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Refresh Your Understanding L7N1

Which of the following are true about REINFORCE? In the following options, PG stands
for policy gradient.

@ Adding a baseline term can help to reduce the variance of the PG updates
@ It will converge to a global optima

@ It can be initialized with a sub-optimal, deterministic policy and still converge to a
local optima, given the appropriate step sizes

@ If we take one step of PG, it is possible that the resulting policy gets worse (in terms
of achieved returns) than our initial policy

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 8: Policy Gradients and Imitation learning Winter 2026



Refresh Your Understanding L7N1

Which of the following are true about REINFORCE? In the following options, PG stands
for policy gradient.

@ Adding a baseline term can help to reduce the variance of the PG updates
@ It will converge to a global optima

@ It can be initialized with a sub-optimal, deterministic policy and still converge to a
local optima, given the appropriate step sizes

@ If we take one step of PG, it is possible that the resulting policy gets worse (in terms
of achieved returns) than our initial policy

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 8: Policy Gradients and Imitation learning Winter 2026



Midterm

In class

You are allowed 1 side of 1 8.5" x 11" sheet of notes

@ All material through today's lecture is eligible for the exam

See Ed post for past related practice materials
Good luck!
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Class Structure

o Last time: Policy search continued and Imitation Learning
@ This time: Imitation Learning and RLHF and maybe DPO

o Next time: Midterm
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How Can RL Enable Transformative LLM?

You
Please write me a program to demonstration how RLHF works. Please be brief in your

explanations and only say 1-2 sentences before you show me the code.

© ChatGPT
Reinforcement Learning from Human Feedback (RLHF) trains a model to perform tasks based on

human-derived feedback. Here's a simplified Python program that demonstrates RLHF using a

scenario where an Al chooses responses in a conversation.

python

numpy np

actions = [
q_table = np.zeros(len(actions))

(action
feedback = {

feedback[action]

learning_rate =

discount_factor =

episode in range(100):

action_index = np.random.choice(len(actions))

Winter 2026
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Imitation Learning
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Potential Problem with Behavior Cloning: Compounding Errors

Supervised learning assumes iid. (s, a) pairs and ignores temporal structure
Independent in time errors:

Error at time t with probability < ¢
E[Total errors] < eT
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Problem: Compounding Errors

Expert trajectory
Learned Policy

No data on
how to recover

Data distribution mismatch!
In supervised learning, (x,y) ~ D during train and test. In MDPs:

@ Train: sy ~ Dy~

o Test: st ~ Dr,

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al.
2011
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Problem: Compounding Errors

@ Error at time t with probability €

o Approximate intuition: E[Total errors] < ¢(T + (T — 1)+ (T —2)... + 1) xeT?

o Real result requires more formality. See Theorem 2.1 in http://www.cs.cmu.
edu/~srossl/publications/Ross—-AIStatsl0-paper.pdf with proof in

supplement: http:
//www.cs.cmu.edu/~srossl/publications/Ross—-AIStatslO-sup.pdf

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al.

2011
Winter 2026
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DAGGER: Dataset Aggregation

Initialize D « 0.

Initialize 7; to any policy in II.

fori =1to N do
Letm; = ﬂiﬂ'* + (1 — ﬂz)ﬁ'z
Sample T'-step trajectories using ;.
Get dataset D; = {(s,7*(s))} of visited states by ;
and actions given by expert.
Aggregate datasets: D — D |JD;.
Train classifier 7,41 on D.

end for

Return best 7; on validation.

o Idea: Get more labels of the expert action along the path taken by the policy
computed by behavior cloning

@ Obtains a stationary deterministic policy with good performance under its induced
state distribution

o Key limitation?
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Feature Based Reward Function

Given state space, action space, transition model P(s’ | s, a)

No reward function R

@ Set of one or more expert's demonstrations (so, ao, s1, So, - - )
(actions drawn from expert’s policy 7*)

Goal: infer the reward function R

Assume that the expert’s policy is optimal. What can be inferred about R?
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Check Your Understanding L7N3: Feature Based Reward Function

o Given state space, action space, transition model P(s’ | s, a)
@ No reward function R

@ Set of one or more expert's demonstrations (sp, ao, s1, So, - - -)
(actions drawn from expert’s policy 7*)

@ Goal: infer the reward function R

@ Assume that the expert’s policy is optimal.

