

Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam's slides, with minor modifications

Emma Brunskill

CS234 Reinforcement Learning.

Winter 2026

- Select all that are true about policy gradients:
 - 1 $\nabla_{\theta} V(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) Q^{\pi_{\theta}}(s, a)]$
 - 2 θ is always increased in the direction of $\nabla_{\theta} \ln(\pi(S_t, A_t, \theta))$.
 - 3 State-action pairs with higher estimated Q values will increase in probability on average
 - 4 Are guaranteed to converge to the global optima of the policy class
 - 5 Not sure

- Select all that are true about policy gradients:

- 1 $\nabla_{\theta} V(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) Q^{\pi_{\theta}}(s, a)]$
- 2 θ is always increased in the direction of $\nabla_{\theta} \ln(\pi(S_t, A_t, \theta))$.
- 3 State-action pairs with higher estimated Q values will increase in probability on average
- 4 Are guaranteed to converge to the global optima of the policy class
- 5 Not sure

- Last time: Policy Search
- This time: Policy search continued.

- Likelihood ratio / score function policy gradient
 - Baseline
 - Alternative targets
- Advanced policy gradient methods
 - Proximal policy optimization (PPO) (will implement in homework)

- Last time: time: DQN and REINFORCE
- This time: Policy Gradient and PPO
- Next time: Policy Search Cont.

Policy Gradient Algorithms and Reducing Variance

1 Policy Gradient Algorithms and Reducing Variance

- Baseline
- Alternatives to MC Returns

- Leverages likelihood ratio / score function and temporal structure

$$\Delta\theta_t = \alpha \nabla_\theta \log \pi_\theta(s_t, a_t) G_t$$

REINFORCE:

Initialize policy parameters θ arbitrarily

for each episode $\{s_1, a_1, r_2, \dots, s_{T-1}, a_{T-1}, r_T\} \sim \pi_\theta$ **do**

for $t = 1$ to $T - 1$ **do**

$\theta \leftarrow \theta + \alpha \nabla_\theta \log \pi_\theta(s_t, a_t) G_t$

endfor

endfor

return θ

$$\nabla_{\theta} V(\theta) \approx (1/m) \sum_{i=1}^m R(\tau^{(i)}) \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t^{(i)} | s_t^{(i)})$$

- Unbiased but very noisy
- Fixes that can make it practical
 - Temporal structure
 - **Baseline**
 - Alternatives to using Monte Carlo returns $R(\tau^{(i)})$ as targets

- Reduce variance by introducing a *baseline* $b(s)$

$$\nabla_{\theta} \mathbb{E}_{\tau}[R] = \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t | s_t; \theta) \left(\sum_{t'=t}^{T-1} r_{t'} - b(s_t) \right) \right]$$

- For any choice of b , gradient estimator is unbiased.
- Near optimal choice is the expected return,

$$b(s_t) \approx \mathbb{E}[r_t + r_{t+1} + \dots + r_{T-1}]$$

- Interpretation: increase logprob of action a_t proportionally to how much returns $\sum_{t'=t}^{T-1} r_{t'}$ are better than expected

Baseline $b(s)$ Does Not Introduce Bias—Derivation

$$\begin{aligned} & \mathbb{E}_\tau[\nabla_\theta \log \pi(a_t | s_t; \theta) b(s_t)] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[\mathbb{E}_{s_{(t+1):T}, a_{t:(T-1)}} [\nabla_\theta \log \pi(a_t | s_t; \theta) b(s_t)] \right] \end{aligned}$$

Baseline $b(s)$ Does Not Introduce Bias—Derivation

$$\begin{aligned} & \mathbb{E}_\tau[\nabla_\theta \log \pi(a_t | s_t; \theta) b(s_t)] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[\mathbb{E}_{s_{(t+1):T}, a_{t:(T-1)}} [\nabla_\theta \log \pi(a_t | s_t; \theta) b(s_t)] \right] \text{(break up expectation)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \mathbb{E}_{s_{(t+1):T}, a_{t:(T-1)}} [\nabla_\theta \log \pi(a_t | s_t; \theta)] \right] \text{(pull baseline term out)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} [b(s_t) \mathbb{E}_{a_t} [\nabla_\theta \log \pi(a_t | s_t; \theta)]] \text{(remove irrelevant variables)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \sum_a \pi_\theta(a_t | s_t) \frac{\nabla_\theta \pi(a_t | s_t; \theta)}{\pi_\theta(a_t | s_t)} \right] \text{(likelihood ratio)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \sum_a \nabla_\theta \pi(a_t | s_t; \theta) \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \nabla_\theta \sum_a \pi(a_t | s_t; \theta) \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} [b(s_t) \nabla_\theta 1] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} [b(s_t) \cdot 0] = 0 \end{aligned}$$

Argument for Why Baseline $b(s)$ Can Reduce Variance

- Motivation was for introducing baseline $b(s)$ was to reduce variance

$$\text{Var}[\nabla_{\theta} \mathbb{E}_{\tau}[R]] = \text{Var} \left[\mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t | s_t; \theta) (R_t(s_t) - b(s_t)) \right] \right] \quad (1)$$

Argument for Why Baseline $b(s)$ Can Reduce Variance

- Motivation was for introducing baseline $b(s)$ was to reduce variance

$$\text{Var}[\nabla_{\theta} \mathbb{E}_{\tau}[R]] = \text{Var} \left[\mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t | s_t; \theta) (R_t(s_t) - b(s_t)) \right] \right] \quad (2)$$

$$\approx \sum_{t=0}^{T-1} \mathbb{E}_{\tau} \text{Var} [[\nabla_{\theta} \log \pi(a_t | s_t; \theta) (R_t(s_t) - b(s_t))]] \quad (3)$$

- Focus on the variance of one term.

