hacking at random 2009

EXPLOITING
NATIVE
CLIENT

- BEN HAWKES

THE INTRODUCTION

* ben

THE INTRODUCTION

* ben
e + mark

HAR2003 » Hacking at Ra... » / ﬁ The Google Code Blog: A, +

&=

C | 9% http://google-code-updates.blogspot.com/2009/02/announcing-native-client-security.htm [2

GOUSIG

Code

Wednesday, February 25, 2009

At T
Client Team

i ST JL [P
By Henry Bridge, Native

Exploits, bugs, vulnerabilities, security holes - for most programmers these terms are synonymaous with fire
drills and coding all-nighters. However, for the next 10 weeks, the Mative Client team is inviting you to bring
them on! We're challenging you to find security exploits in Mative Client. Sign up today for the Native Client

5 2 o e x
Security Contest. you could win up to $2'% | as well as recognition from renowned security researchers.

Before getting started, you must complete the registration process for yourself or your team. Then, you can

grab the latest build of Native Client, attack it to find security holes, and submit the ones you discover. You

get credit for bugs that your team reports first. If another contestant submits a vulnerability before you, or we
publish a fix before you report it, well then_.. you'll have to keep looking!

At the end of the contest, all entries will be reviewed by a panel of academic experts, chaired by Edward
Felten of Princeton University. They will select the five eligible entries with the most high-impact bugs, and
these winners will receive cash prizes, as well as earn bragging rights. For more details, please review the
contest’'s terms and conditions

Registration is now open and the contest will run until May Sth. Sign up today to start reporting exploits as
soon as possible

Happy bug hunting!

Posted by A Googler at 3:15 AM
Labels: native client

Search

powered by Google

Archives
¥ 2009 (115)
¥ June (18)
We've Moved!
Google Technology User Groups

Google V'O Interactive Map: Mow with
videos + some...

Gmail for Mobile HTMLS Series:
Suggestions for Bet .

Another Round of Deprecation
Policies for Labs Gra...

Micholas C. Zakas: Speed Up Your
JavaScript

Google /0: Session videos on
building apps using ...

Everybody's talking: the Social track
at Google /...

Google App Engine @ I/0: Java,
offline processing....

Google /0: Reflections on the
Enterprize Track

Google Web Toolkit at Google I/O

The Developer Sandbox. now with
Video Interviews!

Tech Talk Videos from Google /O

= _—— = e

THE INTRODUCTION

* ben
e + mark
« = pbeached as

THE INTRODUCTION

“Native Client is an open-source research technology for running x86 native code in web
applications, with the goal of maintaining the browser neutrality, OS portability, and safety
that people expect from web apps.”

THE INTRODUCTION

“Native Client is an open-source research technology for running x86 native code in web
applications, with the goal of maintaining the browser neutrality, OS portability, and safety
that people expect from web apps.”

» X86 code delivered to client browser from remote server (web app)
« this code must work on any browser on any OS

« and be run in such a way that is “secure”

Definitions of insanity on the Web:

e relatively permanent disorder of the mind
wordnetweb_princeton. edu/perlfwebwn

« Traditionally, insanity, craziness or madness is the behavior
whereby a person flouts societal norms and may become a danger
to themselves and ...
en.wikipedia.org/wiki/insanity

THE INTRODUCTION

Schedule:
» technical kung-fu

* some speculative corporate analysis

» parting remarks + questions/discussion

TECH

THE GOAL

Motivation:
break the native client security model

THE GOAL

Motivation:
break the native client security model

but what is the security model?

THE METHOD

The Common Sense Methodology:
- understand the design
- understand the code
- audit
- test
- audit
- test

NATIVE CLIENT TECHNOLOGY

NATIVE CLIENT TECHNOLOGY

SERVICE RUNTIME PROCESS

untrusted i386 cs/ds/ss segment

TRAMPOLINE imc

loader

syscalls

validator

etc...

the upper text address limit
32-byte block containing I
J// BtartAddr = list of inst start address
// JumpTargets = set of walid jump targets

J/ TextLimit
// Block (IP)

