Lecture 7: Policy Gradients and Imitation learning

Emma Brunskill

(CS234 Reinforcement Learning.

Winter 2026

@ Monotonic improvement slides and several PPO slides from Joshua Achiam
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Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a family of methods that approximately enforce
KL constraint without computing natural gradients. Two variants:
o Adaptive KL Penalty
o Policy update solves unconstrained optimization problem

Okt+1 = argmax Lo, (8) — B D (0]6k)
0 cmt—

o Penalty coefficient 8, changes between iterations to approximately enforce
KL-divergence constraint
o Clipped Objective

o New objective function: let rt(0) = mg(at|st)/mg, (at|st). Then

.
5P = E, [Z [min(n(e)ﬁ\;‘k,cnp (re(0),1—¢,1+¢) Afk)]]
t=0

where € is a hyperparameter (maybe € = 0.2)
o Policy update is 611 = arg maxg Egkup(g)
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Check Your Understanding: Proximal Policy Optimization

o Clipped Objective function: let ri(0) = o (ac|st)/mo, (at|st). Then
/] s b tF ‘ . old policy

L5HP0) = [Z min(r.(0)A clip (re(6),1 = ¢, 1=y A

— TS [_—'h K= ) &5 ] .
here c is a h ter (maybe ¢ = 0.2) Totald= ) ’
@ where € is a hyperparameter (maybe € = 0.

o,ole
o Poli dat 2] _ ECL’PQ ,‘Iﬂ
olicy update is 0411 = arg maxg (6). -5 4> 6O

Consider the figure®. Select all that are true. € € (0,1).
he left graph shows the LYF objective when the advantage function A > 0 and
the right graph shows when A < 0
@ The right graph shows the L objective when the advantage function A > 0 and

the left graph shows when A < 0 AcO
© It depends on the value of € — O
Q Not sure A= o A

1(6"(-.(:)
-’re (ﬁ-‘$>
-0

[CLIP

'Schulman, Wolski, Dhariwal, Radford, Klimov, 2017
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Check Your Understanding Proximal Policy Optimization Solutions

o Clipped Objective function: let r:(0) = mo(ac|st)/mo, (at|st). Then

.
5 0) = B [Z [min(n(e)ﬁ?k,clip(rt(e), 1—¢1+¢) A?k)]
t=0

® where € is a hyperparameter (maybe € = 0.2)
o Policy update is 6x+1 = arg maxp [,gckup(ﬁ).
Consider the figure?. Select all that are true. € € (0,1).

The left graph shows the L objective when the advantage function A > 0 and the
right graph shows when A < 0

|
0 11+e |Lorr ‘

2Schulman, Wolski, Dhariwal, Radford, Klimov, 2017
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Class Structure

o Last time: Advanced Policy Search

@ This time: Policy search continued and Imitation Learning
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@ Proximal policy optimization (PPO) (will implement in homework)
o Generalized Advantage Estimation (GAE)
o Theory: Monotonic Improvement Theory

o Imitation Learning

o Behavior cloning
o DAGGER
o Max entropy inverse RL
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Recall Problems with Policy Gradients

Policy gradient algorithms try to solve the optimization problem

. t
max J(mg) = T~E§re {Z’y rt]

t=0

by taking stochastic gradient ascent on the policy parameters @, using the policy gradient

g =Vel(me) = E [Z 7'V log ma(at|st)A™ (st, ar) | -
T~Tg

t=0

Limitations of policy gradients:
o Sample efficiency is poor

@ Distance in parameter space # distance in policy space!
o What is policy space? For tabular case, set of matrices

|_|={7T : ﬂERlS‘X‘AI, Zﬂsa:]-; 7rsa>0}

a

o Policy gradients take steps in parameter space
o Step size is hard to get right as a result
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Recall Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a family of methods that approximately enforce
KL constraint Two variants:
o Adaptive KL Penalty
o Policy update solves unconstrained optimization problem