$$\begin{aligned} \text{Var} [[\nabla_{\theta} \log \pi(a_t | s_t; \theta) (R_t(s_t) - b(s_t))]] &= E \left[[\nabla_{\theta} \log \pi(a_t | s_t; \theta) (R_t(s_t) - b(s_t))]^2 \right] \\ &\quad - [E [\nabla_{\theta} \log \pi(a_t | s_t; \theta) (R_t(s_t) - b(s_t))]]^2 \end{aligned}$$

- Choosing a baseline to minimize variance
- Recall the baseline $b(s)$ does not impact the expectation. Therefore sufficient to consider

$$\begin{aligned} \arg \max_b \text{Var} [[\nabla_{\theta} \log \pi(a_t | s_t; \theta) (G_t(s_t) - b(s_t))]] &= \arg \min_b E \left[[(\nabla_{\theta} \log \pi(a_t | s_t; \theta))^2 (G_t(s_t) - b(s_t))^2] \right] \quad (4) \\ &= \arg \min_b E_{s \sim d\pi} \left[E_{a \sim \pi(\cdot | s), G | s, a} [(\nabla_{\theta} \log \pi(a_t | s; \theta))^2 (G_t(s) - b(s))^2] \right] \end{aligned}$$

- This is a weighted least squares problem. Taking the derivative and setting to zero yields

$$b(s) = \frac{E_{a \sim \pi(\cdot | s), G | s, a} [(\nabla_{\theta} \log \pi(a_t | s; \theta))^2 G_t(s)]}{E_{a \sim \pi(\cdot | s), G | s, a} (\nabla_{\theta} \log \pi(a_t | s; \theta))^2} \approx E_{a \sim \pi(\cdot | s), G | s, a} [G_t(s)] \quad (5)$$

"Vanilla" Policy Gradient Algorithm

Initialize policy parameter θ , baseline b

for iteration=1, 2, \dots **do**

 Collect a set of trajectories by executing the current policy

 At each timestep t in each trajectory τ^i , compute

 Return $G_t^i = \sum_{t'=t}^{T-1} r_{t'}^i$, and

 Advantage estimate $\hat{A}_t^i = G_t^i - b(s_t^i)$.

 Re-fit the baseline, by minimizing $\sum_i \sum_t |b(s_t^i) - G_t^i|^2$,

 Update the policy, using a policy gradient estimate \hat{g} ,

 Which is a sum of terms $\nabla_{\theta} \log \pi(a_t | s_t, \theta) \hat{A}_t$.

 (Plug \hat{g} into SGD or ADAM)

endfor

Other Choices for Baseline?

Initialize policy parameter θ , baseline b

for iteration=1, 2, \dots **do**

 Collect a set of trajectories by executing the current policy

 At each timestep t in each trajectory τ^i , compute

 Return $G_t^i = \sum_{t'=t}^{T-1} r_{t'}^i$, and

 Advantage estimate $\hat{A}_t^i = G_t^i - b(s_t^i)$.

 Re-fit the baseline, by minimizing $\sum_i \sum_t |b(s_t^i) - G_t^i|^2$,

 Update the policy, using a policy gradient estimate \hat{g} ,

 Which is a sum of terms $\nabla_{\theta} \log \pi(a_t | s_t, \theta) \hat{A}_t$.

 (Plug \hat{g} into SGD or ADAM)

endfor

- Recall Q-function / state-action-value function:

$$Q^\pi(s, a) = \mathbb{E}_\pi \left[r_0 + \gamma r_1 + \gamma^2 r_2 \dots | s_0 = s, a_0 = a \right]$$

- State-value function can serve as a great baseline

$$\begin{aligned} V^\pi(s) &= \mathbb{E}_\pi \left[r_0 + \gamma r_1 + \gamma^2 r_2 \dots | s_0 = s \right] \\ &= \mathbb{E}_{a \sim \pi} [Q^\pi(s, a)] \end{aligned}$$

1 Policy Gradient Algorithms and Reducing Variance

- Baseline
- Alternatives to MC Returns

- Policy gradient:

$$\nabla_{\theta} \mathbb{E}[R] \approx (1/m) \sum_{i=1}^m \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t, s_t) (G_t^{(i)} - b(s_t))$$

- Fixes that improve simplest estimator
 - Temporal structure (shown in above equation)
 - Baseline (shown in above equation)
 - **Alternatives to using Monte Carlo returns G_t^i as estimate of expected discounted sum of returns for the policy parameterized by θ ?**

- G_t^i is an estimation of the value function at s_t from a single roll out
- Unbiased but high variance
- Reduce variance by introducing bias using bootstrapping and function approximation
 - Just like we saw for TD vs MC, and value function approximation

- Estimate of V/Q is done by a **critic**
- **Actor-critic** methods maintain an explicit representation of policy and the value function, and update both
- A3C (Mnih et al. ICML 2016) is a very popular actor-critic method

- Recall:

$$\nabla_{\theta} \mathbb{E}_{\tau}[R] = \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t | s_t; \theta) \left(\sum_{t'=t}^{T-1} r_{t'} - b(s_t) \right) \right]$$
$$\nabla_{\theta} \mathbb{E}_{\tau}[R] \approx \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t | s_t; \theta) (Q(s_t, a_t; \mathbf{w}) - b(s_t)) \right]$$

- Letting the baseline be an estimate of the value V , we can represent the gradient in terms of the state-action advantage function

$$\nabla_{\theta} \mathbb{E}_{\tau}[R] \approx \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t | s_t; \theta) \hat{A}^{\pi}(s_t, a_t) \right]$$

- where the advantage function $A^{\pi}(s, a) = Q^{\pi}(s, a) - V^{\pi}(s)$

Advanced Policy Gradients

Theory:

- ① Problems with Policy Gradient Methods
- ② Policy Performance Bounds
- ③ Monotonic Improvement Theory (next time)

Algorithms:

- ① Proximal Policy Optimization

The Problems with Policy Gradients

Policy gradient algorithms try to solve the optimization problem

$$\max_{\theta} J(\pi_{\theta}) \doteq \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right]$$

by taking stochastic gradient ascent on the policy parameters θ , using the *policy gradient*

$$g = \nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^t \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) A^{\pi_{\theta}}(s_t, a_t) \right].$$

