

Lecture 5: Policy Gradient I

Emma Brunskill

CS234 Reinforcement Learning

Winter 2026

- With many slides from or derived from David Silver and John Schulman and Pieter Abbeel
- Additional reading: Sutton and Barto 2018 Chp. 13

Refresh Your Knowledge. Polleverywhere Poll

- Which of the following equations express a TD update? (optional)

- 1 $V(s_t) = r(s_t, a_t) + \gamma \sum_{s'} p(s'|s_t, a_t) V(s')$
- 2 $V(s_t) = (1 - \alpha)V(s_t) + \alpha(r(s_t, a_t) + \gamma V(s_{t+1}))$
- 3 $V(s_t) = (1 - \alpha)V(s_t) + \alpha \sum_{i=t}^H r(s_i, a_i)$
- 4 $V(s_t) = (1 - \alpha)V(s_t) + \alpha \max_a(r(s_t, a) + \gamma V(s_{t+1}))$
- 5 Not sure

- Bootstrapping is (enter in poll)

- 1 When samples of (s, a, s') transitions are used to approximate the true expectation over next states
- 2 When an estimate of the next state value is used instead of the true next state value
- 3 Used in Monte-Carlo policy evaluation
- 4 Not sure

- Which of the following equations express a TD update?

$$V(s_t) = (1 - \alpha)V(s_t) + \alpha(r(s_t, a_t) + \gamma V(s_{t+1}))$$

- Bootstrapping is when:

An estimate of the next state value is used instead of the true next state value

Class Structure

- Last time: Learning to Control in Tabular MDPs to Deep RL / Generalization to scale RL
- **This time: DQN and Policy Search**
- Next time: Policy Search Cont.

Recall: Incremental Model-Free Control Approaches

first do a "back-up" then func approx

- Similar to policy evaluation, true state-action value function for a state is unknown and so substitute a target value for true $Q(s_t, a_t)$

$$\Delta \mathbf{w} = \alpha(Q(s_t, a_t) - \hat{Q}(s_t, a_t; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s_t, a_t; \mathbf{w})$$

- In Monte Carlo methods, use a return G_t as a substitute target

first target

$$\Delta \mathbf{w} = \alpha(G_t - \hat{Q}(s_t, a_t; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s_t, a_t; \mathbf{w})$$

- SARSA: Use TD target $r + \gamma \hat{Q}(s', a'; \mathbf{w})$ which leverages the current function approximation value

first target

$$\Delta \mathbf{w} = \alpha(r + \gamma \hat{Q}(s', a'; \mathbf{w}) - \hat{Q}(s, a; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s, a; \mathbf{w})$$

- Q-learning: Uses related TD target $r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w})$

target

$$\Delta \mathbf{w} = \alpha(r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w}) - \hat{Q}(s, a; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s, a; \mathbf{w})$$

off policy

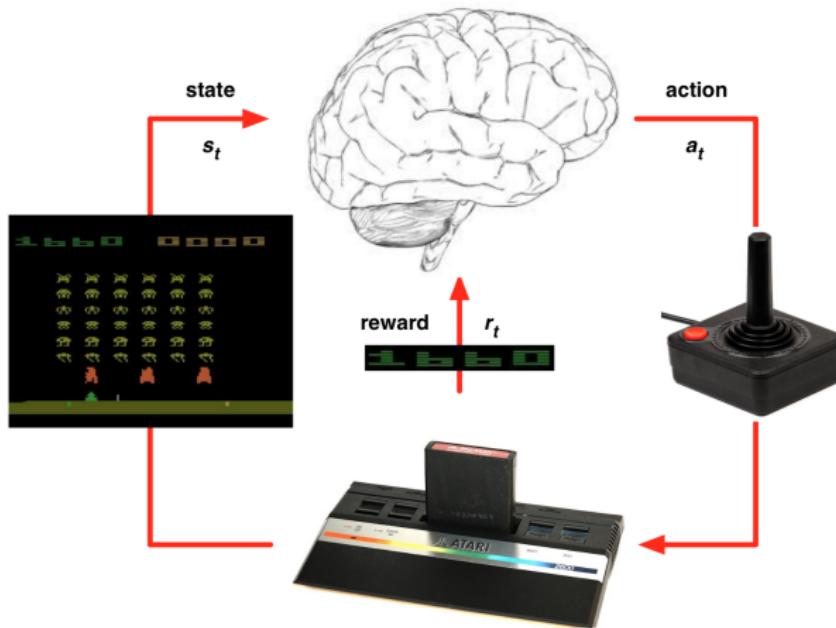
"Deadly Triad" which Can Cause Instability

- Informally, updates involve doing an (approximate) Bellman backup followed by best trying to fit underlying value function to a particular feature representation
- Bellman operators are contractions, but value function approximation fitting can be an expansion
 - To learn more, see [Baird example in Sutton and Barto 2018](#)
- "Deadly Triad" can lead to oscillations or lack of convergence
 - Bootstrapping
 - Function Approximation
 - Off policy learning (e.g. Q-learning)

