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Abstract take many times their normal execution time, and other less
) ) ] aggressive network applications are starved for bandwidth
Users rarely consider running network file systems over slow jsers must therefore employ different techniques to accom-

or wide-area networks, as the performance wouid be unac- lish what over the LAN the}{WaJIdFo throuah the file svs-
ceptable and the bandwidth consumption too high. Nonethe-ﬁﬁ_ — ghinefie sy

less, efficient remote file access would often be desirable —~

over such _networks part|cularly.when high latency r_nakes than LANs. Even with broadband Internet access, a person
remote login sessions unresponsive. Rather than run catera . . !
) ) — working from home usually only has a fraction of a Mbit/sec
tive programs such as editors remotely, users could run the - ) . .
" I ——. . of upstream bandwidth. A company with offices in sev-
programs locally and manipulate remote files through the file o : :
eral cities may have many users collaborating over a single

system. To do so, however, would require a network file sys- 1.5 Mbit/sec T1 line. A consultant constantly traveling be-

tem that consumes less bandwidth than most current file sys- . . )
tems tween various sites may want to sit down and access the same

) ) . roject files from every location.
This paper presents LBFS, a network file system deS|gnedp ) he ab ¢ y il | I
for low-bandwidth networks. LBFS exploits similarities-be " the absence of a network file system, people generally
tween files or versions of the same file to save bandwidth, "€SO"t to one of two methods of accessing remote data. They

It avoids sending data over the network when the same dataeither make and edit local copies of files, running the risk

can already be found in the_sgrver’siilguggl_sgem or the chent’ of an update conflict, or else they use remote login to view

cache. Using this technigue in conjunction with converalon and edit files in place on an(_)th_er maphlne. If the ngtwork
p— as long latency, remote login is particularly frustrata

compression and caching, LBFS consumes over an order oih

magnitude less bandwidth than traditional network file sys- {/r:/teractlve appl|cat|onshgre| S|0WI'II’1 rgspondmﬁ to L:c'seuunpd.
fems on common workioads. orse yet, many graphical applications, such as figure edi-

tors and postscript previewers, consume too much bandwidth
to run practically over the wide-area network.

1 Introduction Network file systems have the potential to alleviate the in-

. . i . conveniences associated with remote data access. In addi-
This paper des_crlbes LBFS, a network file system deSIgnedtion to offering the interface people already prefer fordiec
for low-bandwidth networks. People typically run net- - ° pr— .

work file systems over LANS or campus-area networks with area networks, a file system can provide fight consistency,
10 Mbit/sec or more bandwidth. Over slower, wide-area avoiding the problem of conflicts when two people update

works. data t f turate botl K link o the same file._File svstems can also better tolerate network
networks, data transfers saturate bottleneck links andecau latency than remote login sessions. By running interactive

unacggpta;ble delgys. ¢ (;nt(_aracft':vel /grogr?rﬂs freeze, dnot re'programs locally and accessing remote data through a file
sponding fo user input during file /0, batch commands can system, one avoids the overhead of a network round trip on

) ) every user input event.
This research was sponsored by the Defense Advanced Redaijects . .
Agency (DARPA) and the Space and Naval Warfare Systems GeSaer To be practical over the wide-area network, however, a

Diego, under contract N66001-00-1-8927. file system must consume significantly less bandwidth than
most current file systems, both to maintain acceptable per-
formance and to avoid monopolizing network links in use
for other purposes. Unfortunately, application writersneo
monly assume that file I/O will be no slower than a megabyte
or so per second. For instance, an interactive editor vap st
to write out 100 KByte “auto-save” files without worrying
about delaying a user’s typing or consuming significant re-
sources. A traditional file system transmits the entire con-

People often have occasion to work over networks slower




tents of such files over the network, blocking the editor for A number of file systems have properties that help them
the duration of the transfer. In contrast, LBFS often trans- tolerate high network latency. AFS [9] uses server callsack
mits far less data than applications write, greatly redgicin to inform clients when other clients have modified cached
the time spent waiting for file 1/0. files. Thus, users can often access cached AFS files with-
To reduce its bandwidth requirements, LBFS exploits out requiring any network traffic. Leases [7] are a modifica-
cross-file similarities. Files written out by applicatianiéen tion to callbacks in which the server’s obligation to inform
contain a number of segments in common with other files a client of changes expires after a certain period of time.

~ or previous versions of the same file. Auto-save files are Leases reduce the state stored by a server, free the server

/ only one example. Object files output by compilers, tempo- from contacting clients who haven't touched a file in a while,

' rary files used by the RCS revision control system, postscrip and avoid problems when a client to which the server has
files, and word processing documents often contain substanfromised a callback has crashed or gone off the network. The
tial similarity from one revision to the next. Any copying NFS4 protocol [20] reduces network round trips by batching
or concatenation of files, such as when building program li- file system operations. All of the above techniques are ap-
braries out of object files, also leads to significant dupiice ~ plicable to LBFS. In fact, LBFS currently uses leases and
of contents. a largg, persistent caghe to provide AFmpe

To exploit these inter-file similarities, the LBFS file serve -consistenc o

divides the files it stores into chunks and indexes the chunks Many ﬂle_sysm;géﬁ_gge?ngtg toﬁale_@tency.

—

by hash value. The LBFS client similarly indexes a large Echo [14] performs writé-behind of metadata operations, al
persistent file cache. When transferring a file between thelowing immediate completion of operations that traditibna
client and server, LBFS identifies chunks of data that the re- require a network round trip. In JetFile [8], the last maehin
cipient already has in other files and avoids transmittirg th to write a file becomes the file’s server, and can transmit its
redundant data over the network. In conjunction with con- contents directly to the next reader.

ventional compression, this technique saves over an ofder o - The CODA file system [10] supports slow networks and
_magnitude of communications bandwidth on many common gyen disconnected operation. Changes to the file system
‘workloads. are logged on the client and written back to the server in

LBFS provides traditional file system semantics and con- the background when there is network connectivity. To

like sistency. Files reside safely on the server once closed, andmplement this functionality, CODA provides weaker-than-
xsyncfs: clients see the server's latest version when they open a file.traditional consistency guarantees. It allows update 20rY
faster+  Thus, LBFS can reasonably be used in place of any otherflicts, which users may need to resolve manually. CGIAS
better ~ network file system without breaking software or disturbing saves bandwidth because it avoids transferring files to the
semaM|c§_u_S_e£s_ Other file systems have dealt with slow and even in-ggryer when they are deleted orEgnNritten_(iu_i_c_k_ly_on the
termittent network connectivity by relaxing file system eon  client. LBFS, in contrast, simply reduces tf_1e_b_andwi_dth re-

sistency. These techniques largely complement LBFS'’s, andquired for each file transfer. Thus, LBFS could benefit from

could be combined with LBFS for even greater bandwidthﬂ—coDA-sme_deferred operations, and CODA could benefit
savings. However, since altered semantics may not be suitfrom LBFS file transfer compression.

