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Refresh Your Knowledge L6N1

Select all that are true about policy gradients:
1 ∇θV (θ) = Eπθ [∇θ log πθ(s, a)Q

πθ (s, a)]
2 θ is always increased in the direction of ∇θ ln(π(St ,At , θ).
3 State-action pairs with higher estimated Q values will increase in probability on average
4 Are guaranteed to converge to the global optima of the policy class
5 Not sure
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Refresh Your Knowledge L6N1 Solutions

Select all that are true about policy gradients:
1 ∇θV (θ) = Eπθ [∇θ log πθ(s, a)Q

πθ (s, a)]
2 θ is always increased in the direction of ∇θ ln(π(St ,At , θ).
3 State-action pairs with higher estimated Q values will increase in probability on average
4 Are guaranteed to converge to the global optima of the policy class
5 Not sure
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Class Structure

Last time: Policy Search

This time: Policy search continued.
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Today

Likelihood ratio / score function policy gradient
Baseline
Alternative targets

Advanced policy gradient methods
Proximal policy optimization (PPO) (will implement in homework)
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Class Structure

Last time: time: DQN and REINFORCE

This time: Policy Gradient and PPO

Next time: Policy Search Cont.

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 6 / 73



Policy Gradient Algorithms and Reducing Variance
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Table of Contents

1 Policy Gradient Algorithms and Reducing Variance
Baseline
Alternatives to MC Returns
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Monte-Carlo Policy Gradient (REINFORCE)

Leverages likelihood ratio / score function and temporal structure

∆θt = α∇θ log πθ(st , at)Gt

REINFORCE:
Initialize policy parameters θ arbitrarily
for each episode {s1, a1, r2, · · · , sT−1, aT−1, rT} ∼ πθ do
for t = 1 to T − 1 do
θ ← θ + α∇θ log πθ(st , at)Gt

endfor
endfor
return θ
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Likelihood Ratio / Score Function Policy Gradient

∇θV (θ) ≈ (1/m)
m∑
i=1

R(τ (i))
T−1∑
t=0

∇θ log πθ(a
(i)
t |s

(i)
t )

Unbiased but very noisy

Fixes that can make it practical
Temporal structure
Baseline
Alternatives to using Monte Carlo returns R(τ (i)) as targets
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Policy Gradient: Introduce Baseline

Reduce variance by introducing a baseline b(s)

∇θEτ [R] = Eτ

[
T−1∑
t=0

∇θ log π(at |st ; θ)

(
T−1∑
t′=t

rt′ − b(st)

)]

For any choice of b, gradient estimator is unbiased.

Near optimal choice is the expected return,

b(st) ≈ E[rt + rt+1 + · · ·+ rT−1]

Interpretation: increase logprob of action at proportionally to how much returns∑T−1
t′=t rt′ are better than expected
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Baseline b(s) Does Not Introduce Bias–Derivation

Eτ [∇θ log π(at |st ; θ)b(st)]

= Es0:t ,a0:(t−1)

[
Es(t+1):T ,at:(T−1)

[∇θ log π(at |st ; θ)b(st)]
]
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Baseline b(s) Does Not Introduce Bias–Derivation

Eτ [∇θ log π(at |st ; θ)b(st)]

= Es0:t ,a0:(t−1)

[
Es(t+1):T ,at:(T−1)

[∇θ log π(at |st ; θ)b(st)]
]
(break up expectation)

= Es0:t ,a0:(t−1)

[
b(st)Es(t+1):T ,at:(T−1)

[∇θ log π(at |st ; θ)]
]
(pull baseline term out)

= Es0:t ,a0:(t−1)
[b(st)Eat [∇θ log π(at |st ; θ)]] (remove irrelevant variables)

= Es0:t ,a0:(t−1)

[
b(st)

∑
a

πθ(at |st)
∇θπ(at |st ; θ)
πθ(at |st)

]
(likelihood ratio)

= Es0:t ,a0:(t−1)

[
b(st)

∑
a

∇θπ(at |st ; θ)
]

= Es0:t ,a0:(t−1)