Table of Contents

- Deep Q-Learning
- Temporal Structure
- Baseline
- Alternatives to MC Returns

Using these ideas to do Deep RL in Atari

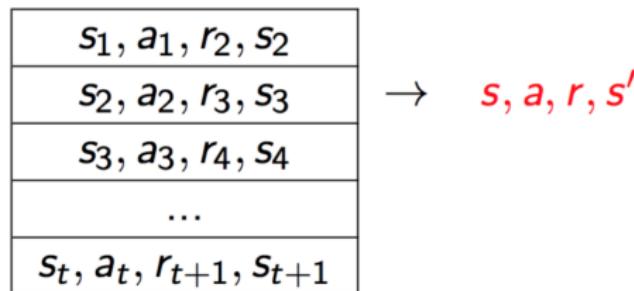


Q-Learning with Neural Networks

- Q-learning converges to optimal $Q^*(s, a)$ using tabular representation
- In value function approximation Q-learning minimizes MSE loss by stochastic gradient descent using a target Q estimate instead of true Q
- But Q-learning with VFA can diverge
- Two of the issues causing problems:
 - Correlations between samples
 - Non-stationary targets
- Deep Q-learning (DQN) addresses these challenges by using
 - Experience replay
 - Fixed Q-targets

DQNs: Experience Replay

- To help remove correlations, store dataset (called a **replay buffer**) \mathcal{D} from prior experience



- To perform experience replay, repeat the following:
 - $(s, a, r, s') \sim \mathcal{D}$: sample an experience tuple from the dataset
 - Compute the target value for the sampled s : $r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w})$
 - Use stochastic gradient descent to update the network weights

$$\Delta \mathbf{w} = \alpha(r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w}) - \hat{Q}(s, a; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s, a; \mathbf{w})$$

DQNs: Experience Replay

- To help remove correlations, store dataset \mathcal{D} from prior experience

s_1, a_1, r_2, s_2
s_2, a_2, r_3, s_3
s_3, a_3, r_4, s_4
\dots
$s_t, a_t, r_{t+1}, s_{t+1}$

→ s, a, r, s'

- To perform experience replay, repeat the following:
 - $(s, a, r, s') \sim \mathcal{D}$: sample an experience tuple from the dataset
 - Compute the target value for the sampled s : $r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w})$
 - Use stochastic gradient descent to update the network weights

$$\Delta \mathbf{w} = \alpha(r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w}) - \hat{Q}(s, a; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s, a; \mathbf{w})$$

- Uses target as a scalar, but function weights will get updated on the next round, changing the target value**

DQNs: Fixed Q-Targets

- To help improve stability, fix the **target weights** used in the target calculation for multiple updates
- Target network uses a different set of weights than the weights being updated
- Let parameters \mathbf{w}^- be the set of weights used in the target, and \mathbf{w} be the weights that are being updated
- Slight change to computation of target value:
 - $(s, a, r, s') \sim \mathcal{D}$: sample an experience tuple from the dataset
 - Compute the target value for the sampled s : $r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w}^-)$
 - Use stochastic gradient descent to update the network weights

$$\Delta \mathbf{w} = \alpha(r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w}^-) - \hat{Q}(s, a; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s, a; \mathbf{w})$$

DQN Pseudocode

```
1: Input  $C, \alpha$ ,  $D = \{\}$ , Initialize  $\mathbf{w}$ ,  $\mathbf{w}^- = \mathbf{w}$ ,  $t = 0$ 
2: Get initial state  $s_0$ 
3: loop
4:   Sample action  $a_t$  given  $\epsilon$ -greedy policy for current  $\hat{Q}(s_t, a; \mathbf{w})$ 
5:   Observe reward  $r_t$  and next state  $s_{t+1}$ 
6:   Store transition  $(s_t, a_t, r_t, s_{t+1})$  in replay buffer  $D$ 
7:   Sample random minibatch of tuples  $(s_i, a_i, r_i, s_{i+1})$  from  $D$ 
8:   for  $j$  in minibatch do
9:     if episode terminated at step  $i + 1$  then
10:       $y_i = r_i$ 
11:    else
12:       $y_i = r_i + \gamma \max_{a'} \hat{Q}(s_{i+1}, a'; \mathbf{w}^-)$ 
13:    end if
14:    Do gradient descent step on  $(y_i - \hat{Q}(s_i, a_i; \mathbf{w}))^2$  for parameters  $\mathbf{w}$ :  $\Delta \mathbf{w} = \alpha(y_i - \hat{Q}(s_i, a_i; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s_i, a_i; \mathbf{w})$ 
15:   end for
16:    $t = t + 1$ 
17:   if  $\text{mod}(t, C) == 0$  then
18:      $\mathbf{w}^- \leftarrow \mathbf{w}$ 
19:   end if
20: end loop several hyperparameters and algorithm choices. One needs to choose the neural network architecture, the
```

learning rate, and how often to update the target network. Often a fixed size replay buffer is used for experience replay, which introduces a parameter to control the size, and the need to decide how to populate it.