able for all purposes, we chose to focus on reducing band-

width todsee Ju.St how much we could save without changing timistic updates in disconnected systems, but unlike CODA,
accepted consistency guarantees. it does not provide a file system. Rather, Bayou supplies an

The next section describes related work. Section 3 gives Apy ith which to implement application-specific merging
LBFS's algorithm for finding commonality between files and 5,4 conflict resolution. OceanStore [2] applies Bayou's con

explains how the LBFS protocol takes advantage of it. Sec- fiict resolution mechanisms to a file system and extends it
tion 4 describes the implementation of LBFS. Section 5 5 york with untrusted servers that only ever see data in en-
shows how effective LBFS’s technique for compressing file crypted format. TACT [25] explores the spectrum between

Bayou [18] further investigates conflict resolution for op-

traffic can be. Finally, Section 6 concludes. absolute consistency and Bayou’s weaker model.
Lee et. al. [12] have extended CODA to support operation-
2 Related Work based updates. A proxy-client strongly connected to the
server duplicates the client's computation in the hopesief d
Past projects have attacked the problem of network file sys-plicating its output files. Users run a modified shell that-bun

tems on slow networks from several angles. LBFS comple- dles up commands for the proxy-client to reexecute. Using
ments most previous work. Because it provides consistencyforward error correction, the client and proxy-client caere

and Goes not place significant hardware or file system struc-patch up small glitches in the output files, such as different
ture requirements on the server, LBFS’s approach can unob-dates. When successful, operation-based updates deliver a
trusively be combined with other techniques to get add#tion tremendous bandwidth savings. However, the technique is
savings in network bandwidth. fairly complementary to LBFS. LBFS works well with in-
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teractive applications such as editors that would be hard toclose-to-open consistency. After a client has written and
reexecute on a proxy-client. Operation-based updates carclosed a file, another client opening ) the same file will al always
reduce communications bandwidth with command-line util- see the new contents. Moreover, once a file is successfully
ities such as image converters for which LBFS offers no sav- written and closed, the ﬁar@fely atthe serveserh
ings. Operation-based updates require a dedicated proxy-semantics are similar to those of AFS. Other work exploring
client machine making them a bit cumbersome to set up. relaxed consistency semantics may apply to LBFS, but we

use by any file system today. for a widely accepted network file svstem in use today
_Smherall have proposed a protdcp w LBFS uses a large, persistent file
independent technique for eliminating redundant network cache-atthe ciient. LBES assumes clients will have enough
traffic [21]. They « assume two cooperating caches at either cache to contain a user’s entire Working set of files (a reason
end of Both caches store identical able assumption given the capacities of cheap IDE disks to-
copies of the last MedamLes of network traffic (for values  day). With such aggressive caching, most client-server com
of n up to 100) When one end must send data that alreadymunication is solely for the purpose of maintaining conbﬂg‘ﬁ
exists in the cache, it instead sends a token specrfjiingewher tency. When a user modifies a file, the client must tran \2“,
to find the data in the cache. To |dent|fy redundant traffic, the changes to the server (since in our model the client might
the two ends index cache data by 64-byte anchors [13], crash or be cut from the network). Similarly, when a client
randomly chosen based on hash value. When data to beeads a file last modified by a different client, the servertmus
sent has a 64-byte anchor in common with previous traffic, send it the latest version of the file.
the matching region is expanded in both directions to elide LBFS reduces bandwidth requirements further by exploit-
the greatest amount of data. LBFS’s approach is similar ing similarities between files. When possible, it reconsti-
in spirit to the Spring and Wetherall technique. However, tutes files using chunks of existing data in the file system
LBFS supports multiple clients accessing the file file system and client cache instead of transmitting those chunks over
and even local users changing the file system underneath thehe network. Of course, not all applications can benefit from
server. Thus, it cannot assume that the client and server hav this technique. A worst case scenario is when applications
identical state. encrypt files on disk, since two differentencrypiions-of the
Rsync [23] copies a directory tree over the network onto same file have no commonality oever. Nonetheless,
another directory tree containing similar files—typically LBFS provides significant bandwidth reduction for common
from a previous version of the same tree. Rsync saves bandworkloads.
width by exploiting commonality between files. The prob- For the remainder of this section, we first discuss the is-
lem is similar to synchronizing a client’s file cache with the sues involved in indexing chunks of the file system and cache
server or vice versa. In fact, Tridgell suggests applyiyaes  data. We describe the advantages and disadvantages of sev-
( to a file system in his thesis. Though rsync was one of the eral approaches, including LBFS's particular solutioneith
\) \Niou inspirations for LBFS, file caching in real time is somewhat we describe the actual LBFS protocol and its use of chunk
Men/tfmmﬂ@:tory tree mirroring. LBFS thus uses a indexes.
different algorithm. We discuss the rsync algorithm in more
detail and compare it to our approach in .Section 3.1. 3.1 Indexing
A number of Unix utilities operate on differences between
files. diff computes the difference between two text files. On both the client and server, LBFS must index a set of files
patch applies the output odiff to transform one file into  to recognize data chunks it can avoid sending over the net-
the other. There have been studies of the problem of de-work. To save chunk transfers, LBFS relies on the collision-
scribing one file in terms of a minimal set of edits to an- resistant properties of the SHA-1 [6] hash function. The
other [22]. Mogul et. al. [17] have investigated transmit- probabilit inputs to SHA-1 producing the same out- -
ting such deltas to save bandwidth when updating cachedput is far |0W€f than the probability of hardware bit errcs o To
web pages. The CVS [1] version management system sh|psThUS LBFS foIIowsiheJMder accepted practice of assr&nb J&Kﬁ
patches over the network to bring a user’s working copy of a ing n no hash collisions. If the client and server both have
directory tree up to datg_u_rm@ﬂ_s_h_wmystem data chunks | producmg the same SHA-1 hash they asg"tﬁr"e

Coie .

fore, the LBFS server will typically not have an exact old contents over the network.

version from which to compute differences. The central challenge in indexing file chunks to identify
m\ 5 tcc/cn ¢ commonality is keeping the index a reasonable size WA
) |1 | ) (__ . PR .
3 Design a uealing with shifting offsets. As an example, one could ind

the hashes of all aligned 8 KByte data blocks in files. To
LBFS is designed to save bandwidth while providing tradi-_|transfer a file, the sender would transmit only hashes of the
tional file system semantics. In particular, LBFS provid ’—? ile’s blocks, and the receiver would request only blocks not