[
b(st)∇θ

∑
a

π(at |st ; θ)
]

= Es0:t ,a0:(t−1)
[b(st)∇θ1]

= Es0:t,a0:(t−1) [b(st) · 0] = 0
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Argument for Why Baseline b(s) Can Reduce Variance

Motivation was for introducing baseline b(s) was to reduce variance

Var [∇θEτ [R]] = Var
[
Eτ

[∑T−1
t=0 ∇θ log π(at |st ; θ) (Rt(st)− b(st))

]]
(1)

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 14 / 73



Argument for Why Baseline b(s) Can Reduce Variance

Motivation was for introducing baseline b(s) was to reduce variance

Var [∇θEτ [R]] = Var
[
Eτ

[∑T−1
t=0 ∇θ log π(at |st ; θ) (Rt(st)− b(st))

]]
(2)

≈
∑T−1

t=0 EτVar [[∇θ log π(at |st ; θ) (Rt(st)− b(st))]] (3)

Focus on the variance of one term.

Var [[∇θ log π(at |st ; θ) (Rt(st)− b(st))]] = E
[
[∇θ log π(at |st ; θ) (Rt(st)− b(st))]

2
]

− [E [∇θ log π(at |st ; θ) (Rt(st)− b(st))]]
2

Choosing a baseline to minimize variance

Recall the baseline b(s) does not impact the expectation. Therefore sufficient to consider

arg max
b

Var
[[
∇θ log π(at |st ; θ) (Gt (st ) − b(st ))

]]
= arg min

b
E

[[
(∇θ log π(at |st ; θ))

2 (Gt (st ) − b(st ))
2
]]

(4)

= arg min
b

Es∼dπ
[
Ea∼π(·|s),G|s,a

[
(∇θ log π(at |s; θ))

2 (Gt (s) − b(s))2
]]

This is a weighted least squares problem. Taking the derivative and setting to zero yields

b(s) = =
Ea∼π(·|s),G|s,a

[
(∇θ log π(at |s; θ))2Gt (s)

]
Ea∼π(·|s),G|s,a(∇θ log π(at |s; θ))2

≈ Ea∼π(·|s),G|s,a [Gt (s)] (5)
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”Vanilla” Policy Gradient Algorithm

Initialize policy parameter θ, baseline b
for iteration=1, 2, · · · do
Collect a set of trajectories by executing the current policy
At each timestep t in each trajectory τ i , compute
Return G i

t =
∑T−1

t′=t r
i
t′ , and

Advantage estimate Âi
t = G i

t − b(s it).
Re-fit the baseline, by minimizing

∑
i

∑
t |b(s

i
t)− G i

t |2,
Update the policy, using a policy gradient estimate ĝ ,
Which is a sum of terms ∇θ log π(at |st , θ)Ât .
(Plug ĝ into SGD or ADAM)

endfor
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Other Choices for Baseline?

Initialize policy parameter θ, baseline b
for iteration=1, 2, · · · do
Collect a set of trajectories by executing the current policy
At each timestep t in each trajectory τ i , compute
Return G i

t =
∑T−1

t′=t r
i
t′ , and

Advantage estimate Âi
t = G i

t − b(s it).
Re-fit the baseline, by minimizing

∑
i

∑
t |b(s

i
t)− G i

t |2,
Update the policy, using a policy gradient estimate ĝ ,
Which is a sum of terms ∇θ log π(at |st , θ)Ât .
(Plug ĝ into SGD or ADAM)

endfor
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Choosing the Baseline: Value Functions

Recall Q-function / state-action-value function:

Qπ(s, a) = Eπ

[
r0 + γr1 + γ2r2 · · · |s0 = s, a0 = a

]
State-value function can serve as a great baseline

V π(s) = Eπ

[
r0 + γr1 + γ2r2 · · · |s0 = s

]
= Ea∼π[Q

π(s, a)]
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Likelihood Ratio / Score Function Policy Gradient

Policy gradient:

∇θE[R] ≈ (1/m)
m∑
i=1

T−1∑
t=0

∇θ log πθ(at , st)(G
(i)
t − b(st))

Fixes that improve simplest estimator
Temporal structure (shown in above equation)
Baseline (shown in above equation)
Alternatives to using Monte Carlo returns G i

t as estimate of expected discounted
sum of returns for the policy parameterized by θ?