There is a single unique R that makes expert's policy optimal
There are many possible R that makes expert's policy optimal
It depends on the MDP

Not sure

©0O0O0
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Check Your Understanding L7N3: Feature Based Reward Function

o Given state space, action space, transition model P(s’ | s, a)
@ No reward function R

@ Set of one or more expert's demonstrations (so, ag, s1, o, - - )
(actions drawn from expert’s policy 7*)

@ Goal: infer the reward function R

@ Assume that the expert's policy is optimal.

@ There is a single unique R that makes expert's policy optimal
@ There are many possible R that makes expert's policy optimal
© It depends on the MDP

Q Not sure

Answer: There are an infinite set of R .
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Human Feedback and Reinforcement Learning from Human Preferences
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Human Input to Train RL Agents

@ There are many ways for humans to help train RL agents

@ This is relevant if we want RL agents that can match human performance and/or
human values
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Training a Robot Through Human and Environmental Feedback

Sophie's Kitchen

PICK-UP:Spoon >> -0.04

Teachable robots: Understanding human teaching behavior to build more effective robot learners. AL
Thomaz, C Breazeal. Artificial Intelligence 2008
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Human Input for Training and Aligning RL Policies

DAGGER/ Constant Teaching Demonstrations Only
Human Effort
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Human Input for Training and Aligning RL Policies: Sweet Spot?

DAGGER/ Constant Teaching Pairwise Labels Demonstrations Only

Human Effort
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RetrIEVAL FUNCTION A

CS 159 Purdue University

web.ics.purdue.edu/~cs159/ v Purdue University ~

Aug 16, 2012 - CS 159 introduces the tools of software development that have become
essential for creative problem solving in Engineering. Educators and

CS159: Introduction to Parallel Processing | People | San Jo...

www.sjsu.edu> ... » Chun, Robert K » Courses v San Jose State University
Jan 20, 2015 - Description. A combination hardware architecture and software
development class focused on multi-threaded, parallel processing algorithms

CS 159: Introduction to Parallel Processing - Info.sjsu.edu
info.sjsu.edu> ... » Courses v San Jose State University ~

CS 159. Introduction to Parallel Processing. Description Major paralel architectures:
shared memory, distributed memory, SIMD, MIMD. Parallel algorithms:

Guy falls asleep in CS159 lab Purdue - YouTube
https://www.youtube.com/watch?v=vVciOgZwlLag
Mar 24, 2011 - Uploaded by james brand
Guy falls asleep in our 7:30 am lab so we take his phone turn the
volume up to full and call him.

CS 159: Advanced Topics in Machine Learning - Yisong Yue
www.yisongyue.com/courses/cs159/ v

€S 159: Advanced Topics in Machine Leaming (Spring 2016). Course Description. This
course will cover a mixture of the following topics: Online Learning

CS159: Introduction to Computational Complexity
cs.brown.edu/courses/cs159/home.html + Brown University

Home | Course Info | Assignments | Syllabus And Lectures | Staff and Hours | LaTeX. An
early model of parallel computation... Home Courses.

Comparing Recommendation Ranking Systems

ReTrIEVAL FUNCTION B

Guy falls asleep in CS159 lab Purdue - YouTube
https://www.youtube com/watch?v=vVciOgZwLag
Mar 24, 2011 - Uploaded by james brand
Guy falls asleep in our 7:30 am lab 50 we take his phone turn the
volume up to full and call him.

CS 159 Purdue University

web.ics.purdue.edu/~cs159/ v Purdue University

Aug 16, 2012 - CS 159 introduces the tools of software development that have become
essential for creative problem solving in Engineering. Educators and ..

CS159: Introduction to Parallel Processing | People | San Jo.
www.sjsu.edu> ...» Chun, Robert K» Courses v San Jose State University
Jan 20, 2015 - Description. A combination hardware architecture and software
development class focused on multi-threaded, parallel processing algorithms

CS 159: Introduction to Parallel Processing - Info.sjsu.edu
info.sjsu.edu> ...» Courses v San Jose State University

CS 159. Introduction to Parallel Processing. Description Major parallel architectures:
shared memory, distributed memory, SIMD, MIMD. Parallel algorithms: .