Eox [\J vt
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Figure 1: Chunks of a file before and after various edits. Horizont4 stfipes show 48-byte regions with magic hash values creating
chunk boundaries. Gray shading shows regions of the file that werehsinged by an edit.

already in its database. Unfortunately. a single byte teder /3.1.1 LBFS Solution
at the start of a large file wou_ld_s_hijtz_ill_the bIockBoguja,rie _ _ o
chanae the hashes of all the file’s blocks, and thereby thw rtIn order to use chunks from multiple files on the recipient,

any potential bandwidth savings. LBFS takes a different approach from that of rsync. It con-
- siders only non-overlapping chunks of files and avoids sen-

As an elternative, one might index files by the hashes ofall sitivity 1o shifting file offsets by_géfﬁmﬁ_o@a;ie
(overlapping) 8 KByte blocks at all offsets. Such a schere based on file contents, rather than on position within a file.
would require storage many times the size of the index

J‘W@etions therefore only affect the sumeun
files (almost one index entry per byte of file data). The siz€| ing chunks. Similar techniques have been used successfully
in itself might be tolerable given large enough disks, but ev in the past to segment files for the purpose of detecting unau-
ery file modification might require thousands of index inser- thorized copying [3].

tions. The cost of performing so many updates to an indexin - 1o divide a file into chunks, LBFS examines every (over-
secondary storage would be prohibitive. lapping) 48-byte region of the file and with probability '3

over each region’s contents considers it to be the end ofa dat
chunk. LBFS selects these boundary regions—cditedk-
points—using Rabin fingerprints [19]. A Rabin fingerprint
ds the polynomial representation of the data modulo a pre-

attempts to _exploit that fact. A simplified version of the determined irreducibl_e_ polynomial. We chose f_inger_prints
rs})7nc algorithm proceeds as follows. First, the recipiéht, pecagse they are efficient to compyte on a sl!dln’q vymdow
MM&EJDLO@._COWM- in a file. _When the low-order 13 bIt.S of a rec_nons_fmger-
size blocks. B transmits hashes of those blocks4o 4 in print equal a (_:hosen value, the region consfitutes a prea_k-
tu;—_—mge ins computing the hashes afall (overlapging) Bock p_%gt._ Assung random data, the expected chunk size is
of F'. If any of those hashes matches one fréfn A avoids 27 = 3192 . 8 KBytes _(plus t_he slze O.f the 4_8-byte
SM corresponding sectionsRfinstead tellingB breakpomt Wlndow)_. As WI|| be_dlscuss_ed in Section 5.1,
where to find the data i - we experimented with various window sizes and found that
48 bytes provided good results (though the effect of window
A couple of complications arise when trying to apply the Size was not huge).
rsync algorithm to a file system, however. First, rsync’s  Figure 1 shows how LBFS might divide up a file and what
choice of F/ based on filename is too simple. For exam- happens to chunk boundaries after a series of eglighows
ple, when editing filefoo, emacs creates an auto-save file the original file, divided into variable length chunks with
named#foo#. RCS uses even less suggestive temporary breakpoints determined by a hash of each 48-byte region.
file names such asiv22825. Thus, the recipient would b. shows the effects of inserting some text into the file. The
have to choosé” using something other than file names. It text is inserted in chunk,, producing a new, larger chunk
might selectF” based on a fixed-size “sketch” @f, using cg. However, all other chunks remain the same. Thus, one
Broder's resemblance estimation technique [4]. However, need only sendg to transfer the new file to a recipient that
even ignoring the additional cost of this approach, some- already has the old version. Modifying a file can also change
times F' can best be reconstructed from chunks of multiple the number of chunksc. shows the effects of inserting data
files—considerr, which outputs software Tibraries contain- that contains a breakpoint. Bytes are insertedsinsplit-
ing many object files. ting that chunk into two new chunks andc;y. Again, the

\(‘\/"\A WA m/\uf( f_)

Rsync more practically tackles this problem by consider-
ing only two files at a time. When transferring fife from
machineA to machineB, if B already has a filé’ by the
same name, rsync guesses the two files may be similar an




file can be transfered by sending only the two new chunks. a file. LBFS also uses the recomputed SHA-1 value to detect
Finally, d. shows a modification in which one of the break- hash collisions in the database, since the 64-bit keys have
points is eliminated. Chunks andc; of the old file are now a low but non-negligible probability of collision. Not rely

combined into a new chunk; 1, which must be transmitted  ing on database integrity also frees LBFS from the need to

to compose the new file. worry about crash recovery. That in turn saves LBFS from
making expensive synchronous database updates. The worst
3.1.2 Pathological Cases Ao\'a\\-‘ (M)am a corrupt database can do is degrade performance.

Unfortunately, variable-sized chunks can lead to somegath
logical behavior. If every 48 bytes of a file happened to be a 3-2 Protocol

Iereakpomt, for instance, the index would be as Iarge as the.l_he LBFS protocol is based on NFS version 3 [5]. NFS
file. Worse yet, hashes of chunks sent over the wire would i
names all files by server-chosen opaque handles. Opera-

consume as much bandwidth as just sending the file. Con-; . : .
. . . ; tions on handles include reading and writing data at spe-
versely, a file might contain enormous chunks. In particular ... : o .
o . cific offsets. LBFS adds extensions to exploit inter-file eom
the Rabin fingerprint has the property that a lona extent of
) . i - . monality during reads and writes. Most NFS clients poll
zeros will never contain a breakpoint. As discussed later in
- : = . the_server on file open to check permissions ¢ and valldate
Section 3.2, LBFS transmits the contents of a chunk in the o e
. . . previously cached data. For recentlv accessed flles LBFS
body of an RPC message. Having arbitrary size RPC mes- —
saves this round trip by addlng leases to the protocol. lgnlik
sages would be somewhat inconvenient, since most RPC i~
many NFS clients, LBFS also practices aggressive pipelin-
braries hold messages in memory to unmarshal them.
To avoid the patholodical cases. LBES imposes a mini ing of RPC calls to tolerate network latency. The system
mum and maxinrw)um chgnk size_T,I minimurr)n chunk size uses an asynchronous RPC library that efficiently supports
- S large numbers of simultaneously outstanding RPCs. Finally