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 20 / 73



Choosing the Target

G i
t is an estimation of the value function at st from a single roll out

Unbiased but high variance

Reduce variance by introducing bias using bootstrapping and function approximation
Just like we saw for TD vs MC, and value function approximation
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Actor-critic Methods

Estimate of V /Q is done by a critic

Actor-critic methods maintain an explicit representation of policy and the value
function, and update both

A3C (Mnih et al. ICML 2016) is a very popular actor-critic method
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Policy Gradient Formulas with Value Functions

Recall:

∇θEτ [R] = Eτ

[
T−1∑
t=0

∇θ log π(at |st ; θ)

(
T−1∑
t′=t

rt′ − b(st)

)]

∇θEτ [R] ≈ Eτ

[
T−1∑
t=0

∇θ log π(at |st ; θ) (Q(st , at ;w)− b(st))

]
Letting the baseline be an estimate of the value V , we can represent the gradient in
terms of the state-action advantage function

∇θEτ [R] ≈ Eτ

[
T−1∑
t=0

∇θ log π(at |st ; θ)Âπ(st , at)

]

where the advantage function Aπ(s, a) = Qπ(s, a)− V π(s)
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Advanced Policy Gradients
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Outline

Theory:

1 Problems with Policy Gradient Methods

2 Policy Performance Bounds

3 Monotonic Improvement Theory (next time)

Algorithms:

1 Proximal Policy Optimization
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The Problems with Policy Gradients
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Policy Gradients Review

Policy gradient algorithms try to solve the optimization problem

max
θ

J(πθ)
.
= E

τ∼πθ

[
∞∑
t=0

γtrt

]
by taking stochastic gradient ascent on the policy parameters θ, using the policy gradient

g = ∇θJ(πθ) = E
τ∼πθ

[
∞∑
t=0

γt∇θ log πθ(at |st)Aπθ (st , at)

]
.

Limitations of policy gradients:

Sample efficiency is poor

Distance in parameter space ̸= distance in policy space!
What is policy space? For tabular case, set of matrices

Π =

{
π : π ∈ R|S|×|A|,

∑
a

πsa = 1, πsa ≥ 0

}
Policy gradients take steps in parameter space
Step size is hard to get right as a result
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Sample Efficiency in Policy Gradients

Sample efficiency for vanilla policy gradient methods is poor

Discard each batch of data immediately after just one gradient step

Why? PG is an on-policy expectation.

Two main approaches to obtaining an unbiased estimate of the policy gradient
Collect sample trajectories from policy, then form sample estimate. (More stable)
Use trajectories from other policies (Less stable)

Opportunity: use old data to take multiple gradient steps before using the resulting
new policy to gather more data

Challenge: even if this is possible to use old data to estimate multiple gradients, how
many steps should be taken?
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Choosing a Step Size for Policy Gradients

Policy gradient algorithms are stochastic gradient ascent:

θk+1 = θk + αk ĝk

with step ∆k = αk ĝk .

If the step is too large, performance collapse is possible (Why?)
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Choosing a Step Size for Policy Gradients

Policy gradient algorithms are stochastic gradient ascent:

θk+1 = θk + αk ĝk

with step ∆k = αk ĝk .

If the step is too large, performance collapse is possible (Why?)
If the step is too small, progress is unacceptably slow
“Right” step size changes based on θ

Automatic learning rate adjustment like advantage normalization, or Adam-style
optimizers, can help. But does this solve the problem?

Figure: Policy parameters on x-axis and performance on y -axis. A bad step can lead to
performance collapse, which may be hard to recover from.
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The Problem is More Than Step Size

Consider a family of policies with parametrization:

πθ(a) =

{
σ(θ) a = 1
1− σ(θ) a = 2

Figure: Small changes in the policy parameters can unexpectedly lead to big changes in the policy.