Check Your Understanding : Fixed Targets

- In DQN we compute the target value for the sampled (s, a, r, s') using a separate set of target weights: $r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w}^-)$
- Select all that are true
- This doubles the computation time compared to a method that does not have a separate set of weights
- This doubles the memory requirements compared to a method that does not have a separate set of weights
- Not sure

Check Your Understanding : Fixed Targets. **Solutions**

- In DQN we compute the target value for the sampled (s, a, r, s') using a separate set of target weights: $r + \gamma \max_{a'} \hat{Q}(s', a'; \mathbf{w}^-)$
- Select all that are true
- This doubles the computation time compared to a method that does not have a separate set of weights
- This doubles the memory requirements compared to a method that does not have a separate set of weights
- Not sure

Answer: It doubles the memory requirements.

DQNs Summary

- DQN uses experience replay and fixed Q-targets
- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory \mathcal{D}
- Sample random mini-batch of transitions (s, a, r, s') from \mathcal{D}
- Compute Q-learning targets w.r.t. old, fixed parameters \mathbf{w}^-
- Optimizes MSE between Q-network and Q-learning targets
- Uses stochastic gradient descent

DQNs in Atari

- End-to-end learning of values $Q(s, a)$ from pixels s
- Input state s is stack of raw pixels from last 4 frames
- Output is $Q(s, a)$ for 18 joystick/button positions
- Reward is change in score for that step
- Used a deep neural network with CNN
- Network architecture and hyperparameters fixed across all games

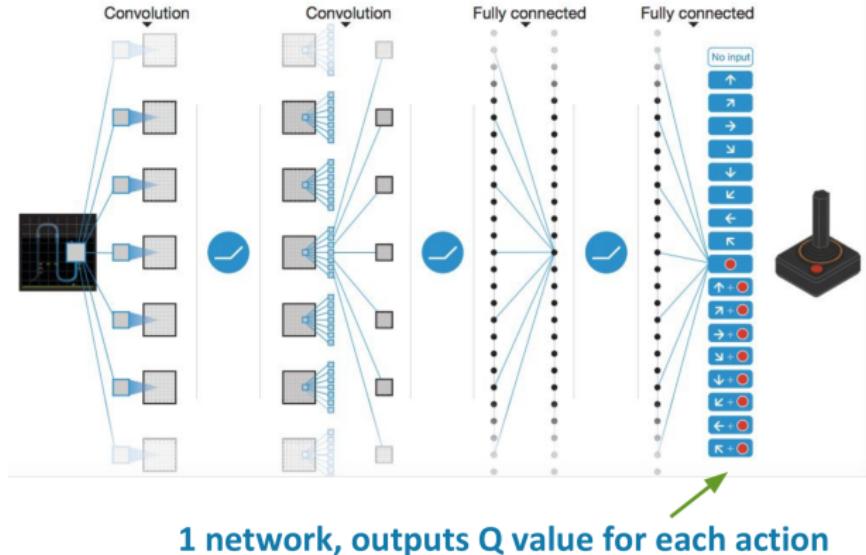


Figure: Human-level control through deep reinforcement learning, Mnih et al, 2015

DQN Results in Atari

Figure: Human-level control through deep reinforcement learning, Mnih et al, 2015

Which Aspects of DQN were Important for Success?

Game	Linear	Deep Network	DQN w/ fixed Q	DQN w/ replay	DQN w/replay and fixed Q
Breakout	3	3	10	241	317
Enduro	62	29	141	831	1006
River Raid	2345	1453	2868	4102	7447
Seaquest	656	275	1003	823	2894
Space Invaders	301	302	373	826	1089

- Replay is **hugely** important
- Why? Beyond helping with correlation between samples, what does replaying do?

What You Should Understand from Model-Free RL Lectures

- Be able to implement TD(0) and MC on policy evaluation
- Be able to implement Q-learning and MC control algorithms
- List the 3 issues that can cause instability and describe the problems qualitatively: function approximation, bootstrapping and off-policy learning
- Know some of the key features in DQN that were critical (experience replay, fixed targets)

+ func approx

Class Structure

- Last time and start of this time: Model-free reinforcement learning with function approximation
- Policy gradients

Do We Need "RL" at All? Can we Just do Online Optimization?

- Policy gradient methods have been **very** influential
- In NLP (Sequence Level Training with Recurrent Neural Networks built on REINFORCE)
- End-to-End Training of Deep Visuomotor Policies
<https://arxiv.org/abs/1504.00702>
- ChatGPT and beyond!
- In homework 2 you will be implementing Proximal Policy Optimization (PPO) which was used in training ChatGPT

Figure: Early example of policy gradient methods: training a AIBO to have a faster walk. Paper: Kohl and Stone, ICPA 2004