Limitations of policy gradients:

- Sample efficiency is poor
- Distance in parameter space \neq distance in policy space!
 - What is policy space? For tabular case, set of matrices

$$\Pi = \left\{ \pi : \pi \in \mathbb{R}^{|S| \times |A|}, \sum_a \pi_{sa} = 1, \pi_{sa} \geq 0 \right\}$$

- Policy gradients take steps in parameter space
- Step size is hard to get right as a result

- Sample efficiency for vanilla policy gradient methods is poor
- Discard each batch of data immediately after **just one gradient step**
- Why? PG is an **on-policy expectation**.
- Two main approaches to obtaining an unbiased estimate of the policy gradient
 - Collect sample trajectories from policy, then form sample estimate. (More stable)
 - Use trajectories from other policies (Less stable)
- Opportunity: use old data to take **multiple gradient steps** before using the resulting new policy to gather more data
- Challenge: even if this is possible to use old data to estimate multiple gradients, how many steps should be taken?

Choosing a Step Size for Policy Gradients

Policy gradient algorithms are stochastic gradient ascent:

$$\theta_{k+1} = \theta_k + \alpha_k \hat{g}_k$$

with step $\Delta_k = \alpha_k \hat{g}_k$.

- If the step is too large, **performance collapse** is possible (Why?)

Choosing a Step Size for Policy Gradients

Policy gradient algorithms are stochastic gradient ascent:

$$\theta_{k+1} = \theta_k + \alpha_k \hat{g}_k$$

with step $\Delta_k = \alpha_k \hat{g}_k$.

- If the step is too large, **performance collapse** is possible (Why?)
- If the step is too small, progress is unacceptably slow
- "Right" step size changes based on θ

Automatic learning rate adjustment like advantage normalization, or Adam-style optimizers, can help. But does this solve the problem?

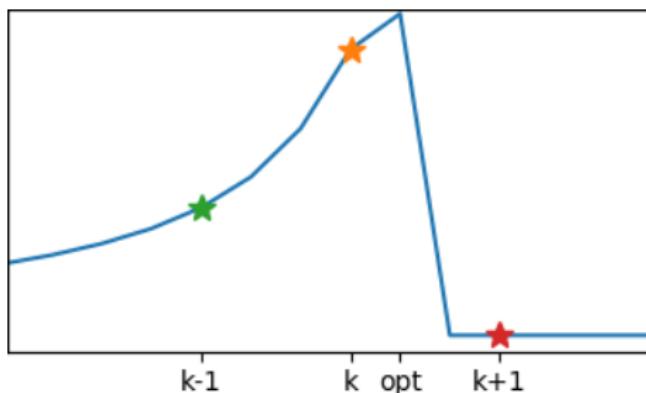


Figure: Policy parameters on x-axis and performance on y-axis. A bad step can lead to performance collapse, which may be hard to recover from.

The Problem is More Than Step Size

Consider a family of policies with parametrization:

$$\pi_\theta(a) = \begin{cases} \sigma(\theta) & a = 1 \\ 1 - \sigma(\theta) & a = 2 \end{cases}$$

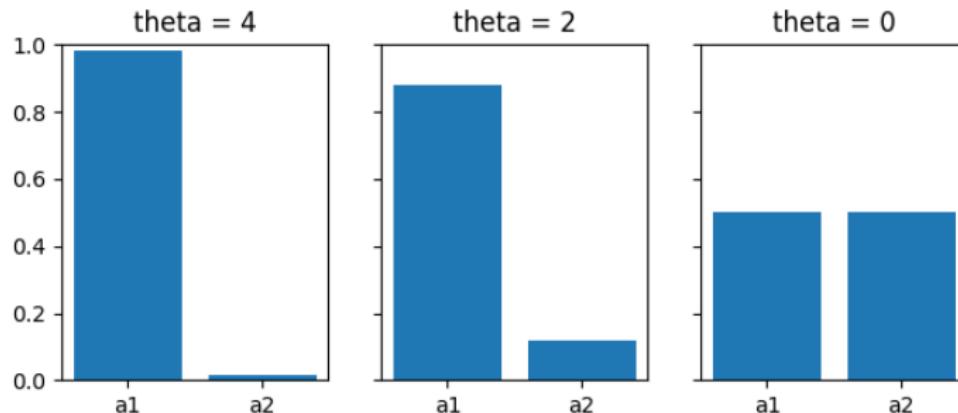


Figure: Small changes in the policy parameters can unexpectedly lead to **big** changes in the policy.

Big question: how do we come up with an update rule that doesn't ever change the policy more than we meant to?

Policy Performance Bounds

Relative Performance of Two Policies

In a policy optimization algorithm, we want an update step that

- uses rollouts collected from the most recent policy as efficiently as possible,
- and takes steps that respect **distance in policy space** as opposed to distance in parameter space.

To figure out the right update rule, we need to exploit relationships between the performance of two policies.

Performance difference lemma: In CS234 HW2 we ask you to prove that for any policies π, π'

$$J(\pi') - J(\pi) = \mathbb{E}_{\tau \sim \pi'} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi}(s_t, a_t) \right] \quad (6)$$

$$= \frac{1}{1-\gamma} \mathbb{E}_{\substack{s \sim d^{\pi'} \\ a \sim \pi'}} [A^{\pi}(s, a)] \quad (7)$$

where

$$d^{\pi}(s) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t P(s_t = s | \pi)$$

What is it good for?

Can we use this for policy improvement, where π' represents the new policy and π represents the old one?

$$\begin{aligned}\max_{\pi'} J(\pi') &= \max_{\pi'} J(\pi') - J(\pi) \\ &= \max_{\pi'} \mathbb{E}_{\tau \sim \pi'} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi}(s_t, a_t) \right]\end{aligned}$$

This is suggestive, but not useful yet.

Nice feature of this optimization problem: defines the performance of π' in terms of the advantages from π !

But, problematic feature: still requires trajectories sampled from π' ...