'.S~——2K' Any 48-byte region hashing o a magic value in the LBFS compresses all RPC traffic using conventional gzip
first 2K after a breakpoint does not constitute a new break- compression

point. The maximum chunk size is 64K. If the file con-
tents does not produce a breakpoint every 64K, LBFS will \
artificially insert chunk boundaries. Such artificial sugr ~ 3.2.1  File Consistency ke Veages P“? g

sion and creation of breakpoints can disrupt the synchasniz

tion of file chunks between versions of a file. The risk, if The LBFS client currently performs whole file caching
this occurs, is that LBFS will perform no better than an or- (though in the future we would like to cache only portions
dinary file system. Fortunately, synchronization problems ©f very large files). When a user opens a file, if the file is not
most often result from stylized files—for instance a long run in the local cache or the cached version is not up to date, the
of zeros, or a few repeated sequences none of which has #lient fetches a new version from the server. When a process
breakpoint—and such files do well under conventional com- that has written a file closes it, the client writes the datkba
pression. Since all LBFS RPC traffic gets conventionally o the server.

compressed, pathological cases do not necessarily transla LBFS uses a three-tiered scheme to determine if a file is

into slow file access. up to date. Whenever a client makes any RPC on a filgi
LBFS, it gets back a read lease on the file. The lease TS a
3.1.3 Chunk Database commitment on the part of the server to notify the client of

any modifications made to that file during the term of the

LBFS uses a database to identify and locate duplicate datdease (by default one minute, though the duration is server-
chunks. It indexes each chunk by the first 64 bits of configurable). When a user opens a file, if the lease on the
its SHA-1 hash. The database maps these 64-bit keys tdfile has not expired and the version of the file in cache is up
_(file, offset count_triples. This mapping must be updated to date (meaning the server also has the same version), then
whenever a file is modified. Keeping such a database in syncthe open succeeds immediately with no messages sent to the
with the file system could potentially incur significant over  server. _
head. Moreover, if files exported through LBFS are modi-  If a user opens a file and the lease on the file has__exp@,
fied by other means—for instance by a local process on thethen the client asks the server for the attributes of the file.
server—LBFS cannot prevent them from growing inconsis- This request implicitly grants the client a lease on the file.
tent with the database. Even on the client side, an inoppor-When the client gets the attributes, if the modification and
tune crash could potentially corrupt the contents of th& dis inode change times are the same as when the file was stored
cache. in the cache, then the client uses the version in the cache

To avoid synchronization problems, I BES never relies on with no further communication to the server. Finally, if the

\fw\l( he correctness of the chunk database. It recomputes thdile times have ch .thenth cllewth.w

h of any data ¢ fore using |t to reconstruct contents from the server

6'-\'\4'\;\\;;\./ 1;3 E‘)x



Client Server
File not in cache
Send GETHASH

Break up file into chunks, @offset+cou

Return data associated with shal
Return data associated with sha2

Put shal in database
_ fe/I
Put sha2 in database ﬁeJ
File reconstructed. return to user

Figure 2: Reading a file using LBFS

\r?ll

Because LBFS only provides close-to-open consist ncy,.athan 1,024 chunks, the client must issue multiple GETHASH
modified file does not need to be written back to the servercalls and may incur multiple round trips. However, network
until it is closed. Thus, LBFS does not need write leases en latency can be overlapped with transmission and disk 1/O.
files—the server never demands back a dirty file. Morjéver o
When files are written back, they are committed atomically.
Thus, if a client crashes or is cut from the network while 323 File Writes
writing a file, the file will not get corrupted or locked—other  File writes proceed somewhat differently in LBFS from
clients will simply continue to see the old version. When NFS. While NFS updates files at the server incrementally
multiple processes on the same client have the same file operwith each write, LBFS updates them atomically at close
for writing, LBFS writes data back whenever any of the pro- time. There are several reasons for using atomic updates.
cess closes the file._If multiple clients are writing the same Most importantly, the previous version of a file often has
file. then the last one to close the file will win and over- many chunks in common with the current version. Keeping
write changes from the others. These semantics are similarthe old version around helps LBFS exploit the commonal-
to those of AFS. 6 <ou Dot Wave [odks ) Yl bss ity. Second, LBFS's file reconstruction pr_otocol can signif

b Vo sba, icantly alter the order of er_tes toa flle. Files being yvmtte

3.2.2 File Reads g C\O\ f‘-’f‘ back may have confusing intermediary states (for instance

7 Cocne (J\;\ermq s . an ASCII file might temporarily contain blocks of 0s). Fi-
File reads in LBES make use of ope RPC procedure not in nally, atomic updates limit the potential damage of simulta
the NFS protocol, GETHASH. neous writes from different clients. Since two clients uagt

GETHASH retrieves the hashes of data chunks in a file, the same file do not see each other’s updates, simultaneously
so as to identify any chunks that already exist in the cleent’ changing the same file is a bad idea. When this does occur,
cache. GETHASH takes the same arguments as a READhowever. atomic updates at least ensure that the resuléng fi
RPC, namely a file handle, offset, and size (though in contains the coherent contents written by one of the e clieits
practice the size is always the maximum possible, becauserather than a mishmash of both versions.
the client practices whole file operations). Instead of re-  LBFS uses temporary files to implement atomic updates.
turning file data, however, GETHASH returns a vector of The server first creates a unique teW yfllevvrlle\:\the
(SHA-1 hash, size) pairs. temparary file, and only thén atomically ¢ or@is_th_e C(:‘?ﬁ

Figure 2 shows the use of GETHASH. When download- tents to the real file being updated. While writing the tem
ing a file not in its cache, the client first calls GETHASH to rary file, LBFS uses chunks of existing files to save bag@
obtain hashes of the file’'s chunks. Then, for any chunks not width where possible. Four RPCs implement this upd
already in its cache, the client issues regular READ RPCs. protocol: MKTMPFILE, TMPWRITE, CONDWRITE, and
waed downloading a file COMMITTMP. " (L, Need Y Lhian rea) ot )e)
incurs two network-round trip times plus the ~ MKTMPFILE createsLtemporary file for later uLel an ey
cost ofdownloadlrmwme For files larger atomic update. MKTMPFILE takes two arguments: fllﬁp(—‘ 4
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Server has sha3

Server has everything, commit
Put sha2 into database

write data into tmp file

No error, copy data from tmp file
into target file
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File closed. return to user

Figure 3: Writing a file using LBFS

the file handle of the file that will eventually be atomically temporary file and updates the chunk database to reflect the
updated, and second, a client-chosen “file descriptortfert file’'s new contents. Since LBFS uses TCP, RPCs are deliv-
temporary file. After receiving the call, the server creates ered in order. Thus, the client can pipeline a COMMITTMP
temporary file in the same file system as the specified handleoperation behind TMPWRITE RPCs.

and keeps a mapping from the per-client file descriptor tothe  Figure 3 shows the file write protocol in action. When
temporary file. Because clients choose the descriptors fora user closes a file that the client must write back, the
temporary files, they can pipeline operations on temporary client picks a file descriptor and issues a MKTMPFILE RPC
files before the MKTMPFILE RPC returns. with the handle of the closed file. In response, the server

TMPWRITE is similar to a WRITE RPC. The only dif-  Creatés a temporary file handle and maps it to the speci-
ference is the that a client-chosen temporary file desaripto fied file descriptor. The client then makes CONDWRITE
replaces the NFS file handle in the arguments. An LBFS RPCs for all data chunks in the file it is writing back.

client sends TMPWRITEs instead of WRITES to update a FOr any CONDWRITEs returning HASHNOTFOUND, the
file created with MKTMPEILE. client also issues TMPWRITE calls. Finally, the client issue

is simil h a COMMITTMP.