Policy-Based Reinforcement Learning

- In the last lecture we approximated the value or action-value function using parameters w ,

$$V_w(s) \approx V^\pi(s)$$

$$Q_w(s, a) \approx Q^\pi(s, a)$$

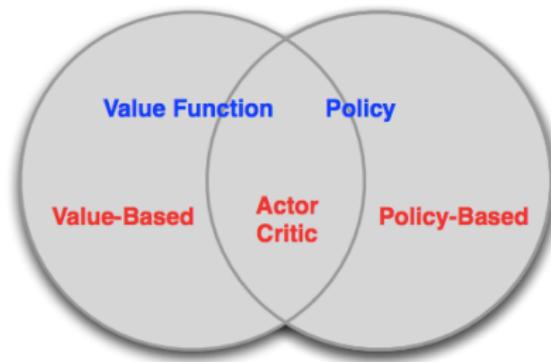
- A policy was generated directly from the value function
 - e.g. using ϵ -greedy
- In this lecture we will directly parametrize the policy, and will typically use θ to show parameterization:

$$\pi_\theta(s, a) = \mathbb{P}[a|s; \theta]$$

- Goal is to find a policy π with the highest value function V^π
- We will focus again on model-free reinforcement learning

Value-Based and Policy-Based RL

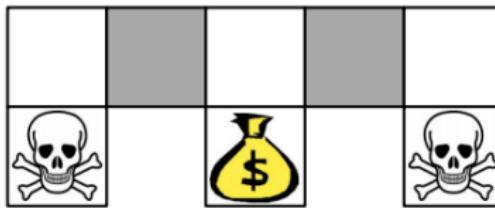
- Value Based
 - learned Value Function
 - Implicit policy (e.g. ϵ -greedy)
- Policy Based
 - No Value Function
 - Learned Policy
- Actor-Critic
 - Learned Value Function
 - Learned Policy



Types of Policies to Search Over

- So far have focused on deterministic policies or ϵ -greedy policies
- Now we are thinking about direct policy search in RL, will focus heavily on stochastic policies

Example: Aliased Gridworld (1)



- The agent cannot differentiate the grey states
- Consider features of the following form (for all N, E, S, W)

$$\phi(s, a) = \mathbb{1}(\text{wall to N}, a = \text{move E})$$

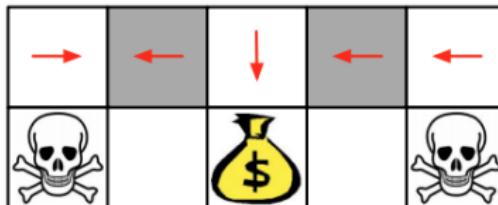
- Compare value-based RL, using an approximate value function

$$Q_\theta(s, a) = f(\phi(s, a); \theta)$$

- To policy-based RL, using a parametrized policy

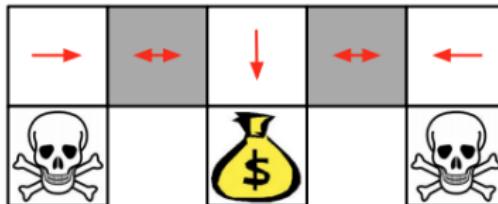
$$\pi_\theta(s, a) = g(\phi(s, a); \theta)$$

Example: Aliased Gridworld (2)



- Under aliasing, an optimal **deterministic** policy will either
 - move W in both grey states (shown by red arrows)
 - move E in both grey states
- Either way, it can get stuck and never reach the money
- Value-based RL learns a near-deterministic policy
 - e.g. greedy or ϵ -greedy
- So it will traverse the corridor for a long time

Example: Aliased Gridworld (3)



- An optimal **stochastic** policy will randomly move E or W in grey states

$$\pi_{\theta}(\text{wall to N and S, move E}) = 0.5$$

$$\pi_{\theta}(\text{wall to N and S, move W}) = 0.5$$

- It will reach the goal state in a few steps with high probability
- Policy-based RL can learn the optimal stochastic policy

Policy optimization

- Policy based reinforcement learning is an **optimization** problem
- Find policy parameters θ that maximize $V(s_0, \theta)$
- Can use gradient free optimization:
- Greater **efficiency** often possible using gradient
 - Gradient descent
 - Conjugate gradient
 - Quasi-newton
- We focus on gradient descent, many extensions possible
- And on **methods that exploit sequential structure**

Policy Gradient

- Define $V^{\pi_\theta} = V(s_0, \theta)$ to make explicit the dependence of the value on the policy parameters
- Assume episodic MDPs
- Policy gradient algorithms search for a *local* maximum in $V(s_0, \theta)$ by ascending the gradient of the policy, w.r.t parameters θ

$$\Delta\theta = \alpha \nabla_\theta V(s_0, \theta)$$

- Where $\nabla_\theta V(s_0, \theta)$ is the **policy gradient**

$$\nabla_\theta V(s_0, \theta) = \begin{pmatrix} \frac{\partial V(s_0, \theta)}{\partial \theta_1} \\ \vdots \\ \frac{\partial V(s_0, \theta)}{\partial \theta_n} \end{pmatrix}$$