In terms of the **discounted future state distribution** d^π , defined by

$$d^\pi(s) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t P(s_t = s | \pi),$$

we can rewrite the relative policy performance identity:

$$J(\pi') - J(\pi) = \mathbb{E}_{\tau \sim \pi'} \left[\sum_{t=0}^{\infty} \gamma^t A^\pi(s_t, a_t) \right]$$

In terms of the **discounted future state distribution** d^π , defined by

$$d^\pi(s) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t P(s_t = s | \pi),$$

we can rewrite the relative policy performance identity:

$$\begin{aligned} J(\pi') - J(\pi) &= \mathbb{E}_{\tau \sim \pi'} \left[\sum_{t=0}^{\infty} \gamma^t A^\pi(s_t, a_t) \right] \\ &= \frac{1}{1 - \gamma} \mathbb{E}_{\substack{s \sim d^{\pi'} \\ a \sim \pi'}} [A^\pi(s, a)] \\ &= \frac{1}{1 - \gamma} \mathbb{E}_{\substack{s \sim d^{\pi'} \\ a \sim \pi}} \left[\frac{\pi'(a|s)}{\pi(a|s)} A^\pi(s, a) \right] \end{aligned}$$

Last step is an instance of **importance sampling** (more on this next time)

Problem: State Distribution

In terms of the **discounted future state distribution** d^π , defined by

$$d^\pi(s) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t P(s_t = s | \pi),$$

we can rewrite the relative policy performance identity:

$$\begin{aligned} J(\pi') - J(\pi) &= \mathbb{E}_{\tau \sim \pi'} \left[\sum_{t=0}^{\infty} \gamma^t A^\pi(s_t, a_t) \right] \\ &= \frac{1}{1 - \gamma} \mathbb{E}_{\substack{s \sim d^{\pi'} \\ a \sim \pi'}} [A^\pi(s, a)] \\ &= \frac{1}{1 - \gamma} \mathbb{E}_{\substack{s \sim d^{\pi'} \\ a \sim \pi}} \left[\frac{\pi'(a|s)}{\pi(a|s)} A^\pi(s, a) \right] \end{aligned}$$

...almost there! Only problem is $s \sim d^{\pi'}$.

A Useful Approximation

What if we just said $d^{\pi'} \approx d^\pi$ and didn't worry about it?

$$\begin{aligned} J(\pi') - J(\pi) &\approx \frac{1}{1 - \gamma} \mathbb{E}_{\substack{s \sim d^\pi \\ a \sim \pi}} \left[\frac{\pi'(a|s)}{\pi(a|s)} A^\pi(s, a) \right] \\ &\doteq \mathcal{L}_\pi(\pi') \end{aligned}$$

Turns out: this approximation is pretty good when π' and π are close! But why, and how close do they have to be?

Relative policy performance bounds: ¹

$$|J(\pi') - (J(\pi) + \mathcal{L}_\pi(\pi'))| \leq C \sqrt{\mathbb{E}_{s \sim d^\pi} [D_{KL}(\pi' || \pi)[s]]} \quad (8)$$

If policies are close in KL-divergence—the approximation is good!

¹Achiam, Held, Tamar, Abbeel, 2017

What is KL-divergence?

For probability distributions P and Q over a discrete random variable,

$$D_{KL}(P||Q) = \sum_x P(x) \log \frac{P(x)}{Q(x)}$$

Properties:

- $D_{KL}(P||P) = 0$
- $D_{KL}(P||Q) \geq 0$
- $D_{KL}(P||Q) \neq D_{KL}(Q||P)$ — Non-symmetric!

What is KL-divergence between policies?

$$D_{KL}(\pi'||\pi)[s] = \sum_{a \in \mathcal{A}} \pi'(a|s) \log \frac{\pi'(a|s)}{\pi(a|s)}$$

A Useful Approximation

What did we gain from making that approximation?

$$J(\pi') - J(\pi) \approx \mathcal{L}_\pi(\pi')$$

$$\begin{aligned}\mathcal{L}_\pi(\pi') &= \frac{1}{1 - \gamma} \mathbb{E}_{\substack{s \sim d^\pi \\ a \sim \pi}} \left[\frac{\pi'(a|s)}{\pi(a|s)} A^\pi(s, a) \right] \\ &= \mathbb{E}_{\substack{r \sim \pi}} \left[\sum_{t=0}^{\infty} \gamma^t \frac{\pi'(a_t|s_t)}{\pi(a_t|s_t)} A^\pi(s_t, a_t) \right]\end{aligned}$$

- This is something we can optimize using trajectories sampled from the old policy π !
- Similar to using importance sampling, but because weights only depend on current timestep (and not preceding history), they don't vanish or explode.

- “Approximately Optimal Approximate Reinforcement Learning,” Kakade and Langford, 2002 ²
- “Trust Region Policy Optimization,” Schulman et al. 2015 ³
- “Constrained Policy Optimization,” Achiam et al. 2017 ⁴

²<https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/KakadeLangford-icml2002.pdf>

³<https://arxiv.org/pdf/1502.05477.pdf>

⁴<https://arxiv.org/pdf/1705.10528.pdf>

Algorithms

Proximal Policy Optimization (PPO) is a family of methods that approximately penalize policies from changing too much between steps. Two variants:

- Adaptive KL Penalty
 - Policy update solves unconstrained optimization problem

$$\theta_{k+1} = \arg \max_{\theta} \mathcal{L}_{\theta_k}(\theta) - \beta_k \bar{D}_{KL}(\theta || \theta_k) \quad (9)$$

$$\bar{D}_{KL}(\theta || \theta_k) = E_{s \sim d^{\pi_k}} D_{KL}(\theta_k(\cdot | s), \pi_{\theta}(\cdot | s)) \quad (10)$$

- Penalty coefficient β_k changes between iterations to approximately enforce KL-divergence constraint

Algorithm PPO with Adaptive KL Penalty

Input: initial policy parameters θ_0 , initial KL penalty β_0 , target KL-divergence δ
for $k = 0, 1, 2, \dots$ **do**