CONDWRITE IS simuiar to_ a TMPWRITE RPC. The ar- __Pipelining of writes occurs in two stages. First, the client
guments contain a file dgscrlptor, offset, and length. btste /pipeiines a series of CONDWRITE requests behind a MK-
of the actual data to write, however, CONDWRITE argy” Ty\pg £ RPC. Second, as the CONDWRITE replies come
ments contain a S.HA'l hash of the data. If th? SErver £anyack, the client turns around and issues TMPWRITE RPCs
find the data specified by the hash somewhere in its file S-for any HASHNOTFOUND responses. It pipelines the

tem, it writes the data to the temporary file at the specifiet ~~yvTTMP immediately behind the last TMPWRITE
offset. If it cannot find the data, t{ut the request would cther he communication overhead is therefore generally t\'No

wise hava;gmﬂg‘_?g’ CIONDDWRlTE retums the special er- round trip latencies, plus the transmission times of the RPC
ror code HASHNOTEOUND. For large files, the client has a maximum limit on the num-

COMMITTMP _commits the contents of a temporary file ber of outstanding CONDWRITE and TMPWRITE calls so
to a permanentfile if no error has occurred. It takes two argu- as not to spend too much time sending calls when it can pro-
ments, a file descriptor for the temporary file, and a file han- cess replies. However, the extra network round trips will
dle for the permanent file. For each temporary file descrip- generally overlap with the transmission time of RPC callls.
tor, the server keeps track of any errors other than HASH-
NOTFOUND that have occured during CONDWRITE and
TMPWRITE RPCs. If any error has occurred on the file de-
scriptor (e.g., disk full), COMMITTMP fails. Otherwise,eh Because LBFS performs well over a wider range of net-
server replaces the contents of the target file with thatef th_works than most file systems. the protocol must resist a

3.2.4 Security Considerations
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Figure 4: Overview of the LBFS implementation.

wider range of attacks. LBFS uses the security infrastruc- mented using the B-tree from SleepyCat software’s Berke-
ture from SFS [16]. Every server has a public key, which leyDB package. Since LBFS never relies on chunk database
the client administrator specifies on the command line when correctness, it also does not concern itself with crashweco
mounting the server. In the future, we intend to embed pub- erability. LBFS avoids any synchronous database updates,
lic keys in pathnames as SFS does and to integrate LBFSand the server always replies to clients before inserting ne
into SFS’s auto-mounting system so that unprivileged userschunks in its database. If the database loses a few hashes,
on clients can access any server. The entire LBFS proto-clients will simply use more bandwidth until the database
col, RPC headers and all, is passed through gzip compres-comes back up to date. There is a utilitizdb, which builds
sion, tagged with a message authentication code, and thera file system’s database from scratch. However, if an LBFS
encrypted. At mount time, the client and server negotiate a server is run without a database, the server S|mply crdaazest
session key, the server authenticates itself to the uséthan  database and populates it as users access files.

user authenticates herself to the client, all using puli k The one database operation on the critical path for clients
cryptography. is the lookup done as part of a CONDWRITE RPC. " How-

Finally, we note that LBFS may raise some non-network ever, for all but the smallest files, CONDWRITEs are
security issues. When several users share the same file syspipelined deeply enough to overlap database lookups with
tem, LBFS could leak information about files a user is not the transmission of any write data not found in the chunk
allowed to read. Specifically, through careful use of COND- index. For 8 KByte or smaller files, LBFS avoids COND-
WRITE, a user can check whether the file system contains aWRITEs and simply writes the files directly to the ser
particular chunk of data, even if the data resides in a read-a single RPC. The overhead of multiple round trip fi
protected file. Though CONDWRITE will fail on chunks the overshadows any potential bandwidth savings on suc
user cannot read, subtle timing differences may still let th files. \
user infer that the database contained the hash of the chunk. ke LHOI"% " Vs (b_e&f
Nonetheless, LBFS should provide more than ad_equate secuz 2  Server Implementation
rity for most purposes, particularly given how widely users
accept file systems that do not even encrypt network traffic. Our main goal for the LBFS server implementation, other

than saving bandwidth and providing acceptable perfor-
4 Implementation mance, was to_build a svstem that could unobtrusively be

installed on an already running file system. This both iso-
Figure 4 shows the architecture of the LBFS implementa- lates LBFS’s benefits from physical file system layout and
tion. Both the client and server run at user-level. The ¢tlien lets users take immediate advantage of LBFS on existing
implements the file system usinds, a device driver bun-  files without dedicatina a disk or partition to it.
dled with the ARLA [24] file system. The server accesses The LBFS server accesses the file system by pretending to
files through NFS. The client and server communicate over be_qn_l\llfﬁ client, effectively translating LBFS requests jpt,o
TCP, using Sun RPC. We used the asynchronous RPC li-NFS. Building the LBFS server as an NFS client lets L BFS
brary from the SFS toolkit [15] both for the server's NFS serve any file system for which an NFS server exists, Wh\mh(_\L
client and for LBFS client—-server communication. The RPC includes most file systems on most Unix operating systems.
library already had support for authenticating and enerypt  Of course, the server might alternatively have been imple-
ing traffic between a client and server. We added support for mented using regular system calls to access the file system.

compression. However, NFS offers several advantages over the tradltiona
system call interface. First, it simplifies the implemeiutat
4.1 Chunk Index since the LBFS protocol is based on NFS. Second, NFS

saved the LBFS server from the need to implement access
The LBFS cIient and server both maintain chunk indexes control. The server simply maps LBFS requests to user IDs

cal cache. The two share the same mdexmg code imple-the NFS server decide whether or not to grant access Fi-




nally, NFS allows the chunk index to be more resilient to 4.3 Client Implementation
\\\NL« j:routside file system changes. When a file is renamed, its NFS

file handle remains the same and thus the chunk index does[The LBFS client uses thefs device driver. xfs lets user-
not need to be updated. evel programs implement a file system by passing messages

) to the kernel through a device node/dev. We chosexfs
The LBFS server creates a “trash directorylbfs.

