
Lecture 6: Policy Gradient II. Advanced policy gradient section slides

from Joshua Achiam’s slides, with minor modifications

Emma Brunskill

CS234 Reinforcement Learning.

Winter 2026

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 1 / 73

Mobile User

Refresh Your Knowledge L6N1

Select all that are true about policy gradients:
1 r✓V (✓) = E⇡✓ [r✓ log ⇡✓(s, a)Q⇡✓ (s, a)]
2 ✓ is always increased in the direction of r✓ ln(⇡(St ,At , ✓).
3 State-action pairs with higher estimated Q values will increase in probability on average
4 Are guaranteed to converge to the global optima of the policy class
5 Not sure

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 2 / 73

Mobile User

Refresh Your Knowledge L6N1 Solutions

Select all that are true about policy gradients:
1 r✓V (✓) = E⇡✓ [r✓ log ⇡✓(s, a)Q⇡✓ (s, a)]
2 ✓ is always increased in the direction of r✓ ln(⇡(St ,At , ✓).
3 State-action pairs with higher estimated Q values will increase in probability on average
4 Are guaranteed to converge to the global optima of the policy class
5 Not sure

1 and 3 are true. The direction of ✓ also depends on the Q-values /returns. We are only
guaranteed to reach a local optima

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 3 / 73

Mobile User

Class Structure

Last time: Policy Search

This time: Policy search continued.

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 4 / 73

Today

Likelihood ratio / score function policy gradient
Baseline
Alternative targets

Advanced policy gradient methods
Proximal policy optimization (PPO) (will implement in homework)

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 5 / 73

Class Structure

Last time: time: DQN and REINFORCE

This time: Policy Gradient and PPO

Next time: Policy Search Cont.

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 6 / 73

Policy Gradient Algorithms and Reducing Variance

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 7 / 73

Table of Contents

1 Policy Gradient Algorithms and Reducing Variance
Baseline
Alternatives to MC Returns

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 8 / 73

Monte-Carlo Policy Gradient (REINFORCE)

Leverages likelihood ratio / score function and temporal structure

�✓t = ↵r✓ log ⇡✓(st , at)Gt

REINFORCE:

Initialize policy parameters ✓ arbitrarily
for each episode {s1, a1, r2, · · · , sT�1, aT�1, rT} ⇠ ⇡✓ do

for t = 1 to T � 1 do

✓ ✓ + ↵r✓ log ⇡✓(st , at)Gt

endfor

endfor

return ✓

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 9 / 73

Mobile User

Likelihood Ratio / Score Function Policy Gradient

r✓V (✓) ⇡ (1/m)
mX

i=1

R(⌧ (i))
T�1X

t=0

r✓ log ⇡✓(a
(i)
t |s(i)t)

Unbiased but very noisy
Fixes that can make it practical

Temporal structure
Baseline

Alternatives to using Monte Carlo returns R(⌧ (i)) as targets

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 10 / 73

Policy Gradient: Introduce Baseline

Reduce variance by introducing a baseline b(s)

r✓E⌧ [R] = E⌧

"
T�1X

t=0

r✓ log ⇡(at |st ; ✓)

T�1X

t0=t

rt0 � b(st)

!#

For any choice of b, gradient estimator is unbiased.

Near optimal choice is the expected return,

b(st) ⇡ E[rt + rt+1 + · · ·+ rT�1]

Interpretation: increase logprob of action at proportionally to how much returnsPT�1
t0=t rt0 are better than expected

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 11 / 73

Mobile User

Baseline b(s) Does Not Introduce Bias–Derivation

E⌧ [r✓ log ⇡(at |st ; ✓)b(st)]

= Es0:t ,a0:(t�1)

h
Es(t+1):T ,at:(T�1)

[r✓ log ⇡(at |st ; ✓)b(st)]
i

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 12 / 73

Mobile User

Baseline b(s) Does Not Introduce Bias–Derivation

E⌧ [r✓ log ⇡(at |st ; ✓)b(st)]

= Es0:t ,a0:(t�1)

h
Es(t+1):T ,at:(T�1)

[r✓ log ⇡(at |st ; ✓)b(st)]
i
(break up expectation)