Ory1 = arg mGGXﬁok(g) — BkDky(0116)

o Penalty coefficient 8, changes between iterations to approximately enforce
KL-divergence constraint
o Clipped Objective

o New objective function: let rt(0) = mg(at|st)/mg, (at|st). Then

.
5P = E, [Z [min(n(e)ﬁ\;‘k,cnp (re(0),1—¢,1+¢) Afk)]]
t=0

where € is a hyperparameter (maybe € = 0.2)
o Policy update is 611 = arg maxg Egkup(g)
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Recall Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a family of methods that approximately enforce
KL constraint
o Adaptive KL Penalty

o Policy update solves unconstrained optimization problem
Ory1 = arg mGaXﬁok(@) — BkDkr(0110x)
o Penalty coefficient 8, changes between iterations to approximately enforce
KL-divergence constraint

o Clipped Objective

o New objective function: let rt(0) = mg(at|st)/mg, (at|st). Then

;
L§1PO) = E [Z [min(r,_(_e)ﬁt"k,cnp(rt_(g)J_e,1+e)A:k)]]

T :
t=
where € is a hyperparameter (maybe € = 0.2) €xact

o Policy update is 01 = arg maxg EgkL’P(G)

o How do we estimate the advantage function inside the policy update?
buot we oln’f Jonoe “hroe ' adeealop
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Recall N-step estimators

-
-

M=

VG V(@) ~ (1/m) At,-Vg IOgﬂ'e(aﬁlSt,‘)

i=1 t

Il
<)

@ Recall the N-step advantage estimators

Agl) =r+ ’YV(St+1)— V(St) C’K \
AP = 1+ 1ot + 77V (se2) = V(se)
Aﬁi"f) =rt+Yrs1 + ’Y2I’t+2 + - =V(st)

r vV - V(s
o Define 8¢ = re +yV(st11) — V(st). Then 4;1 ?ﬁ{i’;’;vh‘fﬁ{}v&s

(& = AV =4 =ret+ 9V (se1) = V(s:)
AP =5 + 0 =rt + e +7°V(se2) = V(st)
- k—1 k—1
AP =348, = A res 4 V(sen) = V(so)
1=0 1=0

o Note the above is an instance of a telescoping sum
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Generalized Advantage Estimator (GAE)
C AL 15 offrn veed m PP

AW = Z’Y Fevt + 7 V(se4k) — V(st) (1)

o GAE is an exponentially-weighted average of k-step estimators
APEON = (1 = A (AP £ AAP 1 N2AD) 4 L)
= (1= )0+ A +905%0) + N0+ 70 + 77 8e) + )

SY (1= (124 Rr M3+ ...
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Generalized Advantage Estimator (GAE)

k—1

AP = Z Y e+ 7V (se0k) = V(st) (2)
=0

o GAE is an exponentially-weighted average of k-step estimators

AAEAE(’W)\) _ (1 _ )\)(AA(l) + )\AA(z) + )\2AA(3) +. )

= (=N NS +000) + N (8 + 8+ 2) + )
= (=N (LAA+ N+ ...)+75t+1(A_+A +...)

[3)
}f::clﬁp):.ﬁ' +728 (N AN )+ )
4 1 1 1
lecfvre ~ (1*?/)(52/m+7/\5tv+11_)\ 7)\5t+27)\+--~)
= b jgoucf/t ¢ .
= > (N6 series
1=0

@ Introduced in " High-Dimensional Continuous Control Using Generalized Advantage
Estimation” ICLR 2016 by Schulman et al.

@ Our derivation follows the derivation presented in the paper
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Check Your Understanding L7N2: Generalized Advantage Estimator (GAE)

Z Y e+ + ’Y V(seik) — V(St) (3)

A(a¢$)= @?a,s) - V[SB

o GAE is an exponentially-weighted average of k-step estimators

AEAE(%/\)

(L= (AY + QAP + AP + )

(1= NG+ A6 +700) + X(8¢ + 10 +776 ) + )
Q=N A +A+ 22+ ) + 00N+ X2+ ..0)

F20 N+ X+ )+ )

oo

Z(’Y/\) 8t

/=0

o What are the properties of GAE(y,A = 0) and GAE(y,\ = .99)? (select all)
o (a) GAE(y,A = .99) is the advantage function using a TD(0) return

o (b) GAE(~,0) is the advantage function using a TD(0) return

@ (c) The bias of GAE(~,0) is likely to be larger than GAE(y,A = .99)

@ (d) Not sure

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 7: Policy Gradients and Imitation learning Winter 2026


Mobile User


Check Your Understanding L7N2: GAE Solution

AP = Z Y rert + AV (sepi) = V(se) (4)

o GAE is an exponentially- weighted average of k-step estimators

~GAE(y,\
At (7,A)

(1= N)(AY + AAP + N2AD 1)