- and α is a step-size parameter

Value of a Parameterized Policy

- Now assume policy π_θ is differentiable whenever it is non-zero and we know the gradient $\nabla_\theta \pi_\theta(s, a)$
- Recall policy value is $V(s_0, \theta) = \mathbb{E}_{\pi_\theta} \left[\sum_{t=0}^T R(s_t, a_t); \pi_\theta, s_0 \right]$ where the expectation is taken over the states & actions visited by π_θ
- We can re-express this in multiple ways

$$V(s_0, \theta) = \sum_a \pi_\theta(a|s_0) Q(s_0, a, \theta)$$

$$= \underbrace{\sum_{\gamma} p(\gamma|\theta)}_{\text{approx w/sampling}} \underbrace{R(\gamma)}_{\text{rewards in a traj}}$$

$\gamma = \text{traj / episode}$
 $\text{also called } G_t \text{ in prior lectures}$

Value of a Parameterized Policy

- Assume policy π_θ is differentiable whenever it is non-zero and we can compute the gradient $\nabla_\theta \pi_\theta(s, a)$
- Recall policy value is $V(s_0, \theta) = \mathbb{E}_{\pi_\theta} \left[\sum_{t=0}^T R(s_t, a_t); \pi_\theta, s_0 \right]$ where the expectation is taken over the states & actions visited by π_θ
- We can re-express this in multiple ways
 - $V(s_0, \theta) = \sum_a \pi_\theta(a|s_0) Q(s_0, a, \theta)$
 - $V(s_0, \theta) = \sum_\tau P(\tau; \theta) R(\tau)$
 - where $\tau = (s_0, a_0, r_0, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T)$ is a state-action trajectory,
 - $P(\tau; \theta)$ is used to denote the probability over trajectories when executing policy $\pi(\theta)$ starting in state s_0 , and
 - $R(\tau) = \sum_{t=0}^T R(s_t, a_t)$ the sum of rewards for a trajectory τ
- To start will focus on this latter definition. See Chp 13.1-13.3 of SB for a nice discussion starting with the other definition

Likelihood Ratio Policies

- Denote a state-action trajectory as

$$\tau = (s_0, a_0, r_0, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T)$$

- Use $R(\tau) = \sum_{t=0}^T R(s_t, a_t)$ to be the sum of rewards for a trajectory τ
- Policy value is

$$V(\theta) = \mathbb{E}_{\pi_\theta} \left[\sum_{t=0}^T R(s_t, a_t); \pi_\theta \right] = \sum_{\tau} P(\tau; \theta) R(\tau)$$

- where $P(\tau; \theta)$ is used to denote the probability over trajectories when executing policy $\pi(\theta)$
- In this new notation, our goal is to find the policy parameters θ :

$$\arg \max_{\theta} V(\theta) = \arg \max_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau)$$

Likelihood Ratio Policy Gradient

- Goal is to find the policy parameters θ :

$$\arg \max_{\theta} V(\theta) = \arg \max_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau)$$

- Take the gradient with respect to θ :

$$\begin{aligned}\nabla_{\theta} V(\theta) &= \nabla_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau) \\ &= \sum_{\tau} R(\tau) \nabla_{\theta} P(\tau; \theta) \\ &= \sum_{\tau} R(\tau) \frac{P(\tau; \theta)}{P(\tau; \theta)} \nabla_{\theta} P(\tau; \theta) \\ &= \sum_{\tau} R(\tau) P(\tau; \theta) \nabla_{\theta} \log P(\tau; \theta)\end{aligned}$$

Likelihood Ratio Policy Gradient

- Goal is to find the policy parameters θ :

$$\arg \max_{\theta} V(\theta) = \arg \max_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau)$$

- Take the gradient with respect to θ :

$$\begin{aligned}\nabla_{\theta} V(\theta) &= \nabla_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau) \\ &= \sum_{\tau} \nabla_{\theta} P(\tau; \theta) R(\tau) \\ &= \sum_{\tau} \frac{P(\tau; \theta)}{P(\tau; \theta)} \nabla_{\theta} P(\tau; \theta) R(\tau) \\ &= \sum_{\tau} P(\tau; \theta) R(\tau) \underbrace{\frac{\nabla_{\theta} P(\tau; \theta)}{P(\tau; \theta)}}_{\text{likelihood ratio}} \\ &= \sum_{\tau} P(\tau; \theta) R(\tau) \nabla_{\theta} \log P(\tau; \theta)\end{aligned}$$

Likelihood Ratio Policy Gradient

- Goal is to find the policy parameters θ :

$$\arg \max_{\theta} V(\theta) = \arg \max_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau)$$

- Take the gradient with respect to θ :

$$\nabla_{\theta} V(\theta) = \sum_{\tau} P(\tau; \theta) R(\tau) \nabla_{\theta} \log P(\tau; \theta)$$

- Approximate using m sample trajectories under policy π_{θ} :

$$\nabla_{\theta} V(\theta) \approx \hat{g} = (1/m) \sum_{i=1}^m R(\tau^{(i)}) \nabla_{\theta} \log P(\tau^{(i)}; \theta)$$