Big question: how do we come up with an update rule that doesn’t ever change the
policy more than we meant to?
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Policy Performance Bounds
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Relative Performance of Two Policies

In a policy optimization algorithm, we want an update step that

uses rollouts collected from the most recent policy as efficiently as possible,

and takes steps that respect distance in policy space as opposed to distance in
parameter space.

To figure out the right update rule, we need to exploit relationships between the
performance of two policies.

Performance difference lemma: In CS234 HW2 we ask you to prove that for any
policies π, π′

J(π′)− J(π) = E
τ∼π′

[∑∞
t=0 γ

tAπ(st , at)
]

(6)

= 1
1−γ

E
s∼dπ

′

a∼π′

[Aπ(s, a)] (7)

where

dπ(s) = (1− γ)
∞∑
t=0

γtP(st = s|π)
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What is it good for?

Can we use this for policy improvement, where π′ represents the new policy and π
represents the old one?

max
π′

J(π′) = max
π′

J(π′)− J(π)

= max
π′

E
τ∼π′

[
∞∑
t=0

γtAπ(st , at)

]

This is suggestive, but not useful yet.

Nice feature of this optimization problem: defines the performance of π′ in terms of the
advantages from π!

But, problematic feature: still requires trajectories sampled from π′...
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Looking at it from another angle...

In terms of the discounted future state distribution dπ, defined by

dπ(s) = (1− γ)
∞∑
t=0

γtP(st = s|π),

we can rewrite the relative policy performance identity:

J(π′)− J(π) = E
τ∼π′

[
∞∑
t=0

γtAπ(st , at)

]
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Note: Instance of Importance Sampling

In terms of the discounted future state distribution dπ, defined by

dπ(s) = (1− γ)
∞∑
t=0

γtP(st = s|π),

we can rewrite the relative policy performance identity:

J(π′)− J(π) = E
τ∼π′

[
∞∑
t=0

γtAπ(st , at)

]

=
1

1− γ
E

s∼dπ
′

a∼π′

[Aπ(s, a)]

=
1

1− γ
E

s∼dπ
′

a∼π

[
π′(a|s)
π(a|s) A

π(s, a)

]

Last step is an instance of importance sampling (more on this next time)
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Problem: State Distribution

In terms of the discounted future state distribution dπ, defined by

dπ(s) = (1− γ)
∞∑
t=0

γtP(st = s|π),

we can rewrite the relative policy performance identity:

J(π′)− J(π) = E
τ∼π′

[
∞∑
t=0

γtAπ(st , at)

]

=
1

1− γ
E

s∼dπ
′

a∼π′

[Aπ(s, a)]

=
1

1− γ
E

s∼dπ
′

a∼π

[
π′(a|s)
π(a|s) A

π(s, a)

]

...almost there! Only problem is s ∼ dπ′
.
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A Useful Approximation

What if we just said dπ′
≈ dπ and didn’t worry about it?

J(π′)− J(π) ≈ 1

1− γ
E

s∼dπ

a∼π

[
π′(a|s)
π(a|s) A

π(s, a)

]
.
= Lπ(π

′)

Turns out: this approximation is pretty good when π′ and π are close! But why, and how
close do they have to be?

Relative policy performance bounds: 1

∣∣J(π′)−
(
J(π) + Lπ(π

′)
)∣∣ ≤ C

√
E

s∼dπ
[DKL(π′||π)[s]] (8)

If policies are close in KL-divergence—the approximation is good!

1Achiam, Held, Tamar, Abbeel, 2017
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What is KL-divergence?

For probability distributions P and Q over a discrete random variable,

DKL(P||Q) =
∑
x

P(x) log
P(x)

Q(x)

Properties:

DKL(P||P) = 0

DKL(P||Q) ≥ 0

DKL(P||Q) ̸= DKL(Q||P) — Non-symmetric!

What is KL-divergence between policies?

DKL(π
′||π)[s] =

∑
a∈A

π′(a|s) log π′(a|s)
π(a|s)

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 6: Policy Gradient II. Advanced policy gradient section slides from Joshua Achiam’s slides, with minor modificationsWinter 2026 39 / 73



A Useful Approximation

What did we gain from making that approximation?