 Collect set of partial trajectories \mathcal{D}_k on policy $\pi_k = \pi(\theta_k)$

 Estimate advantages $\hat{A}_t^{\pi_k}$ using any advantage estimation algorithm

 Compute policy update

$$\theta_{k+1} = \arg \max_{\theta} \mathcal{L}_{\theta_k}(\theta) - \beta_k \bar{D}_{KL}(\theta || \theta_k)$$

 by taking K steps of minibatch SGD (via Adam)

if $\bar{D}_{KL}(\theta_{k+1} || \theta_k) \geq 1.5\delta$ **then**

$$\beta_{k+1} = 2\beta_k$$

else if $\bar{D}_{KL}(\theta_{k+1} || \theta_k) \leq \delta/1.5$ **then**

$$\beta_{k+1} = \beta_k/2$$

end if

end for

- Initial KL penalty not that important—it adapts quickly
- Some iterations may violate KL constraint, but most don't

Algorithm PPO with Adaptive KL Penalty

Input: initial policy parameters θ_0 , initial KL penalty β_0 , target KL-divergence δ
for $k = 0, 1, 2, \dots$ **do**

 Collect set of partial trajectories \mathcal{D}_k on policy $\pi_k = \pi(\theta_k)$

 Estimate advantages $\hat{A}_t^{\pi_k}$ using any advantage estimation algorithm

 Compute policy update

$$\theta_{k+1} = \arg \max_{\theta} \mathcal{L}_{\theta_k}(\theta) - \beta_k \bar{D}_{KL}(\theta || \theta_k)$$

by taking K steps of minibatch SGD (via Adam)

if $\bar{D}_{KL}(\theta_{k+1} || \theta_k) \geq 1.5\delta$ **then**

$$\beta_{k+1} = 2\beta_k$$

else if $\bar{D}_{KL}(\theta_{k+1} || \theta_k) \leq \delta/1.5$ **then**

$$\beta_{k+1} = \beta_k/2$$

end if

end for

- Initial KL penalty not that important—it adapts quickly
- Some iterations may violate KL constraint, but most don't

Proximal Policy Optimization (PPO) is a family of methods that approximately enforce KL constraint **without computing natural gradients**. Two variants:

- Adaptive KL Penalty
 - Policy update solves unconstrained optimization problem

$$\theta_{k+1} = \arg \max_{\theta} \mathcal{L}_{\theta_k}(\theta) - \beta_k \bar{D}_{KL}(\theta || \theta_k)$$

- Penalty coefficient β_k changes between iterations to approximately enforce KL-divergence constraint
- Clipped Objective

- New objective function: let $r_t(\theta) = \pi_\theta(a_t|s_t)/\pi_{\theta_k}(a_t|s_t)$. Then

$$\mathcal{L}_{\theta_k}^{CLIP}(\theta) = \mathbb{E}_{\tau \sim \pi_k} \left[\sum_{t=0}^T \left[\min(r_t(\theta) \hat{A}_t^{\pi_k}, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t^{\pi_k}) \right] \right]$$

- where ϵ is a hyperparameter (maybe $\epsilon = 0.2$)
- Policy update is $\theta_{k+1} = \arg \max_{\theta} \mathcal{L}_{\theta_k}^{CLIP}(\theta)$

L6 Check Your Understanding: Proximal Policy Optimization

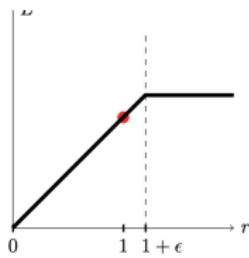
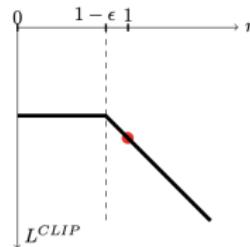
- Clipped Objective function: let $r_t(\theta) = \pi_\theta(a_t|s_t)/\pi_{\theta_k}(a_t|s_t)$. Then

$$\mathcal{L}_{\theta_k}^{CLIP}(\theta) = \mathbb{E}_{\tau \sim \pi_k} \left[\sum_{t=0}^T \left[\min(r_t(\theta) \hat{A}_t^{\pi_k}, \text{clip}(r_t(\theta), 1-\epsilon, 1+\epsilon) \hat{A}_t^{\pi_k}) \right] \right]$$

- where ϵ is a hyperparameter (maybe $\epsilon = 0.2$)
- Policy update is $\theta_{k+1} = \arg \max_\theta \mathcal{L}_{\theta_k}^{CLIP}(\theta)$.

Consider the figure⁵. Select all that are true. $\epsilon \in (0, 1)$.

- ① The left graph shows the L^{CLIP} objective when the advantage function $A > 0$ and the right graph shows when $A < 0$
- ② The right graph shows the L^{CLIP} objective when the advantage function $A > 0$ and the left graph shows when $A < 0$
- ③ It depends on the value of ϵ
- ④ Not sure



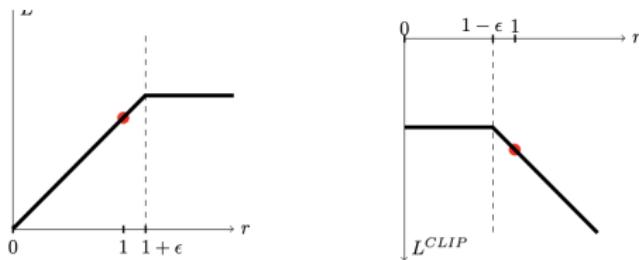
⁵Schulman, Wolski, Dhariwal, Radford, Klimov, 2017

- Clipped Objective function: let $r_t(\theta) = \pi_\theta(a_t|s_t)/\pi_{\theta_k}(a_t|s_t)$. Then

$$\mathcal{L}_{\theta_k}^{CLIP}(\theta) = \mathbb{E}_{\tau \sim \pi_k} \left[\sum_{t=0}^T \left[\min(r_t(\theta) \hat{A}_t^{\pi_k}, \text{clip}(r_t(\theta), 1-\epsilon, 1+\epsilon) \hat{A}_t^{\pi_k}) \right] \right]$$

- where ϵ is a hyperparameter (maybe $\epsilon = 0.2$)
- Policy update is $\theta_{k+1} = \arg \max_\theta \mathcal{L}_{\theta_k}^{CLIP}(\theta)$.