CS 159: Advanced Topics in Machine Learning - Yisong Yue
'www.yisongyue.com/courses/cs159/ v

CS 159: Advanced Topics in Machine Learning (Spring 2016). Course Description. This,
course will cover a mixture of the following topics: Online Learning

CS159: Introduction to Computational Complexity
cs.brown.edu/courses/cs159/home.html v Brown University

Home | Course Info | Assignments | Syllabus And Lectures | Staff and Hours | LaTeX. Al
early model of parallel computation... Home Courses.

Slide from Yisong Yue
http://www.yisongyue.com/courses/csl59/lectures/duelingbandits_lecturespdf
Winter 202
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http://www.yisongyue.com/courses/cs159/lectures/dueling_bandits_lecture.pdf

Active Learning of Preferences for Human Robot Interaction

Active preference-based learning of reward functions. D Sadigh, AD Dragan, S Sastry, SA Seshia. RSS
2017 o 5 = = =

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 8: Policy Gradients and Imitation learning Winter 2026 23 /44




Pairwise Comparisons

@ Often easier for people to make than hand writing a reward function

@ Often easier than providing scalar reward (how much do you like this ad?)
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Bradley-Terry Model (1952)

@ Already saw with no other assumptions, the latent reward model is not unique
@ Now focus on a particular structural model

o First consider simpler setting of k-armed bandits®: K actions by, by, . .. bx. No
state/context.

@ Assume a human makes noisy pairwise comparisons, where the probability she
prefers b; = b; is

o eelb)
P b) = o o)) +exp (r(B)) P @

o Transitive: pix is determined from p; and pj

3We will see more on bandits later in the course
See: The K -armed dueling bandits problem. Y Yue, J Broder, R Kleinberg and T. Joachims. Journal of
Computer and System Sciences. 2012.
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Condorcet Winner

An item b; is a Condorcet winner if for every other item b;, P(b; = b;) > 0.5.

Copeland Winner

An item b; is a Copeland winner if it has the highest number of pairwise victories against
all other items. The score for an item is calculated as the number of items it beats minus
the number of items it loses to.

Borda Winner

An item b; is a Borda winner if it maximizes the expected score, where the score against
item b;j is 1 if b; > bj, (P(b,‘ - bj) > 0.5) 0.5 if by = bj, and 0 if b; < B;.

@ Historically algorithms for k-armed or dueling (k=2) bandits focused on finding a
copeland winner.
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Preference learning
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Fitting the Parameters of a Bradley-Terry Model

o First consider k-armed bandits*: K actions bi, by, ... bx. No state/context.

@ Assume a human makes noisy pairwise comparisons, where the probability she
prefers b; = b; is

eyl eelb)
o) o b)) + e (B P @

“We will see more on bandits later in the course
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Fitting the Parameters of a Bradley-Terry Model

First consider k-armed bandits®: K actions by, by, . .. bx. No state/context.

Assume a human makes noisy pairwise comparisons, where the probability she
prefers b; >~ b; is

o eplrb))
Plbi = b)) = S (B)) T o ()~ P 3

Assume have N tuples of form (b, bj, 1) where p(1) = 1 if the human marked
bi > bj, (1) = 0.5 if the human marked b; = b;, else 0 if b; > b;
@ Maximize likelihood with cross entropy

loss=— > p(1)log P(b; = b;) + (1 — p(1))log P(b; > b;) (4)

(bj,bj,n)€D

5We will see more on bandits later in the course
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Preference to Reward Modeling for RL

Can also do this for trajectories

Consider two trajectories, 7 (so, a7, 514, . . .) and 72(so, as, 512, - - -)

Let R' = 527 ' r! be the (latent, unobserved) sum of rewards for trajectory 7* and

i=

similarly for R-.

o Define the probability that a human prefers 7! > 72 as

t—1 1
A ex o
P |:'T1 - T2] = t71p12:l:0 ! =1 57 (5)

exp ;o i texpd iy r
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Preference to Reward Modeling for RL

Can also do this for trajectories

Consider two trajectories, 7(so, a7, 514, . . .) and 72(so, as, 512, - - -)

Let R' = 527! r! be the (latent, unobserved) sum of rewards for trajectory 7* and

=

similarly for R”.