; ! ! , for its suitability to whole-file caching. The driver notigie
trash, in the root directory of every file system it exports. he | BES client whenever it needs the contents of a file a
The trash directory contains.temporary files created by MK- | \cer has opened, or whenever a file is closed and must be
TMPFILE RPCs. As explained below, after a COMMIT- |y yitten back to the server. The LBFS client is responsibie fo
TMP RPC, the LBFS server does not delete the committed ¢e(ching remote files and storing them in the local cache. It
temporary file. Rather, if space is needed. it garbage-aslle
random file in the trash directory. A background thread

purges the database of pointers to deleted files.

informs xfs of the bindings between files users have opened
and files in the local cachefs then satisfies read and write
requests directly from the cache, without the need to ctil in
user-level code each time.

4.2.1 Static i-number Problem 5 Evaluation

L . . This section evaluates LBFS using several experiments.
The one major disadvantage to using NFS is the lack of low- First, we examine the behavior of LBES's content-based

level control over file system data structures. In particula breakpoint chunking on static file sets. Next, we measure

YA Unix file system semantics dictate that a file's i-number not y, o o gigith consumption and network utilization of LBFS
change when the file is overwritten. Thus, when the server

. L under several common workloads and compare it to that of
commits aterriporary file to a target file, it has to copy the

fth fil h il her th CIFS, NFS version 3 and AFS. Finally, we show that LBFS
cpnt(?nts of the tvimporary re oplto_t c talrget e rather than 5, improve end-to-end application performance when com-
simply rename the temporary file into place, so as to pre- pared with AFS, CIFS, and NFS.

serve _the target filg’s i-number. Not only is this gratuilgus m&é conducted on identical 1.4 GHz
inefficient, put during the copy other cllents_ cannot access j o computers, each with 256 MBytes of RAM and a

\ /the target file. Worse yet, a server crash will leave the file 7 554 ppp, g 9 ms Seagate ST320414A IDE drive. The IDE
in an inconsistent state (though the client will restartfilee d,rives are élower than common SCSI drives, which penal-
transfer after the COMMIT fails). izes LBFS for performing more disk operations than other

A related problem occurs with file truncation. Applica- file systems. Except where otherwise noted, all file system

tions often truncate files and then immediately overwrite clients ran on OpenBSD 2.9 and servers on FreeBSD 4.3.
them with similar versions. Thus, LBFS would benefit from The AFS client was the version of ARLA bundled with
having the previous contents of a truncated file when recon-Bsp, configured with a 512 MByte cache. The AFS server
structing the new contents. The obvious solution is to move was openafs 1.1.1 running on Linux 2.4.3. For the Mi-
tW$E@@MHd replace therh wit crosoft Word experiments, we ran Office 2000 on a 900 MHz
new, zero-length files. Unfortunately, the NFS interfack wi  |BM ThinkPad T22 laptop with 256 MBytes of RAM, Win-
not let the server do this without changing the truncatetfile dows 98, and openafs 1.1.1 with a 400 MByte cache.
i-number. To avoid losing the contents of trucated filesnthe  The clients and servers in our experiments were connected
LBFS delays the deletion of temporary files after COMMIT-  py full-duplex 100 Mbit Ethernet through the Click [11]
TMP RPCs. Thus, many truncated files will still have copies modular router, which can be configured to measure traffic
in the trash directory, and new versions can be recondlitute gnd impose bandwidth limitations, delay, and loss. Click ra
from those copies. on a Linux 2.2.18 Athlon machine.

It is worth noting that the static i-number problem could
be solved given a file system pperation that truncates dfile g 1 Repeated Data in Files
to zero length and then atomically replaces the contents of a
second fileB with the previous contents of. We can even  LBFS’s content-based breakpoint chunking scheme reduces
afford to lose the original contents of after an inoppor-  bandwidth only if different files or versions of the same file
tune crash. In the case of COMMITTMP, the lost data will share common data. Fortunately, this occurs relatively fre
be resent by the client. Such a “truncate and update” opera-quently in practice. Table 1 summarizes the amount of com-
tion would be efficient and easy to implement for most Unix monality found between various files.
physical file system layouts. It might in other situations/se We examined emacs to see how much commonality there
as a more efficient alternative to the rename operation foris between files under a software development workload.
atomically updating files. Unfortunately, the current LBFS The emacs 20.7 source tree is 52.1 MBytes. However, if
server must make do without such an operation. a client already has source for emacs 20.6 in its cache, it




ijé one. Between emacs-20.6 and 20.7, the two executables
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Data Given Datasize Newdata Overlap < g—
emacs 20.7 source emacs 20.6 521 MB 126 MB 76%¢ Q
Build tree of emacs 20.7 — 202MB  12.5MB, % © Q‘é
emacs 20.7 + printf executable emacs 20.7 6.4 MB 2. 9?/“39 8506 +
emacs 20.7 executable emacs 20.6 6.4 MB 5.1 MB 21%»3 \
Installation of emacs 20.7 emacs 20.6 43.8MB 16.9MB 1"/@) <
Elisp doc. + new page original postscript 4.1 MB 0.4 MB 90% | Q
MSWord doc. + edits original MSWord 1.4 MB 0.4 MB 68% )
Table 1: Amount of new data in a file or directory, given an older verson. _%:%

only needs to download 12.6 MBytes to reconstitute the
20.7 source tree—a 76% savings. An_emacs 20.7 build
e_consumes 20.2 tes of disk space, but only con-
tains 12.5 MBytes of unigue chunks. Thus, writing a build
tree, LBFS will save 38% even if the server starts with an
empty chunk database. When adding a debugging printf to
emacs 20.7 and recompiling, changing the size of the exe-
cutable, the new binary has 55% in common with the old

Number of chunks

ave 21% commonality. A full emacs 20.7 installation con-

mes 43.8 MBytes. However, 61% of this would not need o 1 20 30 40 50 "0
to be transferred to a client that already had emacs 20.6 in it Chunk size (KBytes)
cache. Figure 5: Distribution of chunk sizes in the /usr/local

We also examined two document preparation workloads. database. X-axis represents chunk sizes, in KBytes. Y-axis
When adding a page to the front of the emacs lisp manual, shows the number of chunks having that size.
the new postscript file had 90% in common with the previ-

ous one. Unfortunately, if we added two pages, it changed Exp chunk size| % of data in shared chunks

the page numbering for more than the first chapter, and the 24 B window | 48 B window
commonality disappeared. From this we conclude that LBFS 2KB 21.33% 21.30% \l/ N n
is suitable for postscript document previewing—for ins&anc 4 KB 19.29% 19.65%

tuning a BX document to get an equation to look right— 8 KB 17.01% 18.01%

but that between substantial revisions of a document there
will be little commonality (unless the pages are numbered Table 2: Percentage of bytes in shared chunks iffusr/local
by chapter). We also used Microsoft Word to sprinkle refer- for various chunk and window sizes. Minimum chunk size was
ences to LBFS in a paper about Windows 2000 disk perfor- always1/4 the expected chunk size.