Consider the figure⁶. Select all that are true. $\epsilon \in (0, 1)$.



⁶Schulman, Wolski, Dhariwal, Radford, Klimov, 2017

But *how* does clipping keep policy close? By making objective as pessimistic as possible about performance far away from θ_k :

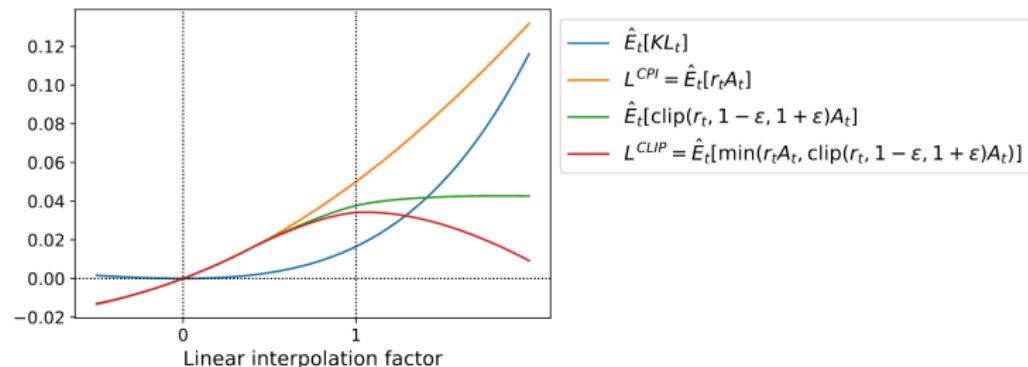


Figure: Various objectives as a function of interpolation factor α between θ_{k+1} and θ_k after one update of PPO-Clip ⁷

⁷Schulman, Wolski, Dhariwal, Radford, Klimov, 2017

Algorithm PPO with Clipped Objective

Input: initial policy parameters θ_0 , clipping threshold ϵ

for $k = 0, 1, 2, \dots$ **do**

 Collect set of partial trajectories \mathcal{D}_k on policy $\pi_k = \pi(\theta_k)$

 Estimate advantages $\hat{A}_t^{\pi_k}$ using any advantage estimation algorithm

 Compute policy update

$$\theta_{k+1} = \arg \max_{\theta} \mathcal{L}_{\theta_k}^{CLIP}(\theta)$$

 by taking K steps of minibatch SGD (via Adam), where

$$\mathcal{L}_{\theta_k}^{CLIP}(\theta) = \mathbb{E}_{\tau \sim \pi_k} \left[\sum_{t=0}^T \left[\min(r_t(\theta) \hat{A}_t^{\pi_k}, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t^{\pi_k}) \right] \right]$$

end for

- Clipping prevents policy from having incentive to go far away from θ_{k+1}
- Clipping seems to work at least as well as PPO with KL penalty, but is simpler to implement

Empirical Performance of PPO

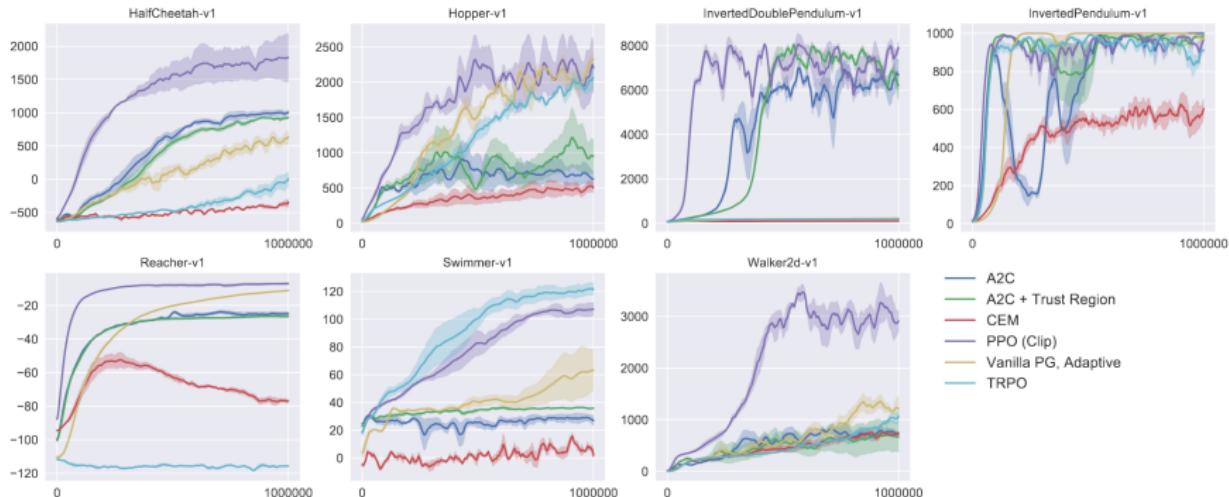


Figure: Performance comparison between PPO with clipped objective and various other deep RL methods on a slate of MuJoCo tasks. ⁸

- Wildly popular, and key component of ChatGPT

⁸Schulman, Wolski, Dhariwal, Radford, Klimov, 2017

PPO

- “Proximal Policy Optimization Algorithms,” Schulman et al. 2017 ⁹
- OpenAI blog post on PPO, 2017 ¹⁰

⁹<https://arxiv.org/pdf/1707.06347.pdf>

¹⁰<https://blog.openai.com/openai-baselines-ppo/>

- Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph, and Aleksander Madry. Implementation Matters in Deep RL: A Case Study on PPO and TRPO. ICLR 2020
<https://openreview.net/forum?id=rletN1rtPB>
- Reward scaling, learning rate annealing, etc. can make a significant difference