= Es0:t ,a0:(t�1)

h
b(st)Es(t+1):T ,at:(T�1)

[r✓ log ⇡(at |st ; ✓)]
i
(pull baseline term out)

= Es0:t ,a0:(t�1)
[b(st)Eat [r✓ log ⇡(at |st ; ✓)]] (remove irrelevant variables)

= Es0:t ,a0:(t�1)

"
b(st)

X

a

⇡✓(at |st)
r✓⇡(at |st ; ✓)
⇡✓(at |st)

#
(likelihood ratio)

= Es0:t ,a0:(t�1)

"
b(st)

X

a

r✓⇡(at |st ; ✓)
#

= Es0:t ,a0:(t�1)

"
b(st)r✓

X

a

⇡(at |st ; ✓)
#

= Es0:t ,a0:(t�1)
[b(st)r✓1]

= Es0:t,a0:(t�1) [b(st) · 0] = 0

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 13 / 73

Argument for Why Baseline b(s) Can Reduce Variance

Motivation was for introducing baseline b(s) was to reduce variance

Var [r✓E⌧ [R]] = Var
h
E⌧

hPT�1
t=0 r✓ log ⇡(at |st ; ✓) (Rt(st)� b(st))

ii
(1)

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 14 / 73

Mobile User

Argument for Why Baseline b(s) Can Reduce Variance

Motivation was for introducing baseline b(s) was to reduce variance

Var [r✓E⌧ [R]] = Var
h
E⌧

hPT�1
t=0 r✓ log ⇡(at |st ; ✓) (Rt(st)� b(st))

ii
(2)

⇡
PT�1

t=0 E⌧Var [[r✓ log ⇡(at |st ; ✓) (Rt(st)� b(st))]] (3)

Focus on the variance of one term.

Var [[r✓ log ⇡(at |st ; ✓) (Rt(st)� b(st))]] = E
h
[r✓ log ⇡(at |st ; ✓) (Rt(st)� b(st))]

2
i

� [E [r✓ log ⇡(at |st ; ✓) (Rt(st)� b(st))]]
2

Choosing a baseline to minimize variance

Recall the baseline b(s) does not impact the expectation. Therefore su�cient to consider

arg max
b

Var
⇥⇥
r✓ log ⇡(at |st ; ✓) (Gt (st) � b(st))

⇤⇤
= arg min

b
E

hh
(r✓ log ⇡(at |st ; ✓))

2 (Gt (st) � b(st))
2
ii

(4)

= arg min
b

Es⇠d⇡
h
Ea⇠⇡(·|s),G|s,a

h
(r✓ log ⇡(at |s; ✓))

2 (Gt (s) � b(s))2
ii

This is a weighted least squares problem. Taking the derivative and setting to zero yields

b(s) = =
Ea⇠⇡(·|s),G|s,a

h
(r✓ log ⇡(at |s; ✓))2Gt (s)

i

Ea⇠⇡(·|s),G|s,a(r✓ log ⇡(at |s; ✓))2
⇡ Ea⇠⇡(·|s),G|s,a [Gt (s)] (5)

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 15 / 73

Mobile User

”Vanilla” Policy Gradient Algorithm

Initialize policy parameter ✓, baseline b
for iteration=1, 2, · · · do

Collect a set of trajectories by executing the current policy
At each timestep t in each trajectory ⌧ i , compute
Return G i

t =
PT�1

t0=t r
i
t0 , and

Advantage estimate Âi
t = G i

t � b(s it).
Re-fit the baseline, by minimizing

P
i

P
t |b(s

i
t)� G i

t |2,
Update the policy, using a policy gradient estimate ĝ ,
Which is a sum of terms r✓ log ⇡(at |st , ✓)Ât .
(Plug ĝ into SGD or ADAM)

endfor

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 16 / 73

Mobile User

Other Choices for Baseline?