Decomposing the Trajectories Into States and Actions

- Approximate using m sample paths under policy π_θ :

$$\nabla_\theta V(\theta) \approx \hat{g} = (1/m) \sum_{i=1}^m R(\tau^{(i)}) \nabla_\theta \log P(\tau^{(i)})$$

$$\begin{aligned} \nabla_\theta \log P(\tau^{(i)}; \theta) &= \nabla_\theta \log \left[\mu(s_0) \prod_{t=0}^{T-1} p(s_{t+1} | s_t, a_t) \pi_\theta(a_t | s_t) \right] \\ &= \underbrace{\nabla_\theta \log \mu(s_0)}_{=C} + \underbrace{\sum_{t=0}^{T-1} \nabla_\theta \log p(s_{t+1} | s_t, a_t)}_{=0} + \underbrace{\sum_{t=0}^{T-1} \nabla_\theta \log \pi_\theta(a_t | s_t)} \\ &= \sum_{t=0}^{T-1} \nabla_\theta \log \pi_\theta(a_t | s_t) \end{aligned}$$

Decomposing the Trajectories Into States and Actions

- Approximate using m sample paths under policy π_θ :

$$\nabla_\theta V(\theta) \approx \hat{g} = (1/m) \underbrace{\sum_{i=1}^m R(\tau^{(i)})}_{\nabla_\theta \log P(\tau^{(i)})}$$

$$\begin{aligned}\nabla_\theta \log P(\tau^{(i)}; \theta) &= \nabla_\theta \log \left[\underbrace{\mu(s_0)}_{\text{Initial state distrib.}} \prod_{t=0}^{T-1} \underbrace{\pi_\theta(a_t | s_t)}_{\text{policy}} \underbrace{P(s_{t+1} | s_t, a_t)}_{\text{dynamics model}} \right] \\ &= \nabla_\theta \left[\log \mu(s_0) + \sum_{t=0}^{T-1} \log \pi_\theta(a_t | s_t) + \log P(s_{t+1} | s_t, a_t) \right] \\ &= \sum_{t=0}^{T-1} \underbrace{\nabla_\theta \log \pi_\theta(a_t | s_t)}_{\text{no dynamics model required!}}\end{aligned}$$

Decomposing the Trajectories Into States and Actions

- Approximate using m sample paths under policy π_θ :

$$\nabla_\theta V(\theta) \approx \hat{g} = (1/m) \sum_{i=1}^m R(\tau^{(i)}) \nabla_\theta \log P(\tau^{(i)})$$

$$\begin{aligned}\nabla_\theta \log P(\tau^{(i)}; \theta) &= \nabla_\theta \log \left[\underbrace{\mu(s_0)}_{\text{Initial state distrib.}} \prod_{t=0}^{T-1} \underbrace{\pi_\theta(a_t | s_t)}_{\text{policy}} \underbrace{P(s_{t+1} | s_t, a_t)}_{\text{dynamics model}} \right] \\ &= \nabla_\theta \left[\log \mu(s_0) + \sum_{t=0}^{T-1} \log \pi_\theta(a_t | s_t) + \log P(s_{t+1} | s_t, a_t) \right] \\ &= \sum_{t=0}^{T-1} \underbrace{\nabla_\theta \log \pi_\theta(a_t | s_t)}_{\text{score function}}\end{aligned}$$

Score Function

- A score function is the derivative of the log of a parameterized probability / likelihood
- Example: let $\pi(s; \theta)$ be the probability of state s under parameter θ
- Then the score function would be

$$\nabla_{\theta} \log \pi(s; \theta) \tag{1}$$

- For many policy classes, it is not hard to compute the score function

Softmax Policy

- Weight actions using linear combination of features $\phi(s, a)^T \theta$
- Probability of action is proportional to exponentiated weight

$$\pi_\theta(s, a) = e^{\phi(s, a)^T \theta} / \left(\sum_a e^{\phi(s, a)^T \theta} \right)$$

$$\begin{aligned} \bullet \text{ The score function is } \nabla_\theta \log \pi_\theta(s, a) &= \nabla_\theta \log \left[\frac{e^{\phi(s, a)^T \theta}}{\sum_a e^{\phi(s, a)^T \theta}} \right] \\ &= \nabla_\theta \left[\phi(s, a)^T \theta - \log \left(\sum_a e^{\phi(s, a)^T \theta} \right) \right] \\ &= \phi(s, a) - \frac{1}{\sum_a e^{\phi(s, a)^T \theta}} \sum_a \nabla_\theta e^{\phi(s, a)^T \theta} \\ &= \phi(s, a) - \frac{\sum_a \phi(s, a) e^{\phi(s, a)^T \theta}}{\sum_a e^{\phi(s, a)^T \theta}} \end{aligned}$$

Softmax Policy

- Weight actions using linear combination of features $\phi(s, a)^T \theta$
- Probability of action is proportional to exponentiated weight

$$\pi_\theta(s, a) = e^{\phi(s, a)^T \theta} / \left(\sum_a e^{\phi(s, a)^T \theta} \right)$$