(L= N8 + A +765) + N0 + 9000 +7°02) + )
Q=N A +A+ 22+ )+ 00N+ X2+ ..0)

F2 0N X+ )+ )

oo

Z(’Y/\) 5t+/

/=0

@ What are the properties of GAE(y,0) and GAE(~,1)? (select all)
o (a) GAE(+,1) is the advantage function using a TD(0) return

@ (b) GAE(~,0) is the advantage function using a TD(0) return

@ (c) The variance of GAE(7,0) is likely to be larger than GAE(~y,1)
@ (d) The bias of GAE(7,0) is likely to be larger than GAE(~,1)

o (e) Not sure

b and d are true
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Generalized Advantage Estimator (GAE) Balance

k—1

AL = Z ' rer + 7 V(sern) = V(st) (5)
1=0

@ GAE is an exponentially-weighted average of k-step estimators

A"tGAE(’Y,A) = (1- )\)(AA(I)+)\AA(2)+/\2A(3) )
= (14)(6”“(6”+vét+1)+A2(6V+véf+1+v25¥+z)+---)
= (1-X)(5 (1+>\+)\2 ) HF LA+ A+ )
+y 6t+z(A2+A3 )+ )

= (1 - )(61‘ )\ + 7/\5t+1

= Z YA) 5t+l

1=0

1
+7)‘5t+2 +..)

- A - A

o Introduced in "High-Dimensional Continuous Control Using Generalized Advantage
Estimation” ICLR 2016 by Schulman et al.

o In general will prefer XA € (0,1) to balance bias and variance
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Generalized Advantage Estimator (GAE) in PPO

@ GAE is an exponentially-weighted average of k-step estimators

k—1

AA(tk) = Z'YIrHI + ’Yk V(stik) — V(st)
=0

& = r4+yV(s)— V(s)
APEON = (1= N)(AD +AAP) £ AP )

oo

= Z(’Y)\)Iétvﬂ

1=0

@ PPO uses a truncated version of a GAE

. ETftflj
At = Z (’y)\)/é‘t\{*_[

/=0

@ Benefits: Only have to run policy in environment for T timesteps before updating,
improved estimate of gradient
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Monotonic Improvement Theory
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Return to Approximation Bound for Difference Between Two Policies
do-”

.

(/n(‘:’w <

In last lecture used d™ as approximation of d™ (Why?)

/ 1 '(als)  x
J(7") — J(m) = T 75‘;}?; {W(a|s) A" (s, a)]

= Lo(7")

This approximation is good when 7’ and 7 are close in KL-divergence

Relative policy performance bounds: 3

[J(x') = (J(m) + La(x))| < ;ﬁ E_[Dr(r'[[m)ls]] (6)

conshe

3Achiam, Held, Tamar, Abbeel, 2017
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Monotonic Improvement Theory

RHAS 1Is & Jower bovnd pa bhows meve i Lethe
—_— r -
' is Them 7

max wort T

From the bound on the previous slide, we get

J(') = J(m) > La(n') - C\/ E_[Dre(w[[m)ls]]-
\ s~ A RHES

‘y o If we maximize the right hand side (RHS) with respect to 7', we are guaranteed to
improve over . C wrr!
e This is a majorize-maximize_algorithm w.r.t. the true objective, the LHS.

o And L (7") & the KL-divergence term can both be estimated with samples from !

Py, k> shovo V(Tkn>— V(T") =3O
7' g Mﬂ J_('ﬂku)" 3—(7“)>Q

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 7: Policy Gradients and Imitation learning Winter 2026


Mobile User


Monotonic Improvement Theory

Proof of improvement guarantee: Suppose i1 and 7y are related by oo

(D 7Fk+1 = arg maXﬂm®

g 7 Eirears [ BB NV
'r i Egugmn SleTicluls) ATe(s 3

T -r- Eseome S, i () (@7 (5,03-V LIOD)

- LS ameels) QTG - AN

=0 V""‘(s\
G7.0 (- )-nr) )
,ehc,;‘- y if Ter =T -
oLIgme X o ¢ FH‘S > (O becaewn Tk "s::ad‘:s :r:
2O
\/(Tm.}Vf ) = O- - R
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Monotonic Improvement Theory

Proof of improvement guarantee: Suppose 7+1 and 7 are related by

T4l = arg maxL,rk C\/ E [DKL(ﬂ'/Hﬂ'k)[S]]