- Likelihood ratio / score function policy gradient
 - Baseline
 - Alternative targets
- Advanced policy gradient methods
 - Proximal policy optimization (PPO) algorithm (will implement in homework)

- Last time: Policy Search
- This time: Policy search continued.
- Next time: Proximal Policy Optimization (PPO) cont (theory and additional discussion)

- SLIDES FOR NEXT CLASS (LIKELY)

Monotonic Improvement Theory

From the bound on the previous slide, we get

$$J(\pi') - J(\pi) \geq \mathcal{L}_\pi(\pi') - C \sqrt{\mathbb{E}_{s \sim d^\pi} [D_{KL}(\pi' || \pi)[s]]}.$$

- If we maximize the RHS with respect to π' , we are **guaranteed to improve over π** .
 - This is a *majorize-maximize* algorithm w.r.t. the true objective, the LHS.
- **And $\mathcal{L}_\pi(\pi')$ and the KL-divergence term can both be estimated with samples from π !**

Monotonic Improvement Theory

Proof of improvement guarantee: Suppose π_{k+1} and π_k are related by

$$\pi_{k+1} = \arg \max_{\pi'} \mathcal{L}_{\pi_k}(\pi') - C \sqrt{\mathbb{E}_{s \sim d^{\pi_k}} [D_{KL}(\pi' || \pi_k)[s]]}.$$

Monotonic Improvement Theory

Proof of improvement guarantee: Suppose π_{k+1} and π_k are related by

$$\pi_{k+1} = \arg \max_{\pi'} \mathcal{L}_{\pi_k}(\pi') - C \sqrt{\mathbb{E}_{s \sim d^{\pi_k}} [D_{KL}(\pi' || \pi_k)[s]]}.$$

- π_k is a feasible point, and the objective at π_k is equal to 0.
 - $\mathcal{L}_{\pi_k}(\pi_k) \propto \mathbb{E}_{s, a \sim d^{\pi_k}, \pi_k} [A^{\pi_k}(s, a)] = 0$
 - $D_{KL}(\pi_k || \pi_k)[s] = 0$
- \implies optimal value ≥ 0
- \implies by the performance bound, $J(\pi_{k+1}) - J(\pi_k) \geq 0$

This proof works even if we restrict the domain of optimization to an arbitrary class of parametrized policies Π_θ , as long as $\pi_k \in \Pi_\theta$.

$$\pi_{k+1} = \arg \max_{\pi'} \mathcal{L}_{\pi_k}(\pi') - C \sqrt{\mathbb{E}_{s \sim d^{\pi_k}} [D_{KL}(\pi' || \pi_k)[s]]}. \quad (11)$$

Problem:

- C provided by theory is quite high when γ is near 1
- \implies steps from (11) are too small.

Potential Solution:

- Tune the KL penalty
- Use KL constraint (called **trust region**).

Importance Sampling for Off Policy, Policy Gradient

Importance Sampling

Importance sampling is a technique for estimating expectations using samples drawn from a different distribution.

$$\mathbb{E}_{x \sim P} [f(x)] =$$

Importance sampling is a technique for estimating expectations using samples drawn from a different distribution.

$$\mathbb{E}_{x \sim P}[f(x)] = \mathbb{E}_{x \sim Q}\left[\frac{P(x)}{Q(x)}f(x)\right] \approx \frac{1}{|D|} \sum_{x \in D} \frac{P(x)}{Q(x)}f(x), \quad D \sim Q$$

The ratio $P(x)/Q(x)$ is the **importance sampling weight** for x .

Importance Sampling

Importance sampling is a technique for estimating expectations using samples drawn from a different distribution.

$$\mathbb{E}_{x \sim P}[f(x)] = \mathbb{E}_{x \sim Q}\left[\frac{P(x)}{Q(x)}f(x)\right] \approx \frac{1}{|D|} \sum_{x \in D} \frac{P(x)}{Q(x)}f(x), \quad D \sim Q$$

The ratio $P(x)/Q(x)$ is the **importance sampling weight** for x .

What is the variance of an importance sampling estimator?

$$\begin{aligned}\text{var}(\hat{\mu}_Q) &= \frac{1}{N} \text{var}\left(\frac{P(x)}{Q(x)}f(x)\right) \\ &= \frac{1}{N} \left(\mathbb{E}_{x \sim Q}\left[\left(\frac{P(x)}{Q(x)}f(x)\right)^2\right] - \mathbb{E}_{x \sim Q}\left[\frac{P(x)}{Q(x)}f(x)\right]^2 \right) \\ &= \frac{1}{N} \left(\mathbb{E}_{x \sim P}\left[\frac{P(x)}{Q(x)}f(x)^2\right] - \mathbb{E}_{x \sim P}[f(x)]^2 \right)\end{aligned}$$

The term in red is problematic—if $P(x)/Q(x)$ is large in the wrong places, the variance of the estimator explodes.

Importance Sampling for Policy Gradients

Here, we compress the notation π_θ down to θ in some places for compactness.

$$\begin{aligned} g = \nabla_\theta J(\theta) &= \mathbb{E}_{\tau \sim \theta} \left[\sum_{t=0}^{\infty} \gamma^t \nabla_\theta \log \pi_\theta(a_t | s_t) A^\theta(s_t, a_t) \right] \\ &= \sum_{\tau} \sum_{t=0}^{\infty} \gamma^t P(\tau_t | \theta) \nabla_\theta \log \pi_\theta(a_t | s_t) A^\theta(s_t, a_t) \\ &= \mathbb{E}_{\tau \sim \theta'} \left[\sum_{t=0}^{\infty} \frac{P(\tau_t | \theta)}{P(\tau_t | \theta')} \gamma^t \nabla_\theta \log \pi_\theta(a_t | s_t) A^\theta(s_t, a_t) \right] \end{aligned}$$

Importance Sampling for Policy Gradients

Here, we compress the notation π_θ down to θ in some places for compactness.