J(π′)− J(π) ≈ Lπ(π
′)

Lπ(π
′) =

1

1− γ
E

s∼dπ

a∼π

[
π′(a|s)
π(a|s) A

π(s, a)

]

= E
τ∼π

[
∞∑
t=0

γt π
′(at |st)
π(at |st)

Aπ(st , at)

]

This is something we can optimize using trajectories sampled from the old policy π!

Similar to using importance sampling, but because weights only depend on current
timestep (and not preceding history), they don’t vanish or explode.
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Recommended Reading

“Approximately Optimal Approximate Reinforcement Learning,” Kakade and
Langford, 2002 2

“Trust Region Policy Optimization,” Schulman et al. 2015 3

“Constrained Policy Optimization,” Achiam et al. 2017 4

2https://people.eecs.berkeley.edu/ pabbeel/cs287-fa09/readings/KakadeLangford-icml2002.pdf
3https://arxiv.org/pdf/1502.05477.pdf
4https://arxiv.org/pdf/1705.10528.pdf
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Algorithms
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Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a family of methods that approximately penalize
policies from changing too much between steps. Two variants:

Adaptive KL Penalty
Policy update solves unconstrained optimization problem

θk+1 = argmax
θ

Lθk (θ)− βk D̄KL(θ||θk ) (9)

D̄KL(θ||θk ) = Es∼dπk DKL(θk (·|s), πθ(·|s)) (10)

Penalty coefficient βk changes between iterations to approximately enforce
KL-divergence constraint
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Proximal Policy Optimization with Adaptive KL Penalty

Algorithm PPO with Adaptive KL Penalty

Input: initial policy parameters θ0, initial KL penalty β0, target KL-divergence δ
for k = 0, 1, 2, ... do

Collect set of partial trajectories Dk on policy πk = π(θk)
Estimate advantages Âπk

t using any advantage estimation algorithm
Compute policy update

θk+1 = argmax
θ
Lθk (θ)− βkD̄KL(θ||θk)

by taking K steps of minibatch SGD (via Adam)
if D̄KL(θk+1||θk) ≥ 1.5δ then

βk+1 = 2βk

else if D̄KL(θk+1||θk) ≤ δ/1.5 then
βk+1 = βk/2

end if
end for

Initial KL penalty not that important—it adapts quickly

Some iterations may violate KL constraint, but most don’t
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PPO with Adaptive KL Penalty: Multiple Gradient Steps

Algorithm PPO with Adaptive KL Penalty

Input: initial policy parameters θ0, initial KL penalty β0, target KL-divergence δ
for k = 0, 1, 2, ... do

Collect set of partial trajectories Dk on policy πk = π(θk)
Estimate advantages Âπk

t using any advantage estimation algorithm
Compute policy update

θk+1 = argmax
θ
Lθk (θ)− βkD̄KL(θ||θk)

by taking K steps of minibatch SGD (via Adam)
if D̄KL(θk+1||θk) ≥ 1.5δ then

βk+1 = 2βk

else if D̄KL(θk+1||θk) ≤ δ/1.5 then
βk+1 = βk/2

end if
end for

Initial KL penalty not that important—it adapts quickly

Some iterations may violate KL constraint, but most don’t
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Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a family of methods that approximately enforce
KL constraint without computing natural gradients. Two variants:

Adaptive KL Penalty
Policy update solves unconstrained optimization problem

θk+1 = argmax
θ

Lθk (θ)− βk D̄KL(θ||θk )

Penalty coefficient βk changes between iterations to approximately enforce
KL-divergence constraint

Clipped Objective
New objective function: let rt(θ) = πθ(at |st)/πθk (at |st). Then

LCLIP
θk

(θ) = E
τ∼πk

[
T∑
t=0

[
min(rt(θ)Â

πk
t , clip (rt(θ), 1− ϵ, 1 + ϵ) Â

πk
t )

]]
where ϵ is a hyperparameter (maybe ϵ = 0.2)
Policy update is θk+1 = argmaxθ LCLIP

θk
(θ)
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L6 Check Your Understanding: Proximal Policy Optimization

Clipped Objective function: let rt(θ) = πθ(at |st)/πθk (at |st). Then

LCLIP
θk (θ) = E

τ∼πk

[
T∑
t=0

[
min(rt(θ)Â

πk
t , clip (rt(θ), 1− ϵ, 1 + ϵ) Âπk

t )
]]

where ϵ is a hyperparameter (maybe ϵ = 0.2)

Policy update is θk+1 = argmaxθ LCLIP
θk

(θ).