Define the probability that a human prefers 7' = 72 as

eXpZt 1 1
expzi: r1+expzt 1r27

Use learned reward model, and do PPO with this model

P [Tl - 7'2] = (6)

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 8: Policy Gradients and Imitation learning Winter 2026



Reinforcement Learning from Human Feedback

@ Learning to backflip
@ "needed 900 bits of feedback from a human evaluator to learn to backflip”

@ https://player.vimeo.com/video/754042470?h=e64a40690d&badge=
O&autopause=0&player_id=0&app_id=58479

Christiano et al. 2017. Deep RL from Human Preferences https://arxiv.org/pdf/1706.03741.pdf
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Table of Contents

© Preference learning
@ From Backflips to ChatGPT. ®

5Slides from part of Tatsu Hashimoto's Lecture 11 in CS5224N
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From Backflips to ChatGPT

@ Next set of slides are from part of Tatsu Hashimoto's Lecture 11 in CS224N
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High-level instantiation: ‘RLHF’ pipeline

Step1 Step2 Step3
Collect demonstration data, Collect comparison data, Optimize a policy against
and train a supervised policy. and train a reward model. the reward model using

reinforcement learning.

Apromptis Aprompt and Anew prompt
sampled from our several model is sampled from
prompt dataset. tput: the dataset.
sampled. °
Alabeler ! e The policy
demonstrates the @ generates
desired output anoutput.
behavior. Soma peole went Y
¢ Alabeler ranks
| the outputs from @
s best to worst
This datais used
tofine-tune GPT-3 ©-0-0-0 The reward model
with supervised } calculates a
[ reward for
earning Z This data is used =) the output,
[EE[E] to train our A v
reward model. \% < The reward Is .
0-6-0-0 used to update k
the policy
using PPO.

e First step: instruction tuning!
¢ Second + third steps: maximize reward (but how??)



How do we model human preferences?

¢ Problem 2: human judgments are noisy and miscalibrated!

¢ Solution: instead of asking for direct ratings, ask for pairwise comparisons, which can
be more reliable [Phelps et al., 2015; Clark et al., 2018]

An earthquake hit A 4.2 magnitude The Bay Area has
San Francisco. earthquake hit good weather but is
There was minor > San Francisco, > prone to
property damage, resulting in earthquakes and
but no injuries. massive damage. wildfires.

51 1.2 S3 Sz

Bradley-Terry [1952] paired comparison model
Jrm(®) = —E (o g1y p[log 5(RMg (s") — RMy(s"))]

“winning”  “losing” s should score
w0 The Bay Area .. .. wildfires sample sample higher than s'




Make sure your reward model works first!

Evaluate RM on predicting outcome of held-out human judgments

Ensemble of humans
50.80
g (Human baseline _________________________ ~~ data approaching
Q075 oo
Q
< 16k
8k
G070 Data
-
®©
o
© 0.65
>
0.60 . -
108 10° 1070
Model size

Large enough RM
trained on enough

single human perf

Stiennon et al., 2020



RLHF: Putting it all together [christiano et al., 2017; Stiennon et al., 2020]

¢ Finally, we have everything we need:
* A pretrained (possibly instruction-finetuned) LM p”7 (s)

* Areward model RM (s) that produces scalar rewards for LM outputs, trained on a
dataset of human comparisons
* A method for optimizing LM parameters towards an arbitrary reward function.
¢ Now to do RLHF:
e Initialize a copy of the model ng (s), with parameters 6 we would like to optimize
* Optimize the following reward with RL:
RL Pay a price when
_ pg (s) yap
R(s) = RMy(s) — B log <pPT(s) pBL(s) > pPT(s)
This is a penalty which prevents us from diverging too far from

the pretrained model. In expectation, it is known as the
a2 Kullback-Leibler (KL) divergence between pf(s) and p*T (s).



RLHF provides gains over pretraining + finetuning

RL

w 0.7 P (s)
o
S
2 0.6}
O
o
b
] e T
s eference summaries
o . —i P (s)
204t | { '
S Supervised learning pPT (s)
:'3 0.3}
o / 1
—
L

0.2; | Pretrain only

1.3B 2.7B 6.78
I Model size
43

12.9B

Stiennon et al., 2020



InstructGPT: scaling up RLHF to tens of thousands of tasks

30k
tasks!

44

Step1

Collect demonstration data,
and train a supervised policy.

A prompt is
sampled from our
prompt dataset.

Explain the moon
landing to a 6 year old

|
\J

Alabeler

demonstrates the @

desired output 7

behavior. Some people went

This data is used
to fine-tune GPT-3
with supervised
learning.

tothe moon.