// Part 1: Build StartAddr and JumpTargeis
IP = 0; icount = 0; JumpTargets = {)
while IP <= TextLimit:
if inst_is_disallowed(IP):
error "Disallowed instruction seen”
StartAddr[icount++] = IP
if inst overlaps block =ize (IP):
error "Block alignment failure"
if imst is indirect jump er call {IP):
if 'iz 2 inst nacl jmp idiom{IP} or
icounk = 2 ar
Block (StartAddr [icount—2]}) != Block(IP):
error "Bad indirect control transfer™
else
// Note that indirect jmps are inside
// a pseudoc—inst and bad jump targets
JumpTargets = JumpTargets + { IP)
// Proceed to the fall-through address
IP += InstLength(IP)

=]
7

// Part 2: Detect invalid direct transfers
for I = 0 to length(StartAddr)-1:
IFP = StartAddr|[I]
if 1psE is direct. jump ‘or call (TP} :
T = direect jump target (IP)
if not (T in [0:TextLimit}))
or not (T in JumpTargets):
error "call/jmp to invalid address"™

Figure 3: Pseudo-code for the NaCl validator.

HOW STUFF WORKS

S

. Disassemble binary, invalidate (exit!) on “dangerous” instructions

Invalidate on instructions straddling blocks (i.e. block unaligned)
For indirect branches, ensure block alignment primitive used on target

Record list of properly aligned “valid” branch targets

Restart disassembly from start to check all branches hit valid targets

HOW STUFF REALLY WORKS

The validator comes down to this:

- If your instructions are good

- and you branch to instructions

then its all good mate

INITIAL ATTACKS

An initial attack surface:

- browser plugin
- binary loader
- nexe validator
- runtime services

CODE

Native client is C/C++

this is essentially required

“Its like 1999”

CODE

Native client is C/C++

this is essentially required

“Its like 1999”

DEMONSTRATION!

THE BUGS

Beached As founds bugs in:

- validator
- syscall
- ImC

N

[- browser plugin]

SRPC Shared Memory Infoleak /
Memory Corruption

browser plugin integer overflow

visit a website -------
arbitrary code execution in your browser

bool sharedmemory::Invoke(...) {

uint32_t offset;
uint32_t len;

offset = NPVARIANT_TO_INT32(args[0]);
Ten = NPVARIANT_TO_INT32(args[1]);

if (offset + len > shared_memory->size_) {
return false;

else { _
char* ret_string = NPN_MemAlloc(2 * len);
unsigned char* shm_addr = (shared_memory->map_addr_) + offset;
for (unsigned int i = 0; i < len; ++i) {
unsigned char c¢ = *shm_addr;
*out = c;
++out;
++shm_addr;
}
STRINGN_TO_NPVARIANT(ret_string, ..., *result);

return true;

2

SRPC Type Confusion Memory
Corruption Attack

plugin compromise

classic dowd

please give me a string
/ for the src parameter

! NATIVE
CLIENT
BROWSER
PLUGIN

please give me a string
/ for the src parameter

! NATIVE
CLIENT
BROWSER
PLUGIN

ok here you are
nacl.src = "have a nice day"

N

JAVASCRIPT

please give me a string
/ for the src parameter

! NATIVE
CLIENT
BROWSER
PLUGIN

please give me a string
/ for the src parameter

! NATIVE
CLIENT
BROWSER
PLUGIN

ok werd..
nacl.src = 0x12345678

T~—

RIP
2008-2009

! NATIVE

CLIENT
BROWSER
PLUGIN

ACCESS VIOLATION WHEN
WRITING TO MEMORY:
0x12345678

3

2-byte Jump Operand Prefix
Vulnerability

validator disassembler logic flaw

1386 instruction prefixes
“modify” instruction that follows

3

Nacl validator checked prefix for 1-byte
branches

3

Nacl validator checked prefix for 1-byte
branches

... but there exist 2-byte branches

3

Nacl validator checked prefix for 1-byte
branches

... but there exist 2-byte branches
“conditional jumps”

modify code segment of a jCC
= jump anywhere into service runtime!

4

Direction Flag Sandbox Bypass
validator logic flaw ...
leads to mem corruption in service runtime

code exec in runtime process!

4

EFLAGS register = flags (mostly status)

Contains a direction flag (DF)

— can set from inside inner sandbox

— but is NOT cleared when nexe trampolines
to service runtime ...

