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Refresh Your Knowledge L6N1

@ Select all that are true about policy gradients:
QO Vy V(a) = ]ETFQ [VG log 71'9(5, a)QTre (57 a)]
@ 0 is always increased in the direction of Vy In(7(St, At, 6).
© State-action pairs with higher estimated Q values will increase in probability on average
@ Are guaranteed to converge to the global optima of the policy class pf ©
© Not sure
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Refresh Your Knowledge L6N1 Solutions

To

@ Select all that are true about policy gradients:
Q V,V(0) = Ex,[Vo log 7o(s, 2) Q7 (s, 3)]
@ 0 is always increased in the direction of Vg In(7(St, At, 6).
© State-action pairs with higher estimated @ values will increase in probability on average
© Are guaranteed to converge to the global optima of the policy class

© Not sure (cohy Z s = D
1 and 3 are true. The direction of # also depends on the Q-values /returns. We are only
guaranteed to reach a local optima
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Class Structure

o Last time: Policy Search

@ This time: Policy search continued.
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Today

o Likelihood ratio / score function policy gradient

o Baseline
o Alternative targets

@ Advanced policy gradient methods
e Proximal policy optimization (PPO) (will implement in homework)
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Class Structure

@ Last time: time: DQN and REINFORCE
@ This time: Policy Gradient and PPO
@ Next time: Policy Search Cont.
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Policy Gradient Algorithms and Reducing Variance
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Table of Contents

© Policy Gradient Algorithms and Reducing Variance
@ Baseline
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Monte-Carlo Policy Gradient (REINFORCE)

reeoll rq me [/19 @
f?*?u;htl_ng _t é( J )/\/\

1
o Leverages likelihood ratio / score function and temporal structure a

A@t = an IOg 7T9(5t, at)Gt

REINFORCE:
Initialize policy parameters 6 arbitrarily
for each episode {s1,a1,r, -+ ,s7_1,ar—1,rr} ~ 79 do

fort=1to T —1do
0 < 0+ aVglogmo(st, ar)Ge
endfor
endfor
return 0
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Likelihood Ratio / Score Function Policy Gradient

VoV(0) =~ (1/m)zm:R(T<">)ivg log mo(a!"[s")

i=1 t=0

o Unbiased but very noisy
@ Fixes that can make it practical

o Temporal structure
o Baseline )
o Alternatives to using Monte Carlo returns R(7()) as targets
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Policy Gradient: Introduce Baseline

@ Reduce variance by introducing a baseline b(s) -\
T-1 T-1 —

VoE,[R] =E, Z Vo log m(at|se; 6) (Z re — b(st)>]

6Cst) o I~
@ For any choice of b, gradient estimator is unbiased.
o Near optimal choice is the expected return,

b(st) = E[re + ree1 + - - 4 rr—1]

@ Interpretation: increase logprob of action a; proportionally to how much returns

Zz;;tl ry are better than expected
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Baseline b(s) Does Not Introduce Bias—Derivation

-blovutﬂ- 74&/ D ‘:C)
2 SoifiCobor ) X4 T-1,SEe)oT

ET[VQ log (at|st; G)b(st)] Lok oo
el
]ESOI 30(: 1) [ES t+1):T>3(T—1) [VQ IOg ﬂ'(atlst e)b(sf)]] CwﬁhﬁG Ua}

.—é-So £.C0: ,_[&/Sr) E;,,, 7,6p:7-1 79 /‘:j T/Q,/shgj Pdl 5 ovt

c ” Eé(s;) Ea.r Vd [Oj T (et (5, ﬁ)j m
= LN S lartse ) Yo erlsns ‘"“‘Sfml

T [t 3. Vg ls®) i
-t Le6r) Vo Sambylsadd]
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Baseline b(s) Does Not Introduce Bias—Derivation

E-[Vg logm(at|st; 0)b(st)]

= Bsp.e.a0_1) [Es ) manr_n Ve Iogﬂ(at|st;9)b(st)]] (break up expectation)

= Esg.r,a0_1) [b(st)Es(t“)vT,at_ r_1)[Volog W(at\st;e)]] (pull baseline term out)

= Esy,a0.e1) [6(5t)Ea, [V log m(at|st; 6)]] (remove irrelevant variables)

Vom(at|st; 0)

(likelihood ratio)
mo(atlst)