Step2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

Alabeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

ﬁ_/

Step3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

»

Wiite a story
about frogs.

Ouyang et al., 2022



Controlled comparisons of “RLHF” style algorithms

Method Simulated win-rate (%) Human win-rate (%)
GPT-4 79.0+1.4 69.8 £1.6
ChatGPT 61.4+1.7 529+ 1.7
PPO 46.8 1.8 55.1 £ 1.7
Best-of-n 45.0+1.7 50.7+1.8
Expert Iteration 41.9+1.7 45.7+1.7
SFT 52k (Alpaca 7B) 39.2+1.7 40.7+1.7
SFT 10k BITELT 44.3+1.7
Binary FeedME 36.6 +1.7 379+1.7
Quark a6+ 1.7 -
Binary Reward Conditioning 324+1.6 -
Davinci001 244415 325+1.6
LLaMA 7B 113+ 1.1 6.5+0.9

e Many works study RLHF behaviors using GPT-4 feedback (Simulated) as a surrogate for
Human feedback.
e PPO (method in InstructGPT) does work

¢ Simple baselines (Best-of-n, Training on ‘good’ outputs) works well too [Dubois et al 2023]
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© Preference learning

@ From RLHF to Direct Preference Optimization
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RLHF: Learning a reward model from human feedback

. _ i o,,0 i
Feedback comes as preferences over model samples: D — {x s Yooy yl}

Prompt \ Dispreferred response

Preferred response

Bradley-Terry Model connects rewards to preferences:

Reward assigned to)[;eferred and dispreferred responses
PYw =y | 2) = o(r(2; yw) — (2, y1))
Train the reward model by minimizing negative log likelihood:

ER(¢7D) = _E(m,yw wyi)~D [10g0(7"¢($, yw) - ’I"¢(£17, yl))]

Stanford University



RLHF: Learning a policy that optimizes the reward

Now we have a reward model "¢ that represents* goodness according to humans

Now, learn a policy g achieving high reward while staying close to original model Tyef

max B ymmg (y)x) [%(% y)} — BDxL [71'9 (Z/|5U)||7Tref(y|m)}

] \

Sample from policy Want high reward... ...but keep KL to original model small!

Stanford University



RLHF: Learning a policy that optimizes the reward

g (aclse)

) GAE Gua) P:K:y i Gals) A
Touad)| * Advantage Function R als)
Ase.ar) = S 6 TR (a0
* TD Error =
B = (50,00 + V(i) —V (50 Aae)
PPO-clip Loss
V(s * Return Do
Ry = A(seap) +V(sp) O

LM Loss

{3 viviae

hh, (aclse)

N Pretraining Data
A(spar)

(sear)

g (aclse)

(se.ae)  A(s, ap)

Value
Model
Vg (se)

p
5t Gadlso) R,

Viso)
MSE Loss

Experience Buffer

Secrets of RLHF in Large Language Models Part I: PPO, Zheng et.al. 2023

Stanford University



Direct Preference Optimization

any reward function

RLHF Objective m"?XEmND,yww(mm) [T(x7y)] - 6DKL(7T( | x)”ﬂ-ref(' | iL'))

(get high reward, stay close
to reference model)

Stanford University



Direct Preference Optimization

any reward function
RLHF Objecti
(gethighrewari,est(:v::l‘:see m1?XEm~D7yN7T(y|z) [,r(x7 y)] - BDKL(W(' | ',Ll)“ﬂ-ref(' | ',Ll))

to reference model)

. 1 1
OCIssed[f:rP ™(y | x) = %Wref(y | z) exp (ET(‘mvy))
ptimal Policy
(write optimal policy as prad

. 1
function of reward function; with Z(z) = Zmef(y | z) exp <E’"(z,y)>
Y

from prior work)

Stanford University



Closed-Form Optimal Policy
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Direct Preference Optimization

RLHF Objective

(get high reward, stay close
to reference model)

Closed-form
Optimal Policy

(write optimal policy as
function of reward function;
from prior work)

Stanford University

any reward function

m1?XEm~D,y~w(y|m) [T(x7y)] - BDKL(W( | iE)“’]Tref(' | iL'))