Consider the figure5. Select all that are true. ϵ ∈ (0, 1).
1 The left graph shows the LCLIP objective when the advantage function A > 0 and

the right graph shows when A < 0
2 The right graph shows the LCLIP objective when the advantage function A > 0 and

the left graph shows when A < 0
3 It depends on the value of ϵ
4 Not sure

5Schulman, Wolski, Dhariwal, Radford, Klimov, 2017
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L6: Check Your Understanding Proximal Policy Optimization Solutions

Clipped Objective function: let rt(θ) = πθ(at |st)/πθk (at |st). Then

LCLIP
θk (θ) = E

τ∼πk

[
T∑
t=0

[
min(rt(θ)Â

πk
t , clip (rt(θ), 1− ϵ, 1 + ϵ) Âπk

t )
]]

where ϵ is a hyperparameter (maybe ϵ = 0.2)

Policy update is θk+1 = argmaxθ LCLIP
θk

(θ).

Consider the figure6. Select all that are true. ϵ ∈ (0, 1).

6Schulman, Wolski, Dhariwal, Radford, Klimov, 2017
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Proximal Policy Optimization with Clipped Objective

But how does clipping keep policy close? By making objective as pessimistic as possible
about performance far away from θk :

Figure: Various objectives as a function of interpolation factor α between θk+1 and θk after one
update of PPO-Clip 7

7Schulman, Wolski, Dhariwal, Radford, Klimov, 2017
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Proximal Policy Optimization with Clipped Objective

Algorithm PPO with Clipped Objective

Input: initial policy parameters θ0, clipping threshold ϵ
for k = 0, 1, 2, ... do

Collect set of partial trajectories Dk on policy πk = π(θk)
Estimate advantages Âπk

t using any advantage estimation algorithm
Compute policy update

θk+1 = argmax
θ
LCLIP

θk (θ)

by taking K steps of minibatch SGD (via Adam), where

LCLIP
θk (θ) = E

τ∼πk

[
T∑
t=0

[
min(rt(θ)Â

πk
t , clip (rt(θ), 1− ϵ, 1 + ϵ) Âπk

t )
]]

end for

Clipping prevents policy from having incentive to go far away from θk+1

Clipping seems to work at least as well as PPO with KL penalty, but is simpler to
implement
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Empirical Performance of PPO

Figure: Performance comparison between PPO with clipped objective and various other deep RL
methods on a slate of MuJoCo tasks. 8

Wildly popular, and key component of ChatGPT

8Schulman, Wolski, Dhariwal, Radford, Klimov, 2017
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Recommended Reading

PPO

“Proximal Policy Optimization Algorithms,” Schulman et al. 2017 9

OpenAI blog post on PPO, 2017 10

9https://arxiv.org/pdf/1707.06347.pdf
10https://blog.openai.com/openai-baselines-ppo/
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PPO: Algorithm and Code Implementation Details

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos,
Larry Rudolph, and Aleksander Madry. Implementation Matters in Deep RL: A Case
Study on PPO and TRPO. ICLR 2020
https://openreview.net/forum?id=r1etN1rtPB

Reward scaling, learning rate annealing, etc. can make a significant difference
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Today

Likelihood ratio / score function policy gradient
Baseline
Alternative targets

Advanced policy gradient methods
Proximal policy optimization (PPO) algorithm (will implement in homework)
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Class Structure

Last time: Policy Search

This time: Policy search continued.