Initialize policy parameter ✓, baseline b
for iteration=1, 2, · · · do

Collect a set of trajectories by executing the current policy
At each timestep t in each trajectory ⌧ i , compute
Return G i

t =
PT�1

t0=t r
i
t0 , and

Advantage estimate Âi
t = G i

t � b(s it).
Re-fit the baseline, by minimizing

P
i

P
t |b(s

i
t)� G i

t |2,
Update the policy, using a policy gradient estimate ĝ ,
Which is a sum of terms r✓ log ⇡(at |st , ✓)Ât .
(Plug ĝ into SGD or ADAM)

endfor

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 17 / 73

Mobile User

Choosing the Baseline: Value Functions

Recall Q-function / state-action-value function:

Q⇡(s, a) = E⇡

h
r0 + �r1 + �2r2 · · · |s0 = s, a0 = a

i

State-value function can serve as a great baseline

V ⇡(s) = E⇡

h
r0 + �r1 + �2r2 · · · |s0 = s

i

= Ea⇠⇡[Q
⇡(s, a)]

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 18 / 73

Table of Contents

1 Policy Gradient Algorithms and Reducing Variance
Baseline
Alternatives to MC Returns

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 19 / 73

Likelihood Ratio / Score Function Policy Gradient

Policy gradient:

r✓E[R] ⇡ (1/m)
mX

i=1

T�1X

t=0

r✓ log ⇡✓(at , st)(G
(i)
t � b(st))

Fixes that improve simplest estimator
Temporal structure (shown in above equation)
Baseline (shown in above equation)
Alternatives to using Monte Carlo returns Gi

t as estimate of expected discounted

sum of returns for the policy parameterized by ✓?

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 20 / 73

Choosing the Target

G i
t is an estimation of the value function at st from a single roll out

Unbiased but high variance
Reduce variance by introducing bias using bootstrapping and function approximation

Just like we saw for TD vs MC, and value function approximation

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 21 / 73

Actor-critic Methods

Estimate of V /Q is done by a critic

Actor-critic methods maintain an explicit representation of policy and the value
function, and update both

A3C (Mnih et al. ICML 2016) is a very popular actor-critic method

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 22 / 73

Policy Gradient Formulas with Value Functions

Recall:

r✓E⌧ [R] = E⌧

"
T�1X

t=0

r✓ log ⇡(at |st ; ✓)

T�1X

t0=t

rt0 � b(st)

!#

r✓E⌧ [R] ⇡ E⌧

"
T�1X

t=0

r✓ log ⇡(at |st ; ✓) (Q(st , at ;w)� b(st))

#

Letting the baseline be an estimate of the value V , we can represent the gradient in
terms of the state-action advantage function

r✓E⌧ [R] ⇡ E⌧

"
T�1X

t=0

r✓ log ⇡(at |st ; ✓)Â⇡(st , at)

#

where the advantage function A⇡(s, a) = Q⇡(s, a)� V ⇡(s)

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 23 / 73

Advanced Policy Gradients

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 24 / 73

Outline

Theory:

1 Problems with Policy Gradient Methods

2 Policy Performance Bounds

3 Monotonic Improvement Theory (next time)

Algorithms:

1 Proximal Policy Optimization

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 25 / 73

The Problems with Policy Gradients

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 26 / 73

Policy Gradients Review

Policy gradient algorithms try to solve the optimization problem

max
✓

J(⇡✓)
.
= E

⌧⇠⇡✓

" 1X

t=0

�trt

#

by taking stochastic gradient ascent on the policy parameters ✓, using the policy gradient

g = r✓J(⇡✓) = E
⌧⇠⇡✓

" 1X

t=0

�tr✓ log ⇡✓(at |st)A⇡✓ (st , at)

#
.

Limitations of policy gradients:

Sample e�ciency is poor
Distance in parameter space 6= distance in policy space!

What is policy space? For tabular case, set of matrices

⇧ =

(
⇡ : ⇡ 2 R|S|⇥|A|,

X

a

⇡sa = 1, ⇡sa � 0

)

Policy gradients take steps in parameter space
Step size is hard to get right as a result

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 27 / 73

Mobile User

Sample E�ciency in Policy Gradients

Sample e�ciency for vanilla policy gradient methods is poor

Discard each batch of data immediately after just one gradient step

Why? PG is an on-policy expectation.
Two main approaches to obtaining an unbiased estimate of the policy gradient

Collect sample trajectories from policy, then form sample estimate. (More stable)
Use trajectories from other policies (Less stable)

Opportunity: use old data to take multiple gradient steps before using the resulting
new policy to gather more data

Challenge: even if this is possible to use old data to estimate multiple gradients, how
many steps should be taken?