= Esypap0_yy |D(5t) D molaelst)
a

= ]ESO:taao;(:fu b(st) Z VGW(at‘st; 0):|

= Espp a0y |D(5t)Vo > m(atlst; 9)}

a

:E50t130 t—1) [b(sf)VG]-]
= ]EsU:t,ag:(tfl) [b(st) . 0] =0
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Argument for Why Baseline b(s) Can Reduce Variance

Glar)= 2ot

@ Motivation was for introducing baseline b(s) was to reduce variance

Var[VyE,[R]] = Var [Er [ZZ—:—Ol Vo log m(at|st; 0) (Re(st) — b(st))]] (‘k\ (1)
Vor (p log 7 tag 163 (GCor )~ bts1)) -
2 2 MC el
Vel = ELX J . é;__% yanlwr docs éfﬁj
> uvﬁn;r}\ M X = Qvazr'n EZ'E'YZ}_ .. '123
ey 'M;‘V‘ E[( Va— [03 7[%(%})2 (G‘J/@é']DCSfBB 3

CRVAICN
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Argument for Why Baseline b(s) Can Reduce Variance

@ Motivation was for introducing baseline b(s) was to reduce variance

Var[VoE- R = Var [Er [S]5" Volog m(atlst; 0) (Re(st) — b(s1))] &)
~ 075 B Var (Vo log m(atlst; ) (Ri(s:) — b(st))] 3)
@ Focus on the variance of one term.
Var [[Vo log m(aclsei 6) (Re(st) = b(s0)l] = E [[Vg log m(arlst; 6) (Re(s:) — b(se))I?]
— [E[Ve log m(at|st; 0) (Re(st) — b(se))])?

Choosing a baseline to minimize variance
Recall the baseline b(s) does not impact the expectation. Therefore sufficient to consider

arg max Var [[V ¢ log m(at|st; 0) (Ge(st) — b(st))]] = arg l’"bi" E H(Ve log (at |st; 9))2 (Ge(st) — b(st))zﬂ )
= agminEg gn [Eamm(-15), 6152 [(V6 o w(at1s: 0)) (Ge(s) — b(s))°]]

@ This is a weighted least squares problem. Taking the derivative and setting to zero yields

5o Earrn(-]5), Gls,a |(V 0 108 m(at|s: 0)2Ge(s)] c - \/"r é’;
s) = = ~~ ~
Earom(-]2),G]s.2(V 0 108 (2t 55 0))2 ol cles T
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"Vanilla” Policy Gradient Algorithm

Advsntogn Al QG- VG

Initialize policy parameter 6, baseline b
for iteration=1,2,--- do
Collect a set of trajectories by executing the current policy
At each timestep t in each trajectory 7/, compute
Return G} = tT,;tl ri;, and
Advantage estimate A, = G| — b(s}).
Re-fit the baseline, by minimizing . 3", |b(s) — G{|?,
Update the policy, using a policy gradient estimate g,
Which is a sum of terms V log 7(a:|st, 0)A.
(Plug g into SGD or ADAM)
endfor
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Other Choices for Baseline?

Initialize policy parameter 6, baseline b
for iteration=1,2,--- do
Collect a set of trajectories by executing the current policy
At each timestep t in each trajectory 7/, compute
Return G{ = 3"/ _} i, and
Advantage estimate A, = G} — b(s}).
Re-fit the baseline, by minimizing . 3", |b(s) — Gi|?,
Update the policy, using a policy gradient estimate g,
Which is a sum of terms V log 7(a:|st, 0)A.
(Plug g into SGD or ADAM)
endfor
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Choosing the Baseline: Value Functions

@ Recall Q-function / state-action-value function:
2
Q" (s,a) =Ex [ro+vr1+7 r---|so=s,a = a]
o State-value function can serve as a great baseline

V™(s) =Ex [ro +yn 4+ s = s]
= Eanr[Q7(s, 3)]
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Table of Contents

© Policy Gradient Algorithms and Reducing Variance

@ Alternatives to MC Returns
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Likelihood Ratio / Score Function Policy Gradient

o Policy gradient:

-

VoE[R] ~ (1/m) 3 Vo log mo(ar, st)(G — b(st))

i=1 t

Il
o

o Fixes that improve simplest estimator

o Temporal structure (shown in above equation)

o Baseline (shown in above equation) )

o Alternatives to using Monte Carlo returns G; as estimate of expected discounted
sum of returns for the policy parameterized by 67
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Choosing the Target

