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Refresh Your Understanding L7N1

Which of the following are true about REINFORCE? In the following options, PG stands
for policy gradient.

(a) Adding a baseline term can help to reduce the variance of the PG updates

(b) It will converge to a global optima

(c) It can be initialized with a sub-optimal, deterministic policy and still converge to a
local optima, given the appropriate step sizes

(d) If we take one step of PG, it is possible that the resulting policy gets worse (in terms
of achieved returns) than our initial policy
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Midterm

In class

You are allowed 1 side of 1 8.5” x 11” sheet of notes

All material through today’s lecture is eligible for the exam

See Ed post for past related practice materials

Good luck!

Emma Brunskill (CS234 Reinforcement Learning. ) Lecture 8: Policy Gradients and Imitation learning Winter 2026 4 / 44



Class Structure

Last time: Policy search continued and Imitation Learning

This time: Imitation Learning and RLHF and maybe DPO

Next time: Midterm
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How Can RL Enable Transformative LLM?
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Imitation Learning
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Potential Problem with Behavior Cloning: Compounding Errors

Supervised learning assumes iid. (s, a) pairs and ignores temporal structure
Independent in time errors:

Error at time t with probability ≤ ϵ
E[Total errors] ≤ ϵT
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Problem: Compounding Errors

Data distribution mismatch!
In supervised learning, (x , y) ∼ D during train and test. In MDPs:

Train: st ∼ Dπ∗

Test: st ∼ Dπθ

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al.
2011
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Problem: Compounding Errors

Error at time t with probability ϵ

Approximate intuition: E[Total errors] ≤ ϵ(T + (T − 1) + (T − 2) . . .+ 1) ∝ ϵT 2

Real result requires more formality. See Theorem 2.1 in http://www.cs.cmu.
edu/˜sross1/publications/Ross-AIStats10-paper.pdf with proof in
supplement: http:
//www.cs.cmu.edu/˜sross1/publications/Ross-AIStats10-sup.pdf

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al.
2011
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DAGGER: Dataset Aggregation

Idea: Get more labels of the expert action along the path taken by the policy
computed by behavior cloning

Obtains a stationary deterministic policy with good performance under its induced
state distribution

Key limitation?
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Feature Based Reward Function

Given state space, action space, transition model P(s ′ | s, a)
No reward function R

Set of one or more expert’s demonstrations (s0, a0, s1, s0, . . .)
(actions drawn from expert’s policy π∗)

Goal: infer the reward function R

Assume that the expert’s policy is optimal. What can be inferred about R?
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Check Your Understanding L7N3: Feature Based Reward Function

Given state space, action space, transition model P(s ′ | s, a)
No reward function R

Set of one or more expert’s demonstrations (s0, a0, s1, s0, . . .)
(actions drawn from expert’s policy π∗)

Goal: infer the reward function R

Assume that the expert’s policy is optimal.

1 There is a single unique R that makes expert’s policy optimal

2 There are many possible R that makes expert’s policy optimal

3 It depends on the MDP

4 Not sure
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Check Your Understanding L7N3: Feature Based Reward Function

Given state space, action space, transition model P(s ′ | s, a)
No reward function R

Set of one or more expert’s demonstrations (s0, a0, s1, s0, . . .)
(actions drawn from expert’s policy π∗)

Goal: infer the reward function R

Assume that the expert’s policy is optimal.

1 There is a single unique R that makes expert’s policy optimal

2 There are many possible R that makes expert’s policy optimal

3 It depends on the MDP

4 Not sure

Answer: There are an infinite set of R .
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Human Feedback and Reinforcement Learning from Human Preferences
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Human Input to Train RL Agents

There are many ways for humans to help train RL agents

This is relevant if we want RL agents that can match human performance and/or
human values
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Training a Robot Through Human and Environmental Feedback

Teachable robots: Understanding human teaching behavior to build more effective robot learners. AL
Thomaz, C Breazeal. Artificial Intelligence 2008
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Human Input for Training and Aligning RL Policies

Human Effort

DAGGER/ Constant Teaching Demonstrations Only
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Human Input for Training and Aligning RL Policies: Sweet Spot?

Human Effort

DAGGER/ Constant Teaching Demonstrations OnlyPairwise Labels
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Comparing Recommendation Ranking Systems

Slide from Yisong Yue
http://www.yisongyue.com/courses/cs159/lectures/dueling_bandits_lecture.pdf
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Active Learning of Preferences for Human Robot Interaction

Active preference-based learning of reward functions. D Sadigh, AD Dragan, S Sastry, SA Seshia. RSS
2017
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Pairwise Comparisons

Often easier for people to make than hand writing a reward function

Often easier than providing scalar reward (how much do you like this ad?)
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Bradley-Terry Model (1952)

Already saw with no other assumptions, the latent reward model is not unique

Now focus on a particular structural model

First consider simpler setting of k-armed bandits3: K actions b1, b2, . . . bk . No
state/context.