1 1
ﬂ-*(y | $) = —ﬂ'ref(y | 1") exp —7"(117,:1/)
o (5=9)

with Z(a:) _ Z wref(y I Z) exp <%’I‘(:I), y)> Note intractable sum over possible
Yy

responses; can’t immediately use this



Direct Preference Optimization

RLHF Objective

(get high reward, stay close
to reference model)

Closed-form
Optimal Policy

(write optimal policy as
function of reward function;
from prior work)

Rearrange

(write any reward function as
function of optimal policy)

Stanford University

any reward function

m1?XEm~D,y~w(y|m) [T(x7y)] - BDKL(W( | iE)“’]Tref(' | iL'))

1 1
ﬂ-*(y | $) = —ﬂ'ref(y | 1") exp —7"(117,:1/)
o (5=9)

with Z(a:) _ Z wref(y I Z) exp <%’I‘(:I), y)> Note intractable sum over possible
Yy

responses; can’t immediately use this



DPO Derivation
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DPO Derivation Cont.
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Direct Preference Optimization

RLHF Objective

(get high reward, stay close
to reference model)

Closed-form
Optimal Policy

(write optimal policy as
function of reward function;
from prior work)

Rearrange

(write any reward function as
function of optimal policy)

Stanford University

any reward function

m7?XEm~D,y~w(y|z) [r(a:,y)] - BDKL(W(' | x)Hﬂ'ref(' | CE))

1 1
ﬂ-*(y | $) = —ﬂ'ref(y | 1") exp —T‘("E,y)
o (5r0)

with Z(a:) _ Z wref(y I x) exp <%’(‘(:I), y)> Note intractable sum over possible
Yy

responses; can’t immediately use this

Ratio is positive if policy likes response
more than reference model, negative if

* / policy likes response less than ref. model
™(y | z)

r(z,y) = Blog + Blog Z(z)

Tref (Y | )

~\~

some parameterization of a reward function




Direct Preference Optimization: Putting it together

Derived from the Bradley-Terry model of human preferences:

£R(Ta D) = _E(m,yw,yz)~D [loga(r(x,yw) - "'(xayl))]

A loss function on
reward functions

+

A transformation mo(y | z)
bet d (z,y) = Blog —Y 1LV 4 Blog 7(x)
etween rewar T'ﬂ-g T,Y) = Og = ( | _’L‘) Og X
functions and policies ref(Y
When substituting, the log Z term cancels, because the loss only cares about difference in rewards
L
— Reward of Reward of
preferred dispreferred
response response

A loss function
on policies Lopo (793 Tret) = —E(z,y0,y,)~D [loga (ﬁ log

o (Yuw | @) — Blo mo(y1 | ) )]

Tret (Yo | 2) Tret(Y1 | @)

Stanford University



Direct Preference Optimization: Putting it together

Derived from the Bradley-Terry model of human preferences:

A loss function on
reward functions Lp(r,D) = —E @ yu,51)~D [log o (r(z, yw) — r(z,u1))]

+

A transformation
I T
between reward T (2,y) = Blog M

+ Blog Z(x)
functions and policies Tret (Y | )

molw |2) . molu | 2)
Wref(yw | x) i Wref(yl | x))]

Reward of preferred response Reward of dispreferred response

‘CDPO(WG; 7rref) = _E(:c,yw,yl)ND |:10g0’ <ﬁ log

Stanford University
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How Efficiently does DPO Trade off Reward & KL?

IMDb Sentiment Generation
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“ [
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e L DPO (Ours) e PPO-GT (Our impl.)
e Unlikelihood e PPO-GT (TRL)
o e PPO(Ourimpl) e Preferred-FT
0.0 25 5.0 7.5 10.0 12.5 15.0 115 20.0

Stanford University

KL(rtg || TTref)

Generate positive IMDB reviews from

GPT2-XL

Use pre-trained sentiment classifier as
Gold RM

Create preferences based on Gold RM
Optimize with PPO and DPO



Models Trained With DPO
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Large-Scale DPO Training
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Large-Scale DPO Training
Mistral

4 Instruction Fine-tuning

We train Mixtral ~ Instruct using supervised fine-tuning (SFT) on an instruction dataset followed by
Direct Preference Optimization (DPO) [25] on a paired feedback dataset. Mixtral ~ Instruct reaches a
score of 8.30 on MT-Bench [33] (see Table 2), making it the best open-weights model as of December
2023. Independent human evaluation conducted by LMSys is reported in Figure 6* and shows that
Mixtral - Instruct outperforms GPT-3.5-Turbo, Gemini Pro, Claude-2.1, and Llama 2 70B chat.