@ G, is an estimation of the value function at s; from a single roll out

@ Unbiased but high variance
@ Reduce variance by introducing bias using bootstrapping and function approximation
e Just like we saw for TD vs MC, and value function approximation
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Actor-critic Methods

o Estimate of V//Q is done by a critic

@ Actor-critic methods maintain an explicit representation of policy and the value
function, and update both

@ A3C (Mnih et al. ICML 2016) is a very popular actor-critic method
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Policy Gradient Formulas with Value Functions

@ Recall:

VQE-,—[R] =K,

i: Vo log m(a¢|st; 0) (Z re — b(st)>]

t=0 t/=t

T-1
VoE-[R] ~ E, | > Vg logm(at|st; 0) (Q(st, ar; w) — b(st))]
t=0

@ Letting the baseline be an estimate of the value V, we can represent the gradient in

terms of the state-action advantage function

t=0

T-1
VoE,[R] ~ E; [Z Vo log m(at|se; 0)A™ (st, at):|

@ where the advantage function A™(s,a) = Q" (s,a) — V™ (s)
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Advanced Policy Gradients
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Theory:

@ Problems with Policy Gradient Methods

@ Policy Performance Bounds

© Monotonic Improvement Theory (next time)
Algorithms:

@ Proximal Policy Optimization
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The Problems with Policy Gradients
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Policy Gradients Review

Policy gradient algorithms try to solve the optimization probl
Sinps = N e

. t
max J(mg) = T~E§re ;7 e

by taking stochastic gradient ascent on the policy parameters @, using the policy gradient
g = Vod(mg) = TNE;rg [Z 7'V log ma(at|st)A™ (st at)}

t=0
. -p) =c€
Limitations of policy gradients: ’f / 5 o éo

¢ >
@ Sample efficiency is poor Fhrn /Vo— VD /“ <&
@ Distance in parameter space # distance in policy space!
o What is policy space? For tabular case, set of matrices

|_|={7T : ﬂERlS‘X‘AI, Zﬂsa:]-; 7rsa>0}

a

o Policy gradients take steps in parameter space
o Step size is hard to get right as a result
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Sample Efficiency in Policy Gradients

@ Sample efficiency for vanilla policy gradient methods is poor
@ Discard each batch of data immediately after just one gradient step
o Why? PG is an on-policy expectation.

@ Two main approaches to obtaining an unbiased estimate of the policy gradient

o Collect sample trajectories from policy, then form sample estimate. (More stable)
o Use trajectories from other policies (Less stable) => Ji'sfvri L pacsmnatch

@ Opportunity: use old data to take multiple gradient steps before using the resulting
new policy to gather more data

@ Challenge: even if this is possible to use old data to estimate multiple gradients, how
many steps should be taken?
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Choosing a Step Size for Policy Gradients

Policy gradient algorithms are stochastic gradient ascent:
0k+1 =0k + Oékg'k

with step Ax = aBk.

@ If the step is too large, performance collapse is possible (Why?)
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Choosing a Step Size for Policy Gradients

Policy gradient algorithms are stochastic gradient ascent:
Ok+1 = Ok + k8

with step Ax = a8k

o If the step is too large, performance collapse is possible (Why?)

o If the step is too small, progress is unacceptably slow

o "Right” step size changes based on 6
Automatic learning rate adjustment like advantage normalization, or Adam-style
optimizers, can help. But does this solve the problem?

T T T ~J 7
k-1 k opt k+1
Figure: Policy parameters on x-axis and performance on y-axis. A bad step can lead to
performance collapse, which may be hard to recover from.
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The Problem is More Than Step Size

Consider a family of policies with parametrization: 0 —ﬁp[a/-zra» )é
mo(a) 115165 v
theta @ theta = 2 theta @

0.8 1

0.6

0.4

0.2 A

0.0 -
al a2 al a2 al a2

Figure: Small changes in the policy parameters can unexpectedly lead to big changes in the policy.

Big question: how do we come up with an update rule that doesn’t ever change the
policy more than we meant to?
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Policy Performance Bounds
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Relative Performance of Two Policies

In a policy optimization algorithm, we want an update step that
@ uses rollouts collected from the most recent policy as efficiently as possible,

@ and takes steps that respect distance in policy space as opposed to distance in

parameter space. P/«./’lfe‘s )

To figure out the right update rule, we need to exploit relationships between the
performance of two policies.