@ 7 is a feasible point, and the objective at 7, is equal to 0.
o Lo, (m) x E [ATk(s,a)] =0
s,a~d™k )
o Dyr(millmic)[s] =0
@ — optimal value > 0

@ = by the performance bound, J(mk+1) — J(7k) >0

This proof works even if we restrict the domain of optimization to an arbitrary class of
parametrized policies [y, as long as wx € [p.
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Approximate Monotonic Improvement

7rk+1fargmax£,rk C\/ E [DKL(ﬂ'/Hﬂ'k)[S]] z (7)

Problem:
o C provided by theory is quite high when ~ is near 1
@ = steps from Equation (Q are too small.
Potential Solution:
@ Tune the KL penalty (= PPO)

@ Use KL constraint (called trust region).
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PPO Summary

@ Improves data efficiency: can take several gradient steps before gathering more data
from new policy

@ Uses clipping (or KL constraint) to help increase likelihood of monotonic
improvement
o Conservative policy updating is an influential idea in RL, stemming at least from early
2000s

Converges to local optima

Very popular method, easy to implement, used in ChatGPT tuning
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Policy Gradient Summary

o Extremely popular and useful algorithms, many beyond this class
@ Can be used when the reward function is not differentiable

o Often used in conjunction with model-free value methods: actor-critic methods
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@ Proximal policy optimization (PPO) (will implement in homework)
o Generalized Advantage Estimation (GAE)
e Theory: Monotonic Improvement Theory

o Imitation Learning*

o Behavior cloning
o DAGGER
o Max entropy inverse RL

“With slides from Katerina Fragkiadaki and slides from Pieter Abbeel
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Learning from Past Decisions and Outcomes

In some settings there exist very good decision policies and we would like to automate
them

@ One idea: humans provide reward signal when RL algorithm makes decisions
@ Good: simple, cheap form of supervision
@ Bad: High sample complexity

Alternative: imitation learning
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Reward Shaping

Rewards that are dense in time closely guide the agent. How can we supply these
rewards?

o Manually design them: often brittle
o Implicitly specify them through demonstrations

Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain, Silver et al.
2010
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o Simulated highway driving [ Abbeel and Ng, ICML 2004; Syed and Schapire, NIPS
2007; Majumdar et al., RSS 2017 ]

@ Parking lot navigation [Abbeel, Dolgov, Ng, and Thrun, IROS 2008]

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 7: Policy Gradients and Imitation learning Winter 2026



Learning from Demonstrations

o Expert provides a set of demonstration trajectories: sequences of states and
actions ne Cewevd

o Imitation learning is useful when it is easier for the expert to demonstrate the
desired behavior rather than:

e Specifying a reward that would generate such behavior,
o Specifying the desired policy directly
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Problem Setup

o Input:

State space, action space
Transition model P(s’ | s, a)

)

)

o No reward function R

o Set of one or more expert’s demonstrations (sp, ao, S1, S0, - - -)

(actions drawn from expert’s policy 7*)
@ Behavioral Cloning:
o Can we directly learn the expert’s policy using supervised learning?

@ Inverse RL:
o Can we recover R?
@ Apprenticeship learning via Inverse RL:

o Can we use R to generate a good policy?
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Behavioral Cloning
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Behavioral Cloning

@ Reduce problem to a standard supervised machine learning problem:
o Fix a policy class (e.g. neural network, decision tree, etc.)
o Estimate a policy from training examples (sp, ag), (s1, a1), (s2, a2), - - -
@ Two early notable success stories: TM:s~> o

o Pomerleau, NIPS 1989: ALVINN
o Summut et al., ICML 1992: Learning to fly in flight simulator
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ALVINN

Road Intensity 45 Direction
Feedback Unit Output Units

8x32 Range Finder
Input Retina

30x32 Video
Input Retina
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Behavioral cloning

A o[ clendix
be ‘w:.'omlu /U&;S

o Often behavior cloning in practice can work very well, especially if use BCRNN

@ See What Matters in Learning from Offline Human Demonstrations for Robot
Manipulation. Mandlekar et al. CORL 2021

o Extensively used in practice
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DAGGER
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Potential Problem with Behavior Cloning: Compounding Errors

Supervised learning assumes iid. (s, a) pairs and ignores temporal structure
Independent in time errors:

Error at time t with probability < 5—1
E[Total errors] < eT
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Problem: Compounding Errors

Expert trajectory
Learned Policy

P/sflsr")

No data on
how to recover

Data distribution mismatch!
In supervised learning, (x,y) ~ D during train and test. In MDPs:

@ Train: sy ~ Dy~

o Test: st ~ Dr,
-

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al.
2011
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Problem: Compounding Errors

@ Error at time t with probability €

o Approximate intuition: E[Total errors] < ¢(T + (T —1)+ (T —2)...+ 1) o eT?