Hodel © . Axema £lo xating +  NT-bench (score) + License
GeT-4-Tuxbo 120 .52 Propristary
GT:A-004 2 8% Propristazy
GT:4:0003 18 918 Propristary
Glaude: 149 7.9 Proprietary
Clauge:2.0 ey .06 Propristary
[romasapmstnstes  na 8.3 Apache 2.0
Glando:2.1 7 [ET) Propristazy
GPT:3,5:Tuxba: 0613 w7 .39 Proprietary
GenindPxo un Propristary
Claude:Instant=a 10 785 Propristazy
TH:2:099:798 110 7.8 AT2 THpACT Low-zisk
¥i-340:hat 110 Vi License

GET-,5: Tusba:634 1108 7.0 Propriotary
Laana:2:70h:chat 1077 o.86 L1ana 2 Community

Figure 6: LMSys Leaderboard. (Scrcenshot from Dec 22, 2023) Mixtral 8x7B Instruct v0.1 achieves an Arena
Elo rating of 1121 outperforming Claude-2.1 (1117), all versions of GPT-3.5-Turbo (1117 best), Gemini Pro
(1111), and Llama-2-70b-chat (1077). Mixtral is currently the best open-weights model by a large margin.

Stanford University



Large-Scale DPO Training

Mistral

4 Instruction Fine-tuning

We train Mixtral ~ Instruct using supervised fine-tuning (SFT) on an instruction dataset followed by
Direct Preference Optimization (DPO) [25] on a paired feedback dataset. Mixtral ~ Instruct reaches a
score of 8.30 on MT-Bench [33] (see Table 2), making it the best open-weights model as of December
2023. Independent human evaluation conducted by LMSys is reported in Figure 6* and shows that
Mixtral - Instruct outperforms GPT-3.5-Turbo, Gemini Pro, Claude-2.1, and Llama 2 70B chat.
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Figure 6: LMSys Leaderboard. (Scrcenshot from Dec 22, 2023) Mixtral 8x7B Instruct v0.1 achieves an Arena
Elo rating of 1121 outperforming Claude-2.1 (1117), all versions of GPT-3.5-Turbo (1117 best), Gemini Pro
(1111), and Llama-2-70b-chat (1077). Mixtral is currently the best open-weights model by a large margin.

Stanford University

LLaMa3

Instruction fine-tuning

To fully unlock the potential of our pretrained models in chat use cases, we innovated on our
approach to instruction-tuning as well. Our approach to post-training is a combination of
supervised fine-tuning (SFT), rejection sampling, proximal policy optimization (PPO), and
direct preference optimization (DPO). The quality of the prompts that are used in SFT and
the preference rankings that are used in PPO and DPO has an outsized influence on the
performance of aligned models. Some of our biggest improvements in model quality came
from carefully curating this data and performing mul
annotations provided by human annotators.

le rounds of quality assurance on

Learning from preference rankings via PPO and (B8 also greatly improved the performance
of Liama 3 on reasoning and coding tasks. We found that if you ask a model a reasoning
question that it struggles to answer, the model will sometimes produce the right reasoning
trace: The model knows how to produce the right answer, but it does not know how to select
it. Training on preference rankings enables the model to learn how to select it.
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Learning More

@ Learning and making decisions from human preferences is a rich area intersecting
social choice, computational economics and Al

@ New course at Stanford on this topic: Koyejo's CS329H: Machine Learning from
Human Preferences

Emma Brunskill (CS234 Reinforcement Learning. ecture 8: Policy Gradients and Im on learning Winter 2026



Learning a Reward Model from Human Feedback While Training an Agent

Table 1: Results of various Tetris agents.

Method Mean Lines Cleared Games
at Game 3 at Peak | for Peak
TAMER 65.89 65.89 3
RRL-KBR [15] 5 50 120
~ 0 (no learning | 3183 1500

Policy Iteration [2]
until game 100)

~ 0 (no learning 586,103 3000

Genetic Algorithm [5]
until game 500)

~ 0 (no learning 348,895 5000

CE+RL [17]

until game 100)

Interactively shaping agents via human reinforcement: The TAMER framework. W Knox, P Stone. 2008.
ICKC
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