mance, and found that the new version had 68% overlap with

the original.
To investigate the behavior of LBFS’s chunking algorithm, boundary).
we ranmkdbon the server'gusr/local directory, using an Table 2 shows the amount of data /sr/local that
8 KByte chunk size-and 48-byte moving windowusr/ appears in shared chunks for various expected chunk sizes
loca ame tes of data in 10,702 fileskdb ~ and breakpoint window sizes. As expected. smaller chunks

broke the files into 42,466 chunks. 6% of the chunks ap- yield somewhat greater commonality, as smaller common

nks. 6% of the chunk
peared in 2 or more files. The generated database consumeg_e_ngMn_e isolated. However, the in-
s of space, or 1.3% the size of the directory. It creased cost of GETHASH and CONDWRITE traffic asso-

ninutes to generate the database. F|gure 5 Showé:iated with smaller chunks OUtWeighed the increased band-

. the distribution of chunk sizes. The median is 5.8K, and Width savings in tests we performed. Window size does not

the mean 8.570 bytes, close to the expected value of 8,240aPpear to have a large effect on commonality.

bytes. 11,379 breakpoints were suppressed by the 2K mini-

mum chunk size requirement, while 75 breakpoints were in- 5 2 practical Workloads

serted because of the 64K maximum chunk size limit. Note

that the database does contain chunks shorter than 2K. Thes@/e use three workloads to evaluate LBFS’s ability to re-

chunks come from files that are shorter than 2K and from the duce bandwidth. In the first workload, MSWord, we open

ends of larger files (since an end of file is always a chunk_a 1.4 MByte Microsoft Word document, make the same ed-
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Server — Client

its as for Table 1. then measure the cost to save and close thgty between object files created by the benchmark and ones
file.l For the second workload. gcc, we simply recompile [in the server’s trash directory. To isolate this benefit, \ge a

emacs 20.7 from source. The third workload, involves measured a compilation of emacs when the LBFS server was
making a series of changes to the perl 5.6.0 so source tree tcstarted with a new database not containing chunks from any

transform it into perl 5.6.1. Using thexpect language, we  previous COmpiies.

scripted thesd text editor based on the output@fff. The Because of a bug irxpect on OpenBSD, we used a
benchmark saves files after after text msertlon operations iethe FreeBSD client for all mstances of thel benchmark Like
creates auto-save files every 300 characters typed. ) Thesé#o a server that had not previously seen the output files. We
workloads reflect the common activities of document editing also raned over anssh remote login connection, to compare
and software development. using a distributed file system to running a text editor re-

We ran each benchmark over the client's native network motely. To si te some type-ahead, the benchmark sends
file system—CIFS for Windows and NFS UDP for Ufix. oneli ime and waits for the line to ech'&.[@

We also ran all three benchmarks over AFS. To isolate
the benefits of exploiting file commonality, we additionally 53 Bandwidth Utilization
measured a “Leases+Gzip” file system that uses LBFS's file
caching, leases, and data compression, but not its chunking-igure 6 shows the bandwidth consumed by the client writ-
scheme. Finally, we ran the three workloads over LBFS.  ing to and reading from the server under each of the th

For the MSWord benchmark, because LBFS only runs on Workloads. The bandwidth numbers are obtained from byte y
Unix, we ran a Samba server on the OpenBSD | BES client, %@leﬁuter For this experiment, the route € _
re-exporting the LBFS file system with CIFS. We saved the did not impose any delay, loss, or bandwidth limitations. -
Word document from the Windows 98 client to the Samba (ttcp reported TCP throughput of 89 Mbit/sec between the
server over 100 Mbit Ethernet, and measured the traffic go- client and server, anging reported a round-trip time of
ing through the Click router between the Samba server and0.2 ms.) In each case, we separately report first the upstream
the LBFS server. All MSWord experiments were conducted traffic from client to server, then the downstream traffiaiiro
with a warm cache; the original files had been written on the Server to client. The numbers are normalized to the upstream
same client through the file system under test. However, the(client to server) bandwidth of the native file system, CIFS

L'BFS server did not have output files from previous runs of on Windows and NFS on Unix.
the benchmark in its database. Because AFS, Leases+Gzip, and LBFS all have large, on-

For the gce benchmark, the emacs sources had been undiSk cacl 1es, all three systems reduce the amount of down-
packed through the file system under test. Emacs had alsgtream bandwidth from server to client when compared to the

previously been compiled on the same file system. The in- native file systems. For upstream bandwidth, the drops from
tent was to to simulate what hﬁg&e_nq_md]_pﬂgne_ mogifies a | and NFS bandwidth to AFS bandwidth represent sav-

header file that requires an entire project to be recompiled. !29s gained from deferring writes to close time and eliding
Though two successive compilations of emacs do not pro- Overwrites of the same data. The drops from AFS bandwidih__
duce the same executable, there was substantial commonal® Leases+Gzip bandwidth represent savings from com{res-
1We did not enable Word’s “fast saves” feature, as it neitkeeiuced sion. Flna"y' the dl’OpS from Leases+GZ|p bandWIdtth \0_9'5@,[
LBFS bandwidth represent savings gained from the chunk-
write bandwidth nor improved running time.

2NFS TCP performs worse than NFS UDP, probably because it as no INg Scheme. _ .
been as extensively tested and tuned. For the MSWord workload, the savings provided by the
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chunking scheme come not only from commonality between 5.4 Application Performance ¢ 2 ms Q7T
the old and new versions of the document, but also from _. . .
commonality with large temporary files that Word creates Figure 7a shows the normalized ed-to-end applicat
during saves. LBFS is able to reduce the upstream band-formance of the three yvorkloadsted.cable
width by 15 times over Leases+Gzip, 16 times over AFS, and dem link, \,N'th L%?W%@ﬁq
20 times over CIES. More careful analysis feveals that the SErVer t0 clu?it,_xaél’#blt/sec upstream bandwidth fronmlig
Unix Samba server closes then reopens temporary files, relC Server, and 30 s of rourmd-trip Tatency. The execution
quiring them to be transferred multiple times. These miglti times are normalized against CIFS or NFS results. qu com-
transfers largely negate the benefits of gzip compressfom inParison, we also show the execution times of the native file