Next time: Proximal Policy Optimization (PPO) cont (theory and additional
discussion)
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Class Structure

SLIDES FOR NEXT CLASS (LIKELY)
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Monotonic Improvement Theory
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Monotonic Improvement Theory

From the bound on the previous slide, we get

J(π′)− J(π) ≥ Lπ(π
′)− C

√
E

s∼dπ
[DKL(π′||π)[s]].

If we maximize the RHS with respect to π′, we are guaranteed to improve over πππ.
This is a majorize-maximize algorithm w.r.t. the true objective, the LHS.

And Lπ(π
′) and the KL-divergence term can both be estimated with samples from

π!
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Monotonic Improvement Theory

Proof of improvement guarantee: Suppose πk+1 and πk are related by

πk+1 = argmax
π′
Lπk (π

′)− C
√

E
s∼dπk

[DKL(π′||πk)[s]].
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Monotonic Improvement Theory

Proof of improvement guarantee: Suppose πk+1 and πk are related by

πk+1 = argmax
π′
Lπk (π

′)− C
√

E
s∼dπk

[DKL(π′||πk)[s]].

πk is a feasible point, and the objective at πk is equal to 0.
Lπk (πk ) ∝ E

s,a∼dπk ,πk

[Aπk (s, a)] = 0

DKL(πk ||πk )[s] = 0

=⇒ optimal value ≥ 0

=⇒ by the performance bound, J(πk+1)− J(πk) ≥ 0

This proof works even if we restrict the domain of optimization to an arbitrary class of
parametrized policies Πθ, as long as πk ∈ Πθ.
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Approximate Monotonic Improvement

πk+1 = argmax
π′
Lπk (π

′)− C
√

E
s∼dπk

[DKL(π′||πk)[s]]. (11)

Problem:

C provided by theory is quite high when γ is near 1

=⇒ steps from (11) are too small.

Potential Solution:

Tune the KL penalty

Use KL constraint (called trust region).
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Importance Sampling for Off Policy, Policy Gradient
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Importance Sampling

Importance sampling is a technique for estimating expectations using samples drawn from
a different distribution.

E
x∼P

[f (x)] =
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Importance Sampling

Importance sampling is a technique for estimating expectations using samples drawn from
a different distribution.

E
x∼P

[f (x)] = E
x∼Q

[
P(x)

Q(x)
f (x)

]
≈ 1

|D|
∑
x∈D

P(x)

Q(x)
f (x), D ∼ Q

The ratio P(x)/Q(x) is the importance sampling weight for x .
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Importance Sampling

Importance sampling is a technique for estimating expectations using samples drawn from
a different distribution.

E
x∼P

[f (x)] = E
x∼Q

[
P(x)

Q(x)
f (x)

]
≈ 1

|D|
∑
x∈D

P(x)

Q(x)
f (x), D ∼ Q

The ratio P(x)/Q(x) is the importance sampling weight for x .

What is the variance of an importance sampling estimator?

var(µ̂Q) =
1

N
var

(
P(x)

Q(x)
f (x)

)
=

1

N

(
E

x∼Q

[(
P(x)

Q(x)
f (x)

)2
]
− E

x∼Q

[
P(x)

Q(x)
f (x)

]2)

=
1

N

(
E

x∼P

[
P(x)

Q(x)
f (x)2

]
− E

x∼P
[f (x)]2

)
The term in red is problematic—if P(x)/Q(x) is large in the wrong places, the variance
of the estimator explodes.
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Importance Sampling for Policy Gradients

Here, we compress the notation πθ down to θ in some places for compactness.

g = ∇θJ(θ) = E
τ∼θ

[
∞∑
t=0

γt∇θ log πθ(at |st)Aθ(st , at)

]

=
∑
τ

∞∑
t=0

γtP(τt |θ)∇θ log πθ(at |st)Aθ(st , at)

= E
τ∼θ′

[
∞∑
t=0

P(τt |θ)
P(τt |θ′)

γt∇θ log πθ(at |st)Aθ(st , at)

]
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Importance Sampling for Policy Gradients

Here, we compress the notation πθ down to θ in some places for compactness.