Performance difference lemma: In C5234 HW2 we ask you to prove that for any

policies m, 7’
CQ "(Sf,&r)“ V7[5r>

JE) = I = B[S0 A (s3] (6)
=5 B (s ) (M)
a~or!

where
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What is it good for?

Can we use this for policy improvement, where 7’ represents the new policy and 7 T{ .-)
represents the old one? m

max J(n') = max J(n") — J(n)
Uy ™ o yT
E [Z FAT (s at)] I (@)

= maX
P

T

t=0
kS n
This is suggestive, but not useful yet. é.a [S}: Gt ) -V (S.f)

Nice feature of this optimization problem: defines the performance of 7’ in terms of the
advantages from !

But, problematic feature: still requires trajectories sampled from 7’...

évf donF Ao 7° /

e ..\LL
J&//g b wﬁ/ggﬁ, shp
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Looking at it from another angle...

In terms of the discounted future state distribution d™, defined by

d"(s) = (1 =) Y _7'P(s: = s|m),

we can rewrite the relative policy performance identity

Jw') = J(x) = E, [Z’YtA (st,ar}
a)
/CLlS) A (Sr 0*3
ZJ ’[«Is) ’Tr(a(SB A‘ [St G*B

. l T (el
T« 1S i
E s [’l{[af} AT G, “\J
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Note: Instance of Importance Sampling

In terms of the discounted future state distribution d™, defined by
d"(s)=(1- Z'y P(s: = s|m),

we can rewrite the relative policy performance identity:

Jr)Y—J(m)= E ) [Z Y AT (st a:):|
T~ —o
-1 5 [a(sa)
1—v 4 ’
1 7'(als) ,x }
= E A’ (s, a
11—y, 4 |:7T(8|5) (s,2)

Last step is an instance of importance sampling (more on this next time)
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Problem: State Distribution

In terms of the discounted future state distribution d™, defined by
d™(s) = (1—7) ) _7'P(st = sm),
t=0

we can rewrite the relative policy performance identity:

Jr) = J(m)= E, [Z YA (st, af)}
=15 B, (s
1 7'(als) ,x
T, o)

...almost there! Only problem is s ~ d~.
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A Useful Approximation

What if we just said d™ ~ d™ and didn't worry about it?

L [fre

\ = £x(7) & — J(r)A T[’T-)fL’('ﬂj

Turns out: this approximation is pretty good when 7’ and 7 are close! But why, and how
close do they have to be?

J(n') — J(m) =

Relative policy performance bounds: !

[ (") = (J(7) + La(7"))| < C\/;E« [Dre (|| 7)]s]] (8)
If policies are close in KL-divergence—the approximation is good!
—
not H

! Achiam, Held, Tamar, Abbeel, 2017
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What is KL-divergence?

For probability distributions P and Q over a discrete random variable,

Dk (PI|Q) = mem !

Properties:
e Dk (P||P)=0
° Dk (P||Q) >0
o Dki(P||Q) # Dki(Q||P) — Non-symmetric!

What is KL-divergence between policies?

Dia(w|[mls] = 3 ' (als) log T-21°)

acA 7r(a|s)
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A Useful Approximation

What did we gain from making that approximation?

J(r") = J(7) = Lo(7)
Lo(7)= 1 E [” @ls) g (s, a)}

1—vys~a~ | 7(als)

> 7T/(at|5t)
E E TP A (s, a
T~T |:1:_0’y 7r(at|st) ( ‘ t)
@ This is something we can optimize using trajectories sampled from the old policy 7!

@ Similar to using importance sampling, but because weights only depend on current
timestep (and not preceding history), they don’t vanish or explode.
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Recommended Reading

o “Approximately Optimal Approximate Reinforcement Learning,” Kakade and
Langford, 2002 2

@ “Trust Region Policy Optimization,” Schulman et al. 2015 3
o “Constrained Policy Optimization,” Achiam et al. 2017 *

2https://people.eecs.berkeley.edu/ pabbeel /cs287-fa09/readings/KakadelLangford-icml2002.pdf
3https://arxiv.org/pdf/1502.05477.pdf
4https ://arxiv.org/pdf/1705.10528.pdf
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Algorithms
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Proximal Policy Optimization

_ﬁ"l/\zl(tj ﬁy weuctr/C /9#//'657 Il senf~

Proximal Policy Optimization (PPO) is a family of methods that approximately penalize
policies from changing too much between steps. Two variants:

e
o Adaptive KL Penalty o~ P““s€3=
o Policy update solves unconstrained optimization problem ([
Okrr = argmax Ly, (6) — Bi Drw(0116x) (9)
_ —— -
Dki(0110k) = Eswdmk Dii(0k(-|5)s mo(-]5)) (10)

o Penalty coefficient 8, changes between iterations to approximately enforce
KL-divergence constraint

