
P

a
r✓e

�(s,a)T ✓

P
a
e�(s,a)T ✓

(4)

= �(s, a)�
P

a
�(s, a)e�(s,a)

T ✓

P
a
e�(s,a)T ✓

(5)

= �(s, a)� E⇡✓ [�(s, ·)] (6)
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Softmax Policy

Weight actions using linear combination of features �(s, a)T ✓

Probability of action is proportional to exponentiated weight

⇡✓(s, a) = e�(s,a)
T ✓/(

X

a

e�(s,a)
T ✓)

The score function is

r✓ log ⇡✓(s, a) = �(s, a)� E⇡✓ [�(s, ·)]
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Gaussian Policy

In continuous action spaces, a Gaussian policy is natural

Mean is a linear combination of state features µ(s) = �(s)T ✓

Variance may be fixed �2, or can also parametrised

Policy is Gaussian a ⇠ N (µ(s),�2)

The score function is

r✓ log ⇡✓(s, a) =
(a� µ(s))�(s)

�2

Deep neural networks (and other models where can compute the
gradient) can also be used to represent the policy
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Likelihood Ratio / Score Function Policy Gradient

Putting this together

Goal is to find the policy parameters ✓:

argmax
✓

V (✓) = argmax
✓

X

⌧

P(⌧ ; ✓)R(⌧)

Approximate with empirical estimate for m sample paths under policy
⇡✓ using score function:

r✓V (✓) ⇡ ĝ = (1/m)
mX

i=1

R(⌧ (i))r✓ logP(⌧
(i); ✓)

= (1/m)
mX

i=1

R(⌧ (i))
T�1X

t=0

r✓ log ⇡✓(a
(i)

t |s(i)t )

Do not need to know dynamics model
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L5N2 Check Your Understanding L5: Score functions

r✓V (✓) = (1/m)
mX

i=1

R(⌧ (i))
T�1X

t=0

r✓ log ⇡✓(a
(i)

t |s(i)t )

The likelihood ratio / score function policy gradient (select one):

(a) requires reward functions that are di↵erentiable

(b) can only be used with Markov decision processes

(c) Is useful mostly for infinite horizon tasks

(a) and (b)

a,b and c

None of the above

Not sure
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L5N2 Check Your Understanding L5: Score functions

Solution

r✓V (✓) = (1/m)
mX

i=1

R(⌧ (i))
T�1X

t=0

r✓ log ⇡✓(a
(i)

t |s(i)t )

The likelihood ratio / score function policy gradient (select one):

(a) requires reward functions that are di↵erentiable

(b) can only be used with Markov decision processes

(c) Is useful mostly for infinite horizon tasks

(a) and (b)

a,b and c

None of the above

Not sure

None of the above
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Score Function Gradient Estimator: Intuition

Consider generic form of R(⌧ (i))r✓ logP(⌧ (i); ✓):
ĝi = f (xi )r✓ log p(xi |✓)
f (x) measures how good the sample x is.

Moving in the direction ĝi pushes up the logprob of the sample, in
proportion to how good it is

Valid even if f (x) is discontinuous, and unknown, or sample space
(containing x) is a discrete set
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Policy Gradient Theorem

The policy gradient theorem generalizes the likelihood ratio approach

Theorem

For any di↵erentiable policy ⇡✓(s, a),
for any of the policy objective function J = J1, (episodic reward), JavR
(average reward per time step), or 1

1�� JavV (average value),
the policy gradient is

r✓J(✓) = E⇡✓ [r✓ log ⇡✓(s, a)Q
⇡✓(s, a)]

Chapter 13.2 in SB has a nice derivation of the policy gradient
theorem for episodic tasks and discrete states
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Likelihood Ratio / Score Function Policy Gradient

r✓V (✓) ⇡ (1/m)
mX

i=1

R(⌧ (i))
T�1X

t=0

r✓ log ⇡✓(a
(i)

t |s(i)t )

Unbiased but very noisy

Fixes that can make it practical
Temporal structure
Baseline
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Policy Gradient: Use Temporal Structure