- The score function is

$$\nabla_\theta \log \pi_\theta(s, a) = \nabla_\theta \left[\log \left[\frac{e^{\phi(s, a)^T \theta}}{\sum_a e^{\phi(s, a)^T \theta}} \right] \right] \quad (2)$$

$$= \nabla_\theta \left[\phi(s, a) \theta - \log \left[\sum_a e^{\phi(s, a)^T \theta} \right] \right] \quad (3)$$

$$= \phi(s, a) - \frac{\sum_a \nabla_\theta e^{\phi(s, a)^T \theta}}{\sum_a e^{\phi(s, a)^T \theta}} \quad (4)$$

$$= \phi(s, a) - \frac{\sum_a \phi(s, a) e^{\phi(s, a)^T \theta}}{\sum_a e^{\phi(s, a)^T \theta}} \quad (5)$$

$$= \phi(s, a) - \mathbb{E}_{\pi_\theta} [\phi(s, \cdot)] \quad (6)$$

Softmax Policy

- Weight actions using linear combination of features $\phi(s, a)^T \theta$
- Probability of action is proportional to exponentiated weight

$$\pi_\theta(s, a) = e^{\phi(s, a)^T \theta} / \left(\sum_a e^{\phi(s, a)^T \theta} \right)$$

- The score function is

$$\nabla_\theta \log \pi_\theta(s, a) = \phi(s, a) - \mathbb{E}_{\pi_\theta}[\phi(s, \cdot)]$$

Gaussian Policy

- In continuous action spaces, a Gaussian policy is natural
- Mean is a linear combination of state features $\mu(s) = \phi(s)^T \theta$
- Variance may be fixed σ^2 , or can also be parametrised
- Policy is Gaussian $a \sim \mathcal{N}(\mu(s), \sigma^2)$
- The score function is

$$\nabla_{\theta} \log \pi_{\theta}(s, a) = \frac{(a - \mu(s))\phi(s)}{\sigma^2}$$

- Deep neural networks (and other models where we can compute the gradient) can also be used to represent the policy

Likelihood Ratio / Score Function Policy Gradient

- Putting this together
- Goal is to find the policy parameters θ :

$$\arg \max_{\theta} V(\theta) = \arg \max_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau)$$

- Approximate with empirical estimate for m sample paths under policy π_{θ} using score function:

$$\begin{aligned}\nabla_{\theta} V(\theta) &\approx \hat{g} = (1/m) \sum_{i=1}^m R(\tau^{(i)}) \nabla_{\theta} \log P(\tau^{(i)}; \theta) \\ &= (1/m) \sum_{i=1}^m R(\tau^{(i)}) \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t^{(i)} | s_t^{(i)})\end{aligned}$$

- Do not need to know dynamics model

L5N2 Check Your Understanding L5: Score functions

$$\nabla_{\theta} V(\theta) = (1/m) \sum_{i=1}^m R(\tau^{(i)}) \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t^{(i)} | s_t^{(i)})$$

The likelihood ratio / score function policy gradient (select one):

- (a) requires reward functions that are differentiable
- (b) can only be used with Markov decision processes
- (c) Is useful mostly for infinite horizon tasks
- (a) and (b)
- a,b and c
- **None of the above**
- Not sure

L5N2 Check Your Understanding L5: Score functions Solution

$$\nabla_{\theta} V(\theta) = (1/m) \sum_{i=1}^m R(\tau^{(i)}) \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t^{(i)} | s_t^{(i)})$$

The likelihood ratio / score function policy gradient (select one):

- (a) requires reward functions that are differentiable
- (b) can only be used with Markov decision processes
- (c) Is useful mostly for infinite horizon tasks
- (a) and (b)
- a,b and c
- None of the above
- Not sure

None of the above

Score Function Gradient Estimator: Intuition

- Consider generic form of $R(\tau^{(i)}) \nabla_{\theta} \log P(\tau^{(i)}; \theta)$:
 $\hat{g}_i = f(x_i) \nabla_{\theta} \log p(x_i | \theta)$
- $f(x)$ measures how good the sample x is.
- Moving in the direction \hat{g}_i pushes up the logprob of the sample, in proportion to how good it is
- *Valid even if $f(x)$ is discontinuous, and unknown, or sample space (containing x) is a discrete set*

Policy Gradient Theorem

- The policy gradient theorem generalizes the likelihood ratio approach

Theorem

For any differentiable policy $\pi_\theta(s, a)$,
for any of the policy objective function $J = J_1$, (episodic reward), J_{avR}
(average reward per time step), or $\frac{1}{1-\gamma}J_{avV}$ (average value),
the policy gradient is

$$\nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s, a) Q^{\pi_\theta}(s, a)]$$

- Chapter 13.2 in SB has a nice derivation of the policy gradient theorem for episodic tasks and discrete states

Table of Contents

- Deep Q-Learning

3 Policy Gradient Algorithms and Reducing Variance

- Temporal Structure
- Baseline
- Alternatives to MC Returns

Likelihood Ratio / Score Function Policy Gradient

$$\nabla_{\theta} V(\theta) \approx (1/m) \sum_{i=1}^m R(\tau^{(i)}) \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t^{(i)} | s_t^{(i)})$$

- Unbiased but very noisy
- Fixes that can make it practical
 - Temporal structure
 - Baseline