$$\begin{aligned} g = \nabla_\theta J(\theta) &= \mathbb{E}_{\tau \sim \theta} \left[\sum_{t=0}^{\infty} \gamma^t \nabla_\theta \log \pi_\theta(a_t | s_t) A^\theta(s_t, a_t) \right] \\ &= \sum_{\tau} \sum_{t=0}^{\infty} \gamma^t P(\tau_t | \theta) \nabla_\theta \log \pi_\theta(a_t | s_t) A^\theta(s_t, a_t) \\ &= \mathbb{E}_{\tau \sim \theta'} \left[\sum_{t=0}^{\infty} \frac{P(\tau_t | \theta)}{P(\tau_t | \theta')} \gamma^t \nabla_\theta \log \pi_\theta(a_t | s_t) A^\theta(s_t, a_t) \right] \end{aligned}$$

$$\frac{P(\tau_t | \theta)}{P(\tau_t | \theta')} =$$

Importance Sampling for Policy Gradients

Here, we compress the notation π_θ down to θ in some places for compactness.

$$\begin{aligned} g = \nabla_\theta J(\theta) &= \mathbb{E}_{\tau \sim \theta} \left[\sum_{t=0}^{\infty} \gamma^t \nabla_\theta \log \pi_\theta(a_t | s_t) A^\theta(s_t, a_t) \right] \\ &= \sum_{\tau} \sum_{t=0}^{\infty} \gamma^t P(\tau_t | \theta) \nabla_\theta \log \pi_\theta(a_t | s_t) A^\theta(s_t, a_t) \\ &= \mathbb{E}_{\tau \sim \theta'} \left[\sum_{t=0}^{\infty} \frac{P(\tau_t | \theta)}{P(\tau_t | \theta')} \gamma^t \nabla_\theta \log \pi_\theta(a_t | s_t) A^\theta(s_t, a_t) \right] \end{aligned}$$

Challenge? **Exploding or vanishing importance sampling weights.**

$$\frac{P(\tau_t | \theta)}{P(\tau_t | \theta')} = \frac{\mu(s_0) \prod_{t'=0}^t P(s_{t'+1} | s_{t'}, a_{t'}) \pi_\theta(a_{t'} | s_{t'})}{\mu(s_0) \prod_{t'=0}^t P(s_{t'+1} | s_{t'}, a_{t'}) \pi_{\theta'}(a_{t'} | s_{t'})} = \prod_{t'=0}^t \frac{\pi_\theta(a_{t'} | s_{t'})}{\pi_{\theta'}(a_{t'} | s_{t'})}$$

Even for policies only slightly different from each other, **many small differences multiply to become a big difference.**

Big question: how can we make efficient use of the data we already have from the old policy, while avoiding the challenges posed by importance sampling?

Theory:

- ① Problems with Policy Gradient Methods
- ② Policy Performance Bounds
- ③ Monotonic Improvement Theory

Proximal Policy Optimization:

- ① Approximately constraints policy steps
- ② Relatively simple to implement
- ③ Good empirical success and very widely used

$$\nabla_{\theta} V(\theta) \approx (1/m) \sum_{i=1}^m \sum_{t=0}^{T-1} \textcolor{blue}{R_t^i} \nabla_{\theta} \log \pi_{\theta}(a_t^{(i)} | s_t^{(i)})$$

- Note that critic can select any blend between TD and MC estimators for the target to substitute for the true state-action value function.

Choosing the Target: N-step estimators

$$\nabla_{\theta} V(\theta) \approx (1/m) \sum_{i=1}^m \sum_{t=0}^{T-1} \textcolor{blue}{R_t^i} \nabla_{\theta} \log \pi_{\theta}(a_t^{(i)} | s_t^{(i)})$$

- Note that critic can select any blend between TD and MC estimators for the target to substitute for the true state-action value function.

$$\hat{R}_t^{(1)} = r_t + \gamma V(s_{t+1})$$

$$\hat{R}_t^{(2)} = r_t + \gamma r_{t+1} + \gamma^2 V(s_{t+2}) \quad \dots$$

$$\hat{R}_t^{(\text{inf})} = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$$

- If subtract baselines from the above, get advantage estimators

$$\hat{A}_t^{(1)} = r_t + \gamma V(s_{t+1}) - \textcolor{blue}{V(s_t)}$$

$$\hat{A}_t^{(\text{inf})} = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots - \textcolor{blue}{V(s_t)}$$

$$\nabla_{\theta} V(\theta) \approx (1/m) \sum_{i=1}^m \sum_{t=0}^{T-1} \textcolor{blue}{R_t^i} \nabla_{\theta} \log \pi_{\theta}(a_t^{(i)} | s_t^{(i)})$$

- If subtract baselines from the above, get advantage estimators

$$\hat{A}_t^{(1)} = r_t + \gamma V(s_{t+1}) - V(s_t)$$

$$\hat{A}_t^{(\text{inf})} = r_t + \gamma r_{t+1} + \gamma^2 r_{t+1} + \dots - V(s_t)$$

- Select all that are true
- $\hat{A}_t^{(1)}$ has low variance & low bias.
- $\hat{A}_t^{(1)}$ has high variance & low bias.
- $\hat{A}_t^{(\infty)}$ low variance and high bias.
- $\hat{A}_t^{(\infty)}$ high variance and low bias.
- Not sure

$$\nabla_{\theta} V(\theta) \approx (1/m) \sum_{i=1}^m \sum_{t=0}^{T-1} \textcolor{blue}{R_t^i} \nabla_{\theta} \log \pi_{\theta}(a_t^{(i)} | s_t^{(i)})$$

- If subtract baselines from the above, get advantage estimators

$$\hat{A}_t^{(1)} = r_t + \gamma V(s_{t+1}) - \textcolor{blue}{V}(s_t)$$

$$\hat{A}_t^{(\text{inf})} = r_t + \gamma r_{t+1} + \gamma^2 r_{t+1} + \dots - \textcolor{blue}{V}(s_t)$$