@ Real result requires more formality. See Theorem 2.1 in http://www.cs.cmu.
edu/~srossl/publications/Ross-AIStatsl0-paper.pdf with proof in

supplement: http:
//www.cs.cmu.edu/~srossl/publications/Ross—AIStatslO-sup.pdf

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al.

2011
Winter 2026
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DAGGER: Dataset Aggregation

Initialize D « 0.

Initialize 7; to any policy in II.

fori =1to N do
Letm; = ﬂiﬂ'* + (1 — ﬂz)ﬁ'z
Sample T'-step trajectories using ;.
Get dataset D; = {(s,7*(s))} of visited states by ;
and actions given by expert.
Aggregate datasets: D — D |JD;.
Train classifier 7,41 on D.

end for

Return best 7; on validation.

o Idea: Get more labels of the expert action along the path taken by the policy
computed by behavior cloning

@ Obtains a stationary deterministic policy with good performance under its induced
state distribution

o Key limitation?
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Reward Learning
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Feature Based Reward Function

Given state space, action space, transition model P(s’ | s, a)

No reward function R

@ Set of one or more expert's demonstrations (so, ao, s1, So, - - )
(actions drawn from expert’s policy 7*)

Goal: infer the reward function R

Assume that the expert’s policy is optimal. What can be inferred about R?
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Check Your Understanding L7N3: Feature Based Reward Function

o Given state space, action space, transition model P(s’ | s, a)
@ No reward function R

@ Set of one or more expert's demonstrations (sp, ao, s1, So, - - -)
(actions drawn from expert’s policy 7*)

@ Goal: infer the reward function R

@ Assume that the expert's policy is optimal.

There is a single unique R that makes expert's policy optimal
There are many possible R that makes expert's policy optimal
It depends on the MDP

Not sure

©0O0O0
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Check Your Understanding L7N3: Feature Based Reward Function

o Given state space, action space, transition model P(s’ | s, a)
@ No reward function R

@ Set of one or more expert's demonstrations (so, ag, s1, o, - - )
(actions drawn from expert’s policy 7*)

@ Goal: infer the reward function R

@ Assume that the expert’s policy is optimal.

@ There is a single unique R that makes expert’'s policy optimal
@ There are many possible R that makes expert's policy optimal
© It depends on the MDP

Q Not sure

Answer: There are an infinite set of R .
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Linear Feature Reward Inverse RL

Linear value function approximation

Similarly, here consider when reward is linear over features
o R(s) = wTx(s) where w e R",x : S — R"

Goal: identify the weight vector w given a set of demonstrations

The resulting value function for a policy ™ can be expressed as

VW(SO) = ESNW[Z ’YtR(sf)|SO]
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Linear Feature Reward Inverse RL

o Related to linear value function approximation
o Consider when reward is linear over features
o R(s) = w'x(s) where w € R",x: S — R”
@ Goal: identify the weight vector w given a set of demonstrations

@ The resulting value function for a policy 7 can be expressed as

V7(s0) = Esnn [} 7 R(st) | 0] = Eenn 32757 W x(s1) | 0]

t=0

= WTESNW[ZZQ ’th(st) ‘ 50]
= WT/L(W)

o where p(7)(s) is defined as the discounted weighted frequency of state features
under policy m, starting in state sp.
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Relating Frequencies to Optimality

o Assume R(s) = w”x(s) where w € R",x: S — R"
o Goal: identify the weight vector w given a set of demonstrations
o V™ =Eour[Y 027 R*(s:) | 7] = w' () where
w1(m)(s) = discounted weighted frequency of state s under policy .

V*zvfr
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Relating Frequencies to Optimality

Recall linear value function approximation
Similarly, here consider when reward is linear over features
o R(s) = w'x(s) where w € R",x: S — R”

Goal: identify the weight vector w given a set of demonstrations

@ The resulting value function for a policy ™ can be expressed as

VT =w' u(r)
o pu(m)(s) = discounted weighted frequency of state s under policy 7.
Eenr- [ 7'R*(se) | 7] = V* 2 V™ = Earrn[S_4'R*(s:) | 7] Vrr
t=0 t=0
@ Therefore if the expert's demonstrations are from the optimal policy, to identify w it

is sufficient to find w* such that

w'T () > w T (), Y £
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Feature Matching

@ Want to find a reward function such that the expert policy outperforms other
policies.