Policy Gradient: Use Temporal Structure

- Previously:

$$\nabla_{\theta} \mathbb{E}_{\tau}[R] = \mathbb{E}_{\tau} \left[\left(\sum_{t=0}^{T-1} r_t \right) \left(\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right) \right]$$

- We can repeat the same argument to derive the gradient estimator for a single reward term $r_{t'}$.

$$\nabla_{\theta} \mathbb{E}[r_{t'}] = \mathbb{E} \left[r_{t'} \sum_{t=0}^{t'} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right]$$

- To see this, recall $V(s_0, \theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=0}^T R(s_t, a_t); \pi_{\theta}, s_0 \right]$ where the expectation is taken over the states & actions visited by π_{θ}

Policy Gradient: Use Temporal Structure

- Previously:

$$t=3 \quad \mathbb{P}(\tau_{0:3} | \theta) r_3$$

$$\nabla_{\theta} \mathbb{E}_{\tau}[R] = \mathbb{E}_{\tau} \left[\left(\sum_{t=0}^{T-1} r_t \right) \left(\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right) \right]$$

- We can repeat the same argument to derive the gradient estimator for a single reward term $r_{t'}$.

$$\nabla_{\theta} \mathbb{E}[r_{t'}] = \mathbb{E} \left[r_{t'} \sum_{t=0}^{t'} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right]$$

- Summing this formula over t , we obtain

$$\nabla_{\theta} V(\theta) = \nabla_{\theta} \mathbb{E}[R] = \mathbb{E} \left[\sum_{t'=0}^{T-1} r_{t'} \sum_{t=0}^{t'} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right]$$

Policy Gradient: Use Temporal Structure

- Previously:

$$\nabla_{\theta} \mathbb{E}_{\tau}[R] = \mathbb{E}_{\tau} \left[\left(\sum_{t=0}^{T-1} r_t \right) \left(\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right) \right]$$

- We can repeat the same argument to derive the gradient estimator for a single reward term $r_{t'}$.

$$\nabla_{\theta} \mathbb{E}[r_{t'}] = \mathbb{E} \left[r_{t'} \sum_{t=0}^{t'} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right]$$

- Summing this formula over t , we obtain

$$\begin{aligned} \nabla_{\theta} V(\theta) &= \nabla_{\theta} \mathbb{E}[R] = \mathbb{E} \left[\sum_{t'=0}^{T-1} r_{t'} \sum_{t=0}^{t'} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right] \\ &= \mathbb{E} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t, s_t) \sum_{t'=t}^{T-1} r_{t'} \right] \end{aligned}$$

Policy Gradient: Use Temporal Structure

- Recall for a particular trajectory $\tau^{(i)}$, $\sum_{t'=t}^{T-1} r_{t'}^{(i)}$ is the return $G_t^{(i)}$

$$\nabla_{\theta} \mathbb{E}[R] \approx (1/m) \sum_{i=1}^m \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t, s_t) G_t^{(i)}$$

Monte-Carlo Policy Gradient (REINFORCE)

- Leverages likelihood ratio / score function and temporal structure

$$\Delta\theta_t = \alpha \nabla_\theta \log \pi_\theta(s_t, a_t) G_t$$

REINFORCE:

Initialize policy parameters θ arbitrarily

for each episode $\{s_1, a_1, r_2, \dots, s_{T-1}, a_{T-1}, r_T\} \sim \pi_\theta$ **do**

for $t = 1$ to $T - 1$ **do**

$\theta \leftarrow \theta + \alpha \nabla_\theta \log \pi_\theta(s_t, a_t) G_t$

endfor

endfor

return θ

Likelihood Ratio / Score Function Policy Gradient

$$\nabla_{\theta} V(\theta) \approx (1/m) \sum_{i=1}^m R(\tau^{(i)}) \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t^{(i)} | s_t^{(i)})$$

- Unbiased but very noisy
- Fixes that can make it practical
 - Temporal structure
 - **Baseline**
 - Alternatives to using Monte Carlo returns $R(\tau^{(i)})$ as targets

Desired Properties of a Policy Gradient RL Algorithm

- Goal: Converge as quickly as possible to a local optima
 - Incurring reward / cost as execute policy, so want to minimize number of iterations / time steps until reach a good policy

Table of Contents

- Deep Q-Learning
- Temporal Structure

4 Policy Gradient Algorithms and Reducing Variance

- Baseline
- Alternatives to MC Returns

Policy Gradient: Introduce Baseline

- Reduce variance by introducing a *baseline* $b(s)$

$$\nabla_{\theta} \mathbb{E}_{\tau}[R] = \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t | s_t; \theta) \left(\sum_{t'=t}^{T-1} r_{t'} - b(s_t) \right) \right]$$

- For any choice of b , gradient estimator is unbiased.
- Near optimal choice is the expected return,

$$b(s_t) \approx \mathbb{E}[r_t + r_{t+1} + \dots + r_{T-1}]$$

- Interpretation: increase logprob of action a_t proportionally to how much returns $\sum_{t'=t}^{T-1} r_{t'}$ are better than expected