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 28 / 73

Mobile User

Choosing a Step Size for Policy Gradients

Policy gradient algorithms are stochastic gradient ascent:

✓k+1 = ✓k + ↵k ĝk

with step �k = ↵k ĝk .

If the step is too large, performance collapse is possible (Why?)

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 29 / 73

Choosing a Step Size for Policy Gradients

Policy gradient algorithms are stochastic gradient ascent:

✓k+1 = ✓k + ↵k ĝk

with step �k = ↵k ĝk .
If the step is too large, performance collapse is possible (Why?)
If the step is too small, progress is unacceptably slow
“Right” step size changes based on ✓

Automatic learning rate adjustment like advantage normalization, or Adam-style
optimizers, can help. But does this solve the problem?

Figure: Policy parameters on x-axis and performance on y -axis. A bad step can lead to
performance collapse, which may be hard to recover from.

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 30 / 73

Mobile User

The Problem is More Than Step Size

Consider a family of policies with parametrization:

⇡✓(a) =

⇢
�(✓) a = 1
1� �(✓) a = 2

Figure: Small changes in the policy parameters can unexpectedly lead to big changes in the policy.

Big question: how do we come up with an update rule that doesn’t ever change the
policy more than we meant to?

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 31 / 73

Mobile User

Policy Performance Bounds

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 32 / 73

Relative Performance of Two Policies

In a policy optimization algorithm, we want an update step that

uses rollouts collected from the most recent policy as e�ciently as possible,

and takes steps that respect distance in policy space as opposed to distance in
parameter space.

To figure out the right update rule, we need to exploit relationships between the
performance of two policies.

Performance di↵erence lemma: In CS234 HW2 we ask you to prove that for any
policies ⇡,⇡0

J(⇡0)� J(⇡) = E
⌧⇠⇡0

⇥P1
t=0 �

tA⇡(st , at)
⇤

(6)

= 1
1�� E

s⇠d⇡
0

a⇠⇡0

[A⇡(s, a)] (7)

where

d⇡(s) = (1� �)
1X

t=0

�tP(st = s|⇡)

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 33 / 73

Mobile User

What is it good for?

Can we use this for policy improvement, where ⇡0 represents the new policy and ⇡
represents the old one?

max
⇡0

J(⇡0) = max
⇡0

J(⇡0)� J(⇡)

= max
⇡0

E
⌧⇠⇡0

" 1X

t=0

�tA⇡(st , at)

#

This is suggestive, but not useful yet.

Nice feature of this optimization problem: defines the performance of ⇡0 in terms of the
advantages from ⇡!

But, problematic feature: still requires trajectories sampled from ⇡0...

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 34 / 73

Mobile User

Looking at it from another angle...

In terms of the discounted future state distribution d⇡, defined by

d⇡(s) = (1� �)
1X

t=0

�tP(st = s|⇡),

we can rewrite the relative policy performance identity:

J(⇡0)� J(⇡) = E
⌧⇠⇡0

" 1X

t=0

�tA⇡(st , at)

#

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 35 / 73

Mobile User

Note: Instance of Importance Sampling

In terms of the discounted future state distribution d⇡, defined by

d⇡(s) = (1� �)
1X

t=0

�tP(st = s|⇡),

we can rewrite the relative policy performance identity:

J(⇡0)� J(⇡) = E
⌧⇠⇡0

" 1X

t=0

�tA⇡(st , at)

#

=
1

1� �
E

s⇠d⇡
0

a⇠⇡0

[A⇡(s, a)]

=
1

1� �
E

s⇠d⇡
0

a⇠⇡


⇡0(a|s)
⇡(a|s) A

⇡(s, a)

�

Last step is an instance of importance sampling (more on this next time)

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 36 / 73

Mobile User

Problem: State Distribution

In terms of the discounted future state distribution d⇡, defined by

d⇡(s) = (1� �)
1X

t=0

�tP(st = s|⇡),

we can rewrite the relative policy performance identity:

J(⇡0)� J(⇡) = E
⌧⇠⇡0

" 1X

t=0

�tA⇡(st , at)

#

=
1

1� �
E

s⇠d⇡
0

a⇠⇡0

[A⇡(s, a)]

=
1

1� �
E

s⇠d⇡
0

a⇠⇡


⇡0(a|s)
⇡(a|s) A

⇡(s, a)

�

...almost there! Only problem is s ⇠ d⇡0
.