@ For a policy 7 to be guaranteed to perform as well as the expert policy 7, sufficient

if its discounted summed feature expectations match the expert’s policy [Abbeel &
Ng, 2004].

@ More precisely, if
() = (7)1 < e
then for all w with ||w|lo <1 (uses Holder's inequality):

w () — w ()| < €
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Ambiguity

@ There is an infinite number of reward functions with the same optimal policy.
@ There are infinitely many stochastic policies that can match feature counts

@ Which one should be chosen?
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Learning from Demonstration / Imitation Learning Pointers

o Many different approaches
o Two of the key papers are:

e Maximumum Entropy Inverse Reinforcement Learning (Ziebart et al. AAAI 2008)
e Generative adversarial imitation learning (Ho and Ermon, NeurlPS 2016)
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Max Entropy Inverse RL
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Max Entropy Inverse RL

o Again assume a linear reward function R(s) = w’ x(s)
o Define the total feature counts for a single trajectory 7; as: pir; = Zs,-erj x(si)

o Note that this is a slightly different definition that we saw earlier

@ The average feature counts over m trajectories is: i = % ij:1 Hor;
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Deterministic MDP Path Distributions

o Consider all possible H-step trajectories in a deterministic MDP

o For a linear reward model, a policy is completely specified by its distribution over
trajectories
@ Which policy/distribution should we choose given a set of m demonstrations?

Winter 2026
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Principle of Max Entropy

@ Principle of max entropy: choose distribution with no additional preferences beyond
matching the feature expectations in the demonstration dataset

max — Z P(1)log P(7 Z P(T)ur = Z P(r)=1 (8)

@ In the linear reward case, this is equivalent to specifying the weights w that yield a
policy with the max entropy constrained to matching the feature expectations

Ziebart et al., 2008
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Max Entropy Principle

@ Maximizing the entropy of the distribution over the paths subject to the feature
constraints from observed data implies we maximize the likelihood of the observed
data under the maximum entropy (exponential family) distribution®.

P(r; | w) = ﬁeXp (WT/M,-) = ﬁ exp [ > wix(s)

S €T
Z(Wa S) = Zexp (WT,UTs)

@ Strong preference for low cost paths, equal cost paths are equally probable.

5Jaynes 1957
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Stochastic MDPs

@ Many MDPs of interest are stochastic

@ For these the distribution over paths depends both on the reward weights and on the
stochastic dynamics

exp (w'pir,)
P(7; | w, P(s']s, a)) =~ m H P(si+1|si, ai)

Si»ai €7
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Learning w

@ Select w to maximize likelihood of data:
w” = argmax L(w) = arg max Z log P(7 | w)
examples

@ The gradient is the difference between expected empirical feature counts and the
learner’s expected feature counts, which can be expressed in terms of expected state
visitation frequencies

VL(w) = fi— S P(r | whur = i~ 3 D(s)x(s)

@ where D(s;): state visitation frequency

@ Do we need to know the transition model to compute the above?

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 7: Policy Gradients and Imitation learning Winter 2026



MaxEnt IRL Algorithm for Frequencies

Backward pass
1.SetZg,0=1
2. Recursively compute for IV iterations

Z"'i,j = zP(Sk|si7aiyj)erewa:d(Sile)ZSk

k
Ze, =Y Za,,

ai,j
Local action probability computation
Za;
3. P(ai,]’|8i) = ZGTZ;J

Forward pass
4. Set Dsi,t = 13(5Z = sinitial)
5. Recursively compute for ¢t = 1to N
Dyp1 =) Y Doy tPlasjlsi) Psklai g, si)
a;; k

Summing frequencies

6.D,,=>» D,
t
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Max Entropy IRL

@ Max entropy approach has been hugely influential
@ Provides a principled way for selecting among the (many) possible reward functions

@ The original formulation requires knowledge of the transition model or the ability to
simulate/act in the world to gather samples of the transition model

o Check your understanding: was this needed in behavioral cloning?