Previously:

r✓E⌧ [R] = E⌧

" 
T�1X

t=0

rt

! 
T�1X

t=0

r✓ log ⇡✓(at |st)
!#

We can repeat the same argument to derive the gradient estimator for
a single reward term rt0 .

r✓E[rt0 ] = E
"
rt0

t
0X

t=0

r✓ log ⇡✓(at |st)
#

To see this, recall V (s0, ✓) = E⇡✓

hP
T

t=0
R(st , at);⇡✓, s0

i
where the

expectation is taken over the states & actions visited by ⇡✓
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Policy Gradient: Use Temporal Structure

Previously:

r✓E⌧ [R] = E⌧

" 
T�1X

t=0

rt

! 
T�1X

t=0

r✓ log ⇡✓(at |st)
!#

We can repeat the same argument to derive the gradient estimator for
a single reward term rt0 .

r✓E[rt0 ] = E
"
rt0

t
0X

t=0

r✓ log ⇡✓(at |st)
#

Summing this formula over t, we obtain

r✓V (✓) = r✓E[R] = E
"
T�1X

t0=0

rt0
t
0X

t=0

r✓ log ⇡✓(at |st)
#

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Winter 2026 54 / 78



Policy Gradient: Use Temporal Structure

Previously:

r✓E⌧ [R] = E⌧

" 
T�1X

t=0

rt

! 
T�1X

t=0

r✓ log ⇡✓(at |st)
!#

We can repeat the same argument to derive the gradient estimator for
a single reward term rt0 .

r✓E[rt0 ] = E
"
rt0

t
0X

t=0

r✓ log ⇡✓(at |st)
#

Summing this formula over t, we obtain

r✓V (✓) = r✓E[R] = E
"
T�1X

t0=0

rt0
t
0X

t=0

r✓ log ⇡✓(at |st)
#

= E
"
T�1X

t=0

r✓ log ⇡✓(at , st)
T�1X

t0=t

rt0

#
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Policy Gradient: Use Temporal Structure

Recall for a particular trajectory ⌧ (i),
P

T�1

t0=t
r (i)
t0 is the return G (i)

t

r✓E[R] ⇡ (1/m)
mX

i=1

T�1X

t=0

r✓ log ⇡✓(at , st)G
(i)

t
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Monte-Carlo Policy Gradient (REINFORCE)

Leverages likelihood ratio / score function and temporal structure

�✓t = ↵r✓ log ⇡✓(st , at)Gt

REINFORCE:

Initialize policy parameters ✓ arbitrarily
for each episode {s1, a1, r2, · · · , sT�1, aT�1, rT} ⇠ ⇡✓ do

for t = 1 to T � 1 do

✓  ✓ + ↵r✓ log ⇡✓(st , at)Gt

endfor

endfor

return ✓
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Likelihood Ratio / Score Function Policy Gradient

r✓V (✓) ⇡ (1/m)
mX

i=1

R(⌧ (i))
T�1X

t=0

r✓ log ⇡✓(a
(i)

t |s(i)t )

Unbiased but very noisy

Fixes that can make it practical
Temporal structure
Baseline

Alternatives to using Monte Carlo returns R(⌧ (i)) as targets
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Desired Properties of a Policy Gradient RL Algorithm

Goal: Converge as quickly as possible to a local optima
Incurring reward / cost as execute policy, so want to minimize number
of iterations / time steps until reach a good policy
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Policy Gradient: Introduce Baseline

Reduce variance by introducing a baseline b(s)

r✓E⌧ [R] = E⌧

"
T�1X

t=0

r✓ log ⇡(at |st ; ✓)
 

T�1X

t0=t

rt0 � b(st)

!#

For any choice of b, gradient estimator is unbiased.

Near optimal choice is the expected return,

b(st) ⇡ E[rt + rt+1 + · · ·+ rT�1]

Interpretation: increase logprob of action at proportionally to how
much returns

P
T�1

t0=t
rt0 are better than expected
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