(@) = o T lsls) A™( a
'<'rr ) E\ﬁ:«ﬁ EST-’-Q mﬂ St 1>
QU v
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Proximal Policy Optimization with Adaptive KL Penalty

Algorithm PPO with Adaptive KL Penalty

Input: initial policy parameters 0y, initial KL penalty So, target KL-divergence §
for k=0,1,2,... do
Collect set of partial trajectories Dx on policy mx = 7(6k)
Estimate advantages /A\?k using any advantage estimation algorithm
Compute policy update

Ox1 = argmax Lo, (0) — BrDi (0]]04)

by taking K steps of minibatch SGD (via Adam)
if DKL(0k+1||9k) > 1.5 then

Br+1 = 2k
else if DKL(9k+1||(9k) < 5/145 then
Bi+r = Bi/2
end if
end for

@ Initial KL penalty not that important—it adapts quickly
@ Some iterations may violate KL constraint, but most don't
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PPO with Adaptive KL Penalty: Multiple Gradient Steps

Algorithm PPO with Adaptive KL Penalty

Input: initial policy parameters 0y, initial KL penalty So, target KL-divergence §
for k=0,1,2,... do
Collect set of partial trajectories Dx on policy mx = 7(6k)
Estimate advantages /A\?k using any advantage estimation algorithm
Compute policy update

Ox1 = argmax Lo, (0) — BrDi (0]]04)

by taking K steps of minibatch SGD (via Adam)
if DKL(0k+1||9k) > 1.5 then

Br+1 = 2k
else if DKL(9k+1||(9k) < 5/145 then
Bi+r = Bi/2
end if
end for

@ Initial KL penalty not that important—it adapts quickly
@ Some iterations may violate KL constraint, but most don't
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Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a family of methods that approximately enforce
KL constraint without computing natural gradients. Two variants:
o Adaptive KL Penalty
o Policy update solves unconstrained optimization problem

Ory1 = arg mGGXﬁok(@) — BkDky(0116)

o Penalty coefficient S, changes between iterations to approximately enforce

KL-divergence constraint . ‘?
. o we (25O
o Clipped Objective Ll

o New objective function: let rt(0) = mg(at|st)/mg, (at|st). Then

-
CLIP (Y _ . ATk _ ATk
Lt = B [;; [mln(rt(H)A! Jclip (re(0),1 — €, 1 + ) A7 ,)ﬂ
where € is a hyperparameter (maybe € = 0.2) K—-Q (‘ [ fr‘..
o Policy update is 01 = arg maxg Lgk“P(O) ‘rre’ q-f S¥ A

Mo (aslsr)
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L6 Check Your Understanding: Proximal Policy Optimization

o Clipped Objective function: let r:(0) = mo(ac|st)/mo, (at|st). Then

T AT
t=0

LEP) = B [Z [min(rt(a)A:k,cnp (re(0),1 — €,1+¢) A“jk)]

@ where € is a hyperparameter (maybe € = 0.2)
o Policy update is 0x1 = arg maxy Lg," (0).
Consider the figure®. Select all that are true. € € (0,1).
@ The left graph shows the L objective when the advantage function A > 0 and
the right graph shows when A < 0
@ The right graph shows the L objective when the advantage function A > 0 and
the left graph shows when A < 0
© It depends on the value of €
Q@ Not sure

1-€1l
[N L S—

r |
0 1 1+e |LeHr

5Schulman, Wolski, Dhariwal, Radford, Klimov, 2017
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L6: Check Your Understanding Proximal Policy Optimization Solutions

o Clipped Objective function: let r:(0) = mo(ac|st)/mo, (at|st). Then

.
5 0) = B [Z [min(n(e)ﬁ?k,clip(rt(e), 1—¢1+¢) A?k)]
t=0

® where € is a hyperparameter (maybe € = 0.2)
o Policy update is 6x+1 = arg maxp [,gckup(ﬁ).
Consider the figure®. Select all that are true. € € (0,1).

The left graph shows the L objective when the advantage function A > 0 and the
right graph shows when A < 0

|
0 11+e |Lorr ‘

5Schulman, Wolski, Dhariwal, Radford, Klimov, 2017
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