Assume a human makes noisy pairwise comparisons, where the probability she
prefers bi ≻ bj is

P(bi ≻ bj) =
exp (r(bi ))

exp (r(bi )) + exp (r(bj))
= pij (1)

Transitive: pik is determined from pij and pjk

3We will see more on bandits later in the course
See: The K -armed dueling bandits problem. Y Yue, J Broder, R Kleinberg and T. Joachims. Journal of

Computer and System Sciences. 2012.
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Definitions

Condorcet Winner

An item bi is a Condorcet winner if for every other item bj , P(bi ≻ bj) > 0.5.

Copeland Winner

An item bi is a Copeland winner if it has the highest number of pairwise victories against
all other items. The score for an item is calculated as the number of items it beats minus
the number of items it loses to.

Borda Winner

An item bi is a Borda winner if it maximizes the expected score, where the score against
item bj is 1 if bi ≻ bj , (P(bi ≻ bj) > 0.5) 0.5 if bi = bj , and 0 if bi ≺ Bj .

Historically algorithms for k-armed or dueling (k=2) bandits focused on finding a
copeland winner.
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Preference learning
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Fitting the Parameters of a Bradley-Terry Model

First consider k-armed bandits4: K actions b1, b2, . . . bk . No state/context.

Assume a human makes noisy pairwise comparisons, where the probability she
prefers bi ≻ bj is

P(bi ≻ bj) =
exp (r(bi ))

exp (r(bi )) + exp (r(bj))
= pij (2)

4We will see more on bandits later in the course
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Fitting the Parameters of a Bradley-Terry Model

First consider k-armed bandits5: K actions b1, b2, . . . bk . No state/context.

Assume a human makes noisy pairwise comparisons, where the probability she
prefers bi ≻ bj is

P(bi ≻ bj) =
exp (r(bi ))

exp (r(bi )) + exp (r(bj))
= pij (3)

Assume have N tuples of form (bi , bj , µ) where µ(1) = 1 if the human marked
bi ≻ bj , µ(1) = 0.5 if the human marked bi = bj , else 0 if bj ≻ bi

Maximize likelihood with cross entropy

loss = −
∑

(bi ,bj ,µ)∈D

µ(1) logP(bi ≻ bj) + (1− µ(1)) logP(bj ≻ bi ) (4)

5We will see more on bandits later in the course
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Preference to Reward Modeling for RL

Can also do this for trajectories

Consider two trajectories, τ 1(s0, a7, s14, . . .) and τ 2(s0, a6, s12, . . .)

Let R1 =
∑T−1

i=0 r 1i be the (latent, unobserved) sum of rewards for trajectory τ 1 and
similarly for R2.

Define the probability that a human prefers τ 1 ≻ τ 2 as

P̂
[
τ 1 ≻ τ 2

]
=

exp
∑t−1

i=0 r 1i

exp
∑t−1

i=0 r 1i + exp
∑t−1

i=0 r 2i
, (5)
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Preference to Reward Modeling for RL

Can also do this for trajectories

Consider two trajectories, τ 1(s0, a7, s14, . . .) and τ 2(s0, a6, s12, . . .)

Let R1 =
∑T−1

i=0 r 1i be the (latent, unobserved) sum of rewards for trajectory τ 1 and
similarly for R2.

Define the probability that a human prefers τ 1 ≻ τ 2 as

P̂
[
τ 1 ≻ τ 2

]
=

exp
∑t−1

i=0 r 1i

exp
∑t−1

i=0 r 1i + exp
∑t−1

i=0 r 2i
, (6)

Use learned reward model, and do PPO with this model
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Reinforcement Learning from Human Feedback

Learning to backflip

”needed 900 bits of feedback from a human evaluator to learn to backflip”

https://player.vimeo.com/video/754042470?h=e64a40690d&badge=
0&autopause=0&player_id=0&app_id=58479

Christiano et al. 2017. Deep RL from Human Preferences https://arxiv.org/pdf/1706.03741.pdf
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From Backflips to ChatGPT

Next set of slides are from part of Tatsu Hashimoto’s Lecture 11 in CS224N
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High-level instantiation: ‘RLHF’ pipeline

• First step: instruction tuning!
• Second + third steps: maximize reward (but how??)



How do we model human preferences?

40

• Problem 2: human judgments are noisy and miscalibrated!
• Solution: instead of asking for direct ratings, ask for pairwise comparisons, which can 

be more reliable [Phelps et al., 2015; Clark et al., 2018] 

An earthquake hit 
San Francisco. 
There was minor 
property damage, 
but no injuries.

The Bay Area has 
good weather but is 
prone to 
earthquakes and 
wildfires.

!! !"

A 4.2 magnitude 
earthquake hit
San Francisco, 
resulting in 
massive damage.

!#

> >

Reward Model ("9.)

The Bay Area … ... wildfires

1.2

:/0 ; = −% "#,"$ ~2 log	=("9. !3 − "9.(!4))
“winning” 
sample

“losing” 
sample

!3 should score
higher than !4 

Bradley-Terry [1952] paired comparison model



Make sure your reward model works first!