4

Welcome to the Bizarro World

That memcpy you thought was going
forwards?

Not so much.

4

Welcome to the Bizarro World

That memcpy you thought was going
forwards?

Not so much.

“setting the DF flag causes string
Instructions to auto-decrement”

5

Native Client Memory Unmapping
Vulnerability

runtime services fall
syscalls

- munmap
- mmap

5

Native Client Memory Unmapping
Vulnerability

runtime services fall

syscalls
- MUNMAP «£——— need i say more?

- mmap <

WHAT ELSE?

ELF is hard; loader bugs

Side channels.. | guess

CPU erratta
Remote hardware exploits

Inter-module exploitation

questi
estions?

Q7

Q7

Q7

THE HARD STUFF ($)

REALITY

| have a question.

Can native client win?

REALITY

| have a question.

Can native client win?

Technically, commercially

TARGET

Confused target audience?
Not with Chrome OS

Chrome OS = context for everything

Google code

Native Client Security Contest: The results are in!
Tuesday, July 07, 2009

A few months ago, we challenged you to discover exploits in the Native Client system and more than 600 of
you decided to take us up on our invitation. We're very pleased with the results: participants found bugs that
enabled some really clever exploits, but nothing that pointed to a fundamental flaw in the design of Native
Client. Our judges reviewed all entries very carefully and have selected five teams as the winners of the

Native Client Security Contest.

~*Google | mereemmmn-

Blog

Introducing the Google Chrome OS

7/07/2009 09:37:00 PM

It's been an exciting nine months since we launched the Google Chrome browser. Already,
over 30 million people use it regularly. We designed Google Chrome for people who live on

the web — searching for information, checking email, catching up on the news, shopping or
just staying in touch with friends. However, the operating systems that browsers run on were
designed in an era where there was no web. So today, we're announcing a new project that's a
natural extension of Google Chrome — the Google Chrome Operating System. It's our

attempt to re-think what operating systems should be.

Google code

Native Client Security Contest: The results are in!
Tuesday, July 07, 2009

A few months ago, we challenged you to discover exploits in the Native Client system and more than 600 of
you decided to take us up on our invitation. We're very pleased with the results: participants found bugs that
enabled some really clever exploits, but nothing that pointed to a fundamental flaw in the design of Native
Client. Our judges reviewed all entries very carefully and have selected five teams as the winners of the

Native Client Security Contest.

~*Google | mereemmmn-

Blog

Introducing the Google Chrome OS

7/07/2009 09:37:00 PM
ITS Deen an excring nine months since we launched the Google Chrome browser. Already,

over 30 million people use it regularly. We designed Google Chrome for people who live on
the web — searching for information, checking email, catching up on the news, shopping or
just staying in touch with friends. However, the operating systems that browsers run on were
designed in an era where there was no web. So today, we're announcing a new project that's a
natural extension of Google Chrome — the Google Chrome Operating System. It's our

attempt to re-think what operating systems should be.

THE COMPETITION

Microsoft’s Steve Ballmer on Chrome OS:

"The last time | checked you don't need two
client operating systems.”

“There’s good data that actually says about
50% of the time someone is on their PC they're
not doing something in the web browser”

THE COMPETITION

CONCLUSION:

google should be very worried about
amazon

TECH =%

Technical limitations:
no 64-bit (do you care?)

slightly decreased performance

* we will find more bugs *

TECH =%

APIl/syscall “outer sandbox” limitations
What is an NEXE allowed to do?

Not much®? No killer apps.
Too much? No security.

TECH =%

“The inability to deliver a secure
implementation is an architectural flaw.”

- Dave Aitel, Immunity kingpin

Everyone welcome Native Client to the
“Advisory Treadmill”.

THE TARGET

Beware of alienating target audience
with security considerations

Google Omaha ++

Defense in depth is REQUIRED

THE POINT

Everyone has the “implementation
problem”

The inner sandbox is not yet broken

Native Client + Chrome OS “makes
sense”

sshhh.. someone might hear

*%k%

ok, this is my tentative endorsement that, yes, native client could actually win

*** but only if they lock tavis ormandy in a room for a year or two

... and im worried about that outer sandbox, so er, you should be too

THE END

thanks

twitter.com/benhawkes