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 37 / 73

A Useful Approximation

What if we just said d⇡0
⇡ d⇡ and didn’t worry about it?

J(⇡0)� J(⇡) ⇡ 1
1� �

E
s⇠d⇡
a⇠⇡


⇡0(a|s)
⇡(a|s) A

⇡(s, a)

�

.
= L⇡(⇡

0)

Turns out: this approximation is pretty good when ⇡0 and ⇡ are close! But why, and how
close do they have to be?

Relative policy performance bounds: 1

��J(⇡0)�
�
J(⇡) + L⇡(⇡

0)
���  C

q
E

s⇠d⇡
[DKL(⇡0||⇡)[s]] (8)

If policies are close in KL-divergence—the approximation is good!

1Achiam, Held, Tamar, Abbeel, 2017
Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 38 / 73

Mobile User

What is KL-divergence?

For probability distributions P and Q over a discrete random variable,

DKL(P||Q) =
X

x

P(x) log
P(x)
Q(x)

Properties:

DKL(P||P) = 0

DKL(P||Q) � 0

DKL(P||Q) 6= DKL(Q||P) — Non-symmetric!

What is KL-divergence between policies?

DKL(⇡
0||⇡)[s] =

X

a2A

⇡0(a|s) log ⇡0(a|s)
⇡(a|s)

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 39 / 73

A Useful Approximation

What did we gain from making that approximation?

J(⇡0)� J(⇡) ⇡ L⇡(⇡
0)

L⇡(⇡
0) =

1
1� �

E
s⇠d⇡
a⇠⇡


⇡0(a|s)
⇡(a|s) A

⇡(s, a)

�

= E
⌧⇠⇡

" 1X

t=0

�t ⇡
0(at |st)
⇡(at |st)

A⇡(st , at)

#

This is something we can optimize using trajectories sampled from the old policy ⇡!

Similar to using importance sampling, but because weights only depend on current
timestep (and not preceding history), they don’t vanish or explode.

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 40 / 73

Recommended Reading

“Approximately Optimal Approximate Reinforcement Learning,” Kakade and
Langford, 2002 2

“Trust Region Policy Optimization,” Schulman et al. 2015 3

“Constrained Policy Optimization,” Achiam et al. 2017 4

2https://people.eecs.berkeley.edu/ pabbeel/cs287-fa09/readings/KakadeLangford-icml2002.pdf
3https://arxiv.org/pdf/1502.05477.pdf
4https://arxiv.org/pdf/1705.10528.pdf

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 41 / 73

https://arxiv.org/pdf/1502.05477.pdf
https://arxiv.org/pdf/1705.10528.pdf

Algorithms

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 42 / 73

Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a family of methods that approximately penalize
policies from changing too much between steps. Two variants:

Adaptive KL Penalty
Policy update solves unconstrained optimization problem

✓k+1 = argmax
✓

L✓k (✓)� �k D̄KL(✓||✓k) (9)

D̄KL(✓||✓k) = Es⇠d⇡k DKL(✓k (·|s),⇡✓(·|s)) (10)

Penalty coe�cient �k changes between iterations to approximately enforce
KL-divergence constraint

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 43 / 73

Mobile User

Proximal Policy Optimization with Adaptive KL Penalty

Algorithm PPO with Adaptive KL Penalty

Input: initial policy parameters ✓0, initial KL penalty �0, target KL-divergence �
for k = 0, 1, 2, ... do

Collect set of partial trajectories Dk on policy ⇡k = ⇡(✓k)
Estimate advantages Â⇡k

t using any advantage estimation algorithm
Compute policy update

✓k+1 = argmax
✓

L✓k (✓)� �kD̄KL(✓||✓k)

by taking K steps of minibatch SGD (via Adam)
if D̄KL(✓k+1||✓k) � 1.5� then

�k+1 = 2�k

else if D̄KL(✓k+1||✓k)  �/1.5 then

�k+1 = �k/2
end if

end for

Initial KL penalty not that important—it adapts quickly

Some iterations may violate KL constraint, but most don’t

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 44 / 73

PPO with Adaptive KL Penalty: Multiple Gradient Steps

Algorithm PPO with Adaptive KL Penalty

Input: initial policy parameters ✓0, initial KL penalty �0, target KL-divergence �
for k = 0, 1, 2, ... do

