
EXPLOITING
NATIVE
CLIENT

- BEN HAWKES

hacking at random 2009

THE INTRODUCTION

• ben

THE INTRODUCTION

• ben

• + mark

THE INTRODUCTION

• ben

• + mark

• = beached as

THE INTRODUCTION

“Native Client is an open-source research technology for running x86 native code in web

applications, with the goal of maintaining the browser neutrality, OS portability, and safety
that people expect from web apps.”

THE INTRODUCTION

“Native Client is an open-source research technology for running x86 native code in web

applications, with the goal of maintaining the browser neutrality, OS portability, and safety
that people expect from web apps.”

• x86 code delivered to client browser from remote server (web app)

• this code must work on any browser on any OS

• and be run in such a way that is “secure”

THE INTRODUCTION

Schedule:

• technical kung-fu

• some speculative corporate analysis

• parting remarks + questions/discussion

TECH

THE GOAL

Motivation:

break the native client security model

THE GOAL

Motivation:

break the native client security model

but what is the security model?

THE METHOD

The Common Sense Methodology:

- understand the design

- understand the code

- audit

- test

- audit

- test

- ….

NATIVE CLIENT TECHNOLOGY

NATIVE CLIENT TECHNOLOGY

HOW STUFF WORKS

1. Disassemble binary, invalidate (exit!) on “dangerous” instructions

2. Invalidate on instructions straddling blocks (i.e. block unaligned)

3. For indirect branches, ensure block alignment primitive used on target

4. Record list of properly aligned “valid” branch targets

5. Restart disassembly from start to check all branches hit valid targets

HOW STUFF REALLY WORKS

The validator comes down to this:

- if your instructions are good

- and you branch to instructions

then its all good mate

INITIAL ATTACKS

An initial attack surface:

- browser plugin

- binary loader

- nexe validator

- runtime services

CODE

Native client is C/C++

this is essentially required

“its like 1999”

CODE

Native client is C/C++

this is essentially required

“its like 1999”

DEMONSTRATION!

Beached As founds bugs in:

- validator

- syscall

- imc

- browser plugin

THE BUGS

1

SRPC Shared Memory Infoleak /

Memory Corruption

browser plugin integer overflow

visit a website ------->

arbitrary code execution in your browser

2

SRPC Type Confusion Memory

Corruption Attack

plugin compromise

classic dowd

...

3

2-byte Jump Operand Prefix

Vulnerability

validator disassembler logic flaw

i386 instruction prefixes

“modify” instruction that follows

3

Nacl validator checked prefix for 1-byte
branches

3

Nacl validator checked prefix for 1-byte
branches

… but there exist 2-byte branches

3

Nacl validator checked prefix for 1-byte
branches

… but there exist 2-byte branches

“conditional jumps”

modify code segment of a jCC

= jump anywhere into service runtime!

4

Direction Flag Sandbox Bypass

validator logic flaw …

leads to mem corruption in service runtime

code exec in runtime process!

4

EFLAGS register = flags (mostly status)

Contains a direction flag (DF)

– can set from inside inner sandbox

– but is NOT cleared when nexe trampolines
to service runtime ...

4

Welcome to the Bizarro World

That memcpy you thought was going
forwards?

Not so much.

4

Welcome to the Bizarro World

That memcpy you thought was going
forwards?

Not so much.

“setting the DF flag causes string
instructions to auto-decrement”

5

Native Client Memory Unmapping

Vulnerability

runtime services fail

syscalls

- munmap

- mmap

5

Native Client Memory Unmapping

Vulnerability

runtime services fail

syscalls

- munmap

- mmap

WHAT ELSE?

• ELF is hard; loader bugs

• Side channels.. I guess

• CPU erratta

Remote hardware exploits

• Inter-module exploitation

questions?

Q?

Q? Q?

THE HARD STUFF ($)

REALITY

I have a question.

Can native client win?

REALITY

I have a question.

Can native client win?

Technically, commercially

TARGET

Confused target audience?

Not with Chrome OS

Chrome OS = context for everything

THE COMPETITION

Microsoft’s Steve Ballmer on Chrome OS:

"The last time I checked you don't need two
client operating systems.”

“There’s good data that actually says about
50% of the time someone is on their PC they’re
not doing something in the web browser”

THE COMPETITION

CONCLUSION:

google should be very worried about

amazon

TECH = $

Technical limitations:

no 64-bit (do you care?)

slightly decreased performance

* we will find more bugs *

TECH = $

API/syscall “outer sandbox” limitations

What is an NEXE allowed to do?

Not much? No killer apps.

Too much? No security.

TECH = $

“The inability to deliver a secure
implementation is an architectural flaw.”

- Dave Aitel, Immunity kingpin

Everyone welcome Native Client to the
“Advisory Treadmill”.

THE TARGET

Beware of alienating target audience
with security considerations

Google Omaha ++

Defense in depth is REQUIRED

THE POINT

Everyone has the “implementation
problem”

The inner sandbox is not yet broken

Native Client + Chrome OS “makes
sense”

sshhh.. someone might hear

ok, this is my tentative endorsement that, yes, native client could actually win ***

*** but only if they lock tavis ormandy in a room for a year or two

… and im worried about that outer sandbox, so er, you should be too

THE END

thanks

twitter.com/benhawkes