Leases+Gzip. in contrast, LBFS exploits the files’ common SYStém on a 100 Mbit/sec full-duplex LAN.
contents from one close to the next, consuming very little For the MSWord workload, LBES was able to reduce

unnecessary traffic. AFS uses only slightly more bore band- 1€_execution times from a potentially unusable 101 sec-
width than Leases+Gzip, either because the extra closes ar@nds With CIFS to a much more tolerable 16 seconds, more
an artifact of the Unix Samba server, or perhaps because thdhan 6 times faster. In fact. AFS takes 16 seconds to run
Windows AFS implementation performs partial file caching. the-henchmark on-a LAN, though CIFS takes only 6 sec-
) ) onds. The gcc workload took 113 seconds under LBFS with
For the gcc benchmark, the savings provided by the 4 hopylated database, 1.7 times faster than Leases+Gzip, 4
chunking scheme come from the fact that many of the COM- times faster than AFS, almost 12 times faster than NFS,
piled object files, libraries, and executables are similar 0 5,4 18% faster than NFS on a LAN. With a ne ver
identical to files in the server’s trash directory. Chunks/on database, LBFS still reduces the execution time by 6% oyer
need to be written to the server where object files differ or Leases+Gzip, though it is 32% slower than NFS on a )
files have been evicted from the trash directory. In this case  £or both the MSWord and gcc workloads, Figure 7b shows
LBFS was able to reduce the upstream bandwidth by 155¢ | BFS reduces network utilization, or the percentage of
times over Leases+Gzip, 46 times over AFS, and more thangjjapje bandwidth used by the file system. Over LBFS,
64 times over NES. Even without the bembje_ct acc used only used only 9.5% of the 384 Kbit per second up-
files in the database, LBFS still reduces upstream bandwidthgiraam link. In contrast, gcc under NFS used 68% and under

utilization because many object files, libraries, and et®cu  AFs ysed 96%. For the MSWord benchmarks, LBFS was
bles share common data. When started with a new and eémpty;pje 1o reduce the upstream network utilization from 87%
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chunk database, LBFS still u % less upstream band-nqg 969 with AFS and CIFS to 29%.
width than Leases+Gzip. Figure 8 examines the effects of available network band-

In the ed case, the savings provided by the chunking width on the performance of the gcc workload over LBFS,
scheme come from writing versions of files that share com- Leases+Gzip, and AFS. In these experiments. the simulated
mon chunks with older revisions. LBFS was able to reduce network has a fixed round trip time of 10 ms. This graph
the upstream bandwidth by more than a factor of 2 over shows that LBFS is least affected by a reduction in avail-
Leases+Gzip and 8 over AFS and NFS. able network bandwidth, because LBFS reduces the read and
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Figure 8: Performance of the gcc workload over various band- Figure 10: Performance of a shortenedd benchmark over var-
widths with a fixed round-trip time of 10 ms. ious loss rates, on a network with fixed 1.5 Mbit/sec symmetric
links and a fixed round-trip time of 10 ms.
400 F ©AFS o+ ]
350 | Leasest%ﬁ'sp . simulated packet loss, comparing the performance of the net
N % 300 |- 1 work file systems with thesh remote login program.

. £ 250 — = Figure 10 compares file systemssteh under various loss_
M“) mere 5 200 o 1 rates. With no packet losssh is slower than any file sy3
Sensifie g 150 e tem, but the difference would not affect performance at the

T W o100 f_g— - rate users type. However, as the loss rate increases, delays
to & %0 | ] are imposed by TCP’s backoff mechanism._#sh never
VS oualwda’ . has more than a few packets in flight. every lost packet puts
20 40 60 80 100 TCP into backoff. imposing a delay of ane or more seconds
Round trip time (ms) while the user waifs fer tyned characters to echo. The file

systems outperfornssh for several reasons. First, LBFS
and Leases+Gzip experience fewer losses by sending fewer
total packets thamsh; the file systems both consume less
bandwidth and send more data per packet. Second, when file
write bandwidth required by the workload to the point where Syslems transfer_large files, TCP can gej[ four or more pack-
CPU and network latency, not bandwidth, become the limit- ets in flight, allowing it to recoverirom a single loss wittsta
ing factors ' ' retransmission and avoid backoff. AFS uses UDP rather than
Figure 9 examines the effects of network latency on LBFS TCP, and does not appear to reduce its sending rate as precip-

Leases+Gzip, and AFS performance. In these experiments,'ftoorutilg EI‘:']JSF elgittize }cﬁiﬁigfbrc)aiil:}er\tqgoris.it\gi c;onc;ludeglhat
the simulated network has symmetric 1.5 Mbit per second 9 » 1L 1S ar pretee

links. Although the gcc workload uses more bandwidth over to use a network file system then to run an editor remotely.

Leases+Gzip, the performance of the workload over LBFS

and Leases+Gzip are roughly the same because the availg Summary

able network bandwidth is high enough. On the other hand,

because gcc over AFS uses significantly more bandwidth, LBFS is a network file system that saves bandwidth by taking

it performs worse than both LBFS and Leases+Gzip. This advantage of commonality between files. LBFS breaks files

graph shows that the execution time of the gcc workload de- into chunks based on contents, using the value of a hash func-

grades similarly on all three file systems as latency ing®as tion on small regions of the file to determine chunk bound-
Figure 7a also shows LBFS'’s performance on #ie aries. It indexes file chunks by their hash values, and subse-

benchmark, a 6% improvement over Leases+Gzip, 67% overquently looks up chunks to reconstruct files that contain the

AFS, and 83% over NFS. However, execution time is not same data without sending that data over the network.

the best measure of performance for interactive workloads. Under common operations such as editing documents and

Users care about delays of over a second, but cannot differ-compiling software, LBFS can consume over an order of

entiate much smaller ones that nonetheless affect the rundmagnitude less bandwidth than traditional file systemshSuc

time of a scripted benchmark. Long delays are most often a dramatic savings in bandwidth makes LBFS practical for

caused hy TCP entering the backoff state. We therefore ran asituations where other file systems cannot be used. In many

shortened version of thed benchmark over a network with  situations, LBFS makes transparent remote file access a vi-

Figure 9: Performance of the gcc workload over a range of
round-trip times with fixed 1.5 Mbit/sec symmetric links.

N {Q éb -T-u\e_"s( &.\#EC\/:\M(‘M‘T;S 29 76‘0\‘(8 (X_,o ;\/\-‘)LJ a-:?(-{]dt J(o UAO\W,‘QF:“



'%::EU[QU SJY\'& (l/\

able and less frustrating alternative to running intevacti
programs on remote machines.
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