Collect set of partial trajectories Dk on policy ⇡k = ⇡(✓k)
Estimate advantages Â⇡k

t using any advantage estimation algorithm
Compute policy update

✓k+1 = argmax
✓

L✓k (✓)� �kD̄KL(✓||✓k)

by taking K steps of minibatch SGD (via Adam)

if D̄KL(✓k+1||✓k) � 1.5� then

�k+1 = 2�k

else if D̄KL(✓k+1||✓k)  �/1.5 then

�k+1 = �k/2
end if

end for

Initial KL penalty not that important—it adapts quickly

Some iterations may violate KL constraint, but most don’t

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 45 / 73

Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a family of methods that approximately enforce
KL constraint without computing natural gradients. Two variants:

Adaptive KL Penalty
Policy update solves unconstrained optimization problem

✓k+1 = argmax
✓

L✓k (✓)� �k D̄KL(✓||✓k)

Penalty coe�cient �k changes between iterations to approximately enforce
KL-divergence constraint

Clipped Objective
New objective function: let rt(✓) = ⇡✓(at |st)/⇡✓k (at |st). Then

LCLIP
✓k

(✓) = E
⌧⇠⇡k

"
TX

t=0

h
min(rt(✓)Â

⇡k
t , clip (rt(✓), 1� ✏, 1 + ✏) Â⇡k

t)
i#

where ✏ is a hyperparameter (maybe ✏ = 0.2)
Policy update is ✓k+1 = argmax✓ LCLIP

✓k
(✓)

Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 46 / 73

Mobile User

L6 Check Your Understanding: Proximal Policy Optimization

Clipped Objective function: let rt(✓) = ⇡✓(at |st)/⇡✓k (at |st). Then

LCLIP
✓k (✓) = E

⌧⇠⇡k

"
TX

t=0

h
min(rt(✓)Â

⇡k
t , clip (rt(✓), 1� ✏, 1 + ✏) Â⇡k

t)
i#

where ✏ is a hyperparameter (maybe ✏ = 0.2)
Policy update is ✓k+1 = argmax✓ LCLIP

✓k
(✓).

Consider the figure5. Select all that are true. ✏ 2 (0, 1).
1 The left graph shows the LCLIP objective when the advantage function A > 0 and

the right graph shows when A < 0
2 The right graph shows the LCLIP objective when the advantage function A > 0 and

the left graph shows when A < 0
3 It depends on the value of ✏
4 Not sure

5Schulman, Wolski, Dhariwal, Radford, Klimov, 2017
Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 47 / 73

Mobile User

L6: Check Your Understanding Proximal Policy Optimization Solutions

Clipped Objective function: let rt(✓) = ⇡✓(at |st)/⇡✓k (at |st). Then

LCLIP
✓k (✓) = E

⌧⇠⇡k

"
TX

t=0

h
min(rt(✓)Â

⇡k
t , clip (rt(✓), 1� ✏, 1 + ✏) Â⇡k

t)
i#

where ✏ is a hyperparameter (maybe ✏ = 0.2)

Policy update is ✓k+1 = argmax✓ LCLIP
✓k

(✓).

Consider the figure6. Select all that are true. ✏ 2 (0, 1).
The left graph shows the LCLIP objective when the advantage function A > 0 and the
right graph shows when A < 0

6Schulman, Wolski, Dhariwal, Radford, Klimov, 2017
Emma Brunskill (CS234 Reinforcement Learning.) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 48 / 73

	Policy Gradient Algorithms and Reducing Variance
	Baseline
	Alternatives to MC Returns

	Advanced Policy Gradients
	The Problems with Policy Gradients
	Policy Performance Bounds
	Algorithms
	Monotonic Improvement Theory
	Importance Sampling for Off Policy, Policy Gradient