g = ∇θJ(θ) = E
τ∼θ

[
∞∑
t=0

γt∇θ log πθ(at |st)Aθ(st , at)

]

=
∑
τ

∞∑
t=0

γtP(τt |θ)∇θ log πθ(at |st)Aθ(st , at)

= E
τ∼θ′

[
∞∑
t=0

P(τt |θ)
P(τt |θ′)

γt∇θ log πθ(at |st)Aθ(st , at)

]
P(τt |θ)
P(τt |θ′) =
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Importance Sampling for Policy Gradients

Here, we compress the notation πθ down to θ in some places for compactness.

g = ∇θJ(θ) = E
τ∼θ

[
∞∑
t=0

γt∇θ log πθ(at |st)Aθ(st , at)

]

=
∑
τ

∞∑
t=0

γtP(τt |θ)∇θ log πθ(at |st)Aθ(st , at)

= E
τ∼θ′

[
∞∑
t=0

P(τt |θ)
P(τt |θ′)

γt∇θ log πθ(at |st)Aθ(st , at)

]
Challenge? Exploding or vanishing importance sampling weights.

P(τt |θ)
P(τt |θ′)

=
µ(s0)

∏t
t′=0 P(st′+1|st′ , at′)πθ(at′ |st′)

µ(s0)
∏t

t′=0 P(st′+1|st′ , at′)πθ′(at′ |st′)
=

t∏
t′=0

πθ(at′ |st′)
πθ′(at′ |st′)

Even for policies only slightly different from each other, many small differences multiply
to become a big difference.

Big question: how can we make efficient use of the data we already have from the
old policy, while avoiding the challenges posed by importance sampling?
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Advanced Policy Gradients

Theory:

1 Problems with Policy Gradient Methods

2 Policy Performance Bounds

3 Monotonic Improvement Theory

Proximal Policy Optimization:

1 Approximately constraints policy steps

2 Relatively simple to implement

3 Good empirical success and very widely used
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Choosing the Target: N-step estimators

∇θV (θ) ≈ (1/m)
m∑
i=1

T−1∑
t=0

R i
t∇θ log πθ(a

(i)
t |s

(i)
t )

Note that critic can select any blend between TD and MC estimators for the target
to substitute for the true state-action value function.
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Choosing the Target: N-step estimators

∇θV (θ) ≈ (1/m)
m∑
i=1

T−1∑
t=0

R i
t∇θ log πθ(a

(i)
t |s

(i)
t )

Note that critic can select any blend between TD and MC estimators for the target
to substitute for the true state-action value function.

R̂
(1)
t = rt + γV (st+1)

R̂
(2)
t = rt + γrt+1 + γ2V (st+2) · · ·

R̂
(inf)
t = rt + γrt+1 + γ2rt+2 + · · ·

If subtract baselines from the above, get advantage estimators

Â
(1)
t = rt + γV (st+1)−V (st)

Â
(inf)
t = rt + γrt+1 + γ2rt+1 + · · · −V (st)
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L6N2 Check Your Understanding: Blended Advantage Estimators

∇θV (θ) ≈ (1/m)
m∑
i=1

T−1∑
t=0

R i
t∇θ log πθ(a

(i)
t |s

(i)
t )

If subtract baselines from the above, get advantage estimators

Â
(1)
t = rt + γV (st+1)−V (st)

Â
(inf)
t = rt + γrt+1 + γ2rt+1 + · · · −V (st)

Select all that are true

Â
(1)
t has low variance & low bias.

Â
(1)
t has high variance & low bias.

Â
(∞)
t low variance and high bias.

Â
(∞)
t high variance and low bias.

Not sure
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LN6N2 Check Your Understanding: Blended Advantage Estimators Answers

∇θV (θ) ≈ (1/m)
m∑
i=1

T−1∑
t=0

R i
t∇θ log πθ(a

(i)
t |s

(i)
t )

If subtract baselines from the above, get advantage estimators

Â
(1)
t = rt + γV (st+1)−V (st)

Â
(inf)
t = rt + γrt+1 + γ2rt+1 + · · · −V (st)
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