Winter 2026
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From IRL to Policies

@ Inverse RL approaches provide a way to learn a reward function

o Generally interested in using this reward function to compute a policy whose
performance equals or exceeds the expert policy

@ One approach: given learned reward function, use with regular RL

@ Can we more directly learn the desired policy?
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Imitation learning can greatly reduce the amount of data need to learn a good policy

Challenges remain and one exciting area is combining inverse RL / learning from
demonstration and online reinforcement learning

@ For a look into some of the theory between imitation learning and RL, see Sun,
Venkatraman, Gordon, Boots, Bagnell (ICML 2017)

Discussed learning rewards and using that

Note often interested in learning rewards when only have preference pairs (y1 = y»)

o "Dueling bandits”
o We will see more on this setting shortly (and in homework 3)
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Imitation learning: What You Should Know

@ Define behavior cloning and how it differs from reinforcement learning
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Importance Sampling for Off Policy, Policy Gradient
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Importance Sampling

Importance sampling is a technique for estimating expectations using samples drawn from
a different distribution.

E [f()] =
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Importance Sampling

Importance sampling is a technique for estimating expectations using samples drawn from
a different distribution.

P(x) P(x
XE‘,P[f(x)]:X]NEQ{Q(X)f ] \D|Z D~@Q

The ratio P(x)/Q(x) is the importance sampling weight for x.
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Importance Sampling

Importance sampling is a technique for estimating expectations using samples drawn from
a different distribution.

P(X P(x)
B0 = K, [ g re0] = \D|Za(x p~Q

The ratio P(x)/Q(x) is the importance sampling weight for x.

What is the variance of an importance sampling estimator?
var(ia) = gvar (G031
b )]s e

-5 (.5 [ag)er] - Elrcor)

The term in red is problematic—if P(x)/Q(x) is large in the wrong places, the variance
of the estimator explodes.
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Importance Sampling for Policy Gradients

Here, we compress the notation my down to 6 in some places for compactness.

g = VoJ(0) = 7139 [Z 7'V log 7o (at|s:) A (st at):|

t=0

DD A P(rel0) Vo log mo(ac|se) A% (s, a)
T t=0

> P(Tt|9) t 0

E W’y Vg IOng'g(at‘St)A (St, at)

’
T~0
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Importance Sampling for Policy Gradients

Here, we compress the notation 7wy down to 6 in some places for compactness.

g = VgJ(G’) Eg |:Z ’the |Og 7'('9(at|51_»)A9(5t7 at):|

T
t=0

> At P(7el0) Vo log mo(ac|se) A’ (st, ar)
T t=0

o P(7:|0
; %'yth log 7o (ac|s:) A’ (st at)}

’
T~0

P(7¢]0)
P(Te]07)
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Importance Sampling for Policy Gradients

Here, we compress the notation my down to 6 in some places for compactness.

g=VeJ(0)= E [i 7'V log s (at|se) A’ (st, af):|

T~0
t=0

Z Z Y P(7¢10) Vg log mo(a|st) A% (st, at)

T t=0
— = P(Tt|9) t 0
- -,—]NEQ’ tz:; P(Tt‘e/)’y Vo log 71'9(31:‘51:)/4 (St, at)

Challenge? Exploding or vanishing importance sampling weights.

P(Tt|'9) _ ©(s0) H:':o P(s¢r41]5¢r, ap)mo(aw |ser) _ ﬁ 7r9(at/|st/)

P(wa/) B /14(50) H:’:o P(St’+1|5t/,at/)Tl'gl(at/|St/) 71'(9/(31»/‘51»/)

Even for policies only slightly different from each other, many small differences multiply
to become a big difference.

t'=0

Big question: how can we make efficient use of the data we already have from the
old policy, while avoiding the challenges posed by importance sampling?
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Advanced Policy Gradients

Theory:
@ Problems with Policy Gradient Methods
@ Policy Performance Bounds
© Monotonic Improvement Theory
Proximal Policy Optimization:
© Approximately constraints policy steps
@ Relatively simple to implement

© Good empirical success and very widely used
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Refresh Your Understanding L7N1

Which of the following are true about REINFORCE? In the following options, PG stands
for policy gradient.

@ Adding a baseline term can help to reduce the variance of the PG updates
@ It will converge to a global optima

@ It can be initialized with a sub-optimal, deterministic policy and still converge to a
local optima, given the appropriate step sizes

@ If we take one step of PG, it is possible that the resulting policy gets worse (in terms
of achieved returns) than our initial policy
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