Data

Evaluate RM on predicting outcome of held-out human judgments

[Stiennon et al., 2020]

Large enough RM 
trained on enough 
data approaching 
single human perf
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This is a penalty which prevents us from diverging too far from 
the pretrained model. In expectation, it is known as the 
Kullback-Leibler (KL) divergence between !!"#(#) and !$% # .

RLHF: Putting it all together [Christiano et al., 2017; Stiennon et al., 2020]

Pay a price when 
0*/5 ! > 067 !

• Finally, we have everything we need:
• A pretrained (possibly instruction-finetuned) LM 067(!) 
• A reward model	"9.(!) that produces scalar rewards for LM outputs, trained on a 

dataset of human comparisons
• A method for optimizing LM parameters towards an arbitrary reward function.

• Now to do RLHF:
• Initialize a copy of the model 0*/5(!) , with parameters ) we would like to optimize
• Optimize the following reward with RL:

" ! = "9.(!) − ?	log
0*/5(!)
067(!)



RLHF provides gains over pretraining + finetuning

[Stiennon et al., 2020]

/$%(!) 
/&'%(!) 

/()(!) 
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InstructGPT: scaling up RLHF to tens of thousands of tasks

[Ouyang et al., 2022]

30k 
tasks!

44



Controlled comparisons of “RLHF” style algorithms

• Many works study RLHF behaviors using GPT-4 feedback (Simulated) as a surrogate for 
Human feedback. 

• PPO (method in InstructGPT) does work
• Simple baselines (Best-of-n, Training on ‘good’ outputs) works well too [Dubois et al 2023]
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RLHF: Learning a reward model from human feedback

Feedback comes as preferences over model samples:

Bradley-Terry Model connects rewards to preferences:

Prompt

Preferred response

Dispreferred response

Reward assigned to preferred and dispreferred responses

Train the reward model by minimizing negative log likelihood:



RLHF: Learning a policy that optimizes the reward
Now we have a reward model       that represents* goodness according to humans

Now, learn a policy       achieving high reward while staying close to original model

Want high reward… …but keep KL to original model small!Sample from policy



Secrets of RLHF in Large Language Models Part I: PPO, Zheng et.al. 2023

RLHF: Learning a policy that optimizes the reward



Direct Preference Optimization 

RLHF Objective
any reward function

(get high reward, stay close 
to reference model)



Direct Preference Optimization 

RLHF Objective
any reward function

Closed-form 
Optimal Policy

with

(get high reward, stay close 
to reference model)

(write optimal policy as 
function of reward function; 

from prior work)



Closed-Form Optimal Policy
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Direct Preference Optimization 

RLHF Objective
any reward function

Closed-form 
Optimal Policy

with

(get high reward, stay close 
to reference model)

(write optimal policy as 
function of reward function; 

from prior work)

Note intractable sum over possible 
responses; can’t immediately use this



Direct Preference Optimization 

RLHF Objective
any reward function

Closed-form 
Optimal Policy

with

(get high reward, stay close 
to reference model)

(write optimal policy as 
function of reward function; 

from prior work)

Rearrange
(write any reward function as 

function of optimal policy)

Note intractable sum over possible 
responses; can’t immediately use this



DPO Derivation
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DPO Derivation Cont.
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Direct Preference Optimization 

RLHF Objective
any reward function

Closed-form 
Optimal Policy

with

(get high reward, stay close 
to reference model)

(write optimal policy as 
function of reward function; 

from prior work)

Rearrange
(write any reward function as 

function of optimal policy)

Ratio is positive if policy likes response 
more than reference model, negative if 

policy likes response less than ref. model

Note intractable sum over possible 
responses; can’t immediately use this



Direct Preference Optimization: Putting it together
A loss function on 
reward functions

A transformation 
between reward 
functions and policies

A loss function 
on policies

+

=
When substituting, the log Z term cancels, because the loss only cares about difference in rewards

Reward of 
preferred 
response

Reward of 
dispreferred 
response

Derived from the Bradley-Terry model of human preferences:



Direct Preference Optimization: Putting it together
A loss function on 
reward functions

A transformation 
between reward 
functions and policies

+

Reward of preferred response Reward of dispreferred response

Derived from the Bradley-Terry model of human preferences:



Results



How Efficiently does DPO Trade off Reward & KL?

1. Generate positive IMDB reviews from 
GPT2-XL

2. Use pre-trained sentiment classifier as 
Gold RM

3. Create preferences based on Gold RM
4. Optimize with PPO and DPO



Models Trained With DPO



Large-Scale DPO Training



Large-Scale DPO Training
Mistral 



Large-Scale DPO Training
Mistral LLaMa3



CPL
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Learning More

Learning and making decisions from human preferences is a rich area intersecting
social choice, computational economics and AI

New course at Stanford on this topic: Koyejo’s CS329H: Machine Learning from
Human Preferences
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Learning a Reward Model from Human Feedback While Training an Agent

Interactively shaping agents via human reinforcement: The TAMER framework. W Knox, P Stone. 2008.
ICKC
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