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A
s software moves off the desktop and into data 
centers, and cell phones use server requests 
as the other half of apps, the observation tools 
for large-scale distributed transaction systems 
are not keeping up with the complexity of the 

environment. Exploring a simpler environment can help 
expose some of the problems that confront today’s 
tool users and tool builders. There is a lot to be learned 
from careful observation of a program and its complete 
surrounding context, even one as trivial as “Hello, World!”. 
This article walks through six different views of the 
execution of “Hello, World!” to see what is often missing in 
today’s tools; the same analysis applies to complex data-
center software. Tool designers and tool users must insist 
on filling in the gaps. If you can’t see it, you can’t fix it.

Too often a service provider has a performance promise 
to keep (“99 percent of all web-page requests will be 
served within 800 milliseconds...”) but few tools for 
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BENCHMARKING  
“Hello, World!”
“A good performance evaluation provides a deep understanding of  
a system’s behavior, quantifying not only the overall behavior,  
but also its internal mechanisms and policies. It explains why a system 
behaves the way it does, what limits that behavior, and  
what problems must be addressed in order to improve the system.”10
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measuring the existence of laggard transactions, and none 
at all for understanding their root causes. Such promises 
are built on sand.

Figure 1 is part of a single web-search query that 
takes 160 milliseconds, shown across the top line, with 
the partial call tree of the remote services it uses shown 
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underneath (circa 2005). That query is, in fact, spread 
out across some 2,000 servers, each doing part of the 
search. The diagram shows part of the top-level RPC 
(remote procedure call) tree, with the work distributed 
across time on the x-axis and across different servers on 
the y-axis. After preliminary calls at the upper left, there 
are 93 parallel calls to subsearches done on 93 different 
servers (not all shown). These take varying amounts of 
time to return, from about 30 to 120 milliseconds. One in 
particular takes about four times longer than the rest. The 
top-level server executes very little code and is mostly 
waiting for this straggler to finish. Without observing 
these cross-server dynamics, we have no idea why the 
total query takes so long. But even with good RPC tools 
such as Dapper12 and its lookalikes, the question remains 
why an individual server doing a CPU-bound piece of the 
work takes four times longer than others doing nearly 
identical work.

Why does this matter? Because most transaction 
systems provide apparent speed by doing many 
suboperations in parallel, returning an overall result when 
all suboperations complete. At about 100:1 parallel fanout, 
this means that almost all top-level searches run at the 
speed of the 99th-percentile slowest subsearch. That is why 
it matters. With 1,000 transactions per second, there are 
(by definition) 10 of them every second that exceed the 
99th-percentile response time. What tools can be used to 
find the root causes of such slow responses?

As Sun Microsystems’ Bryan Cantrill1 observed more 
than 10 years ago, there have been two profound shifts of 
observation: from development to production and from 
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programs to systems. Looking at an empty development 
system running a single program provides little insight. 
Today we must look at live production systems running 
dozens of programs simultaneously to understand their 
real performance and the underlying software dynamics. 
But we must look with tools that show enough information 
to be useful in that context—in particular, tools that can 
help reveal why that laggard server response took four 
times longer than the others. Traditional benchmark 
programs by design have repeatable performance and can 
be studied in isolation. Online transactions, even the same 
transaction repeated, vary and do not have repeatable 
performance. Observation tools for benchmarks are 
generally not very useful for transactions.

The problem of poor tools can be shown by exploring 
the simplest of all programs, helloworld.c, slowly 
revealing the underlying dynamics that are invisible in 
most of today’s performance tools. Who would bother to 
benchmark “Hello, World!”? Hold your skepticism that this 
is so trivial that it is uninteresting. 

Programmers have pictures in their heads of what their 
programs are doing. Those pictures are too simplistic and 
essentially always wrong. Sometimes the performance 
problem they are looking for is in the missing parts, or in 
the not-visible dynamics of “event A causes event B”, with 
time sequencing and cause and effect not observed at all.

Especially “interesting” laggard transactions are 
those that take too long on a heavily loaded production 
system but not on a development system or a nearly idle 
production system. On a single server, such laggards can 
be caused by complex interactions and interference from 
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other transactions or other programs.5 It is not predictable 
which transactions will encounter interference, and they 
typically run at full speed if repeated. A histogram of 
response times in such an environment shows a long tail of 
infrequent slow responses, with a 99th-percentile response 
time that is perhaps 10 times the average response time, 
as seen in figure 2. The figure is a latency (response time) 
histogram of a single disk read from a network disk-server 
program (circa 2012). The median is 26 milliseconds, but 
the 99th-percentile latency is 696 milliseconds—25 times 
slower. (The time scale in the diagram changes by 10 times 
at 100 milliseconds and again at 1,000 milliseconds). 
Google’s Jeffrey Dean and Luiz Andre Barroso2 discuss 
data-center tail latency in more detail.

5 of 27

0 20 40 60 80 100 300 500 700 900 1500
latency (msec)

0

3000

6000

9000

12000

15000

co
un

t

median = 26 msec 99%ile = 696 msec

FIGURE 2: Latency histogram 



acmqueue | september-october 2018   6

tools

TODAY’S OBSERVATION TOOLS
In exploring possible performance-observation tools, it is 
important to understand what is missing from the tool’s 
purview. Too much missing means uninformed guesses or 
misdirected effort. You could understand a lot about the 
software running on a single server if you could see what 
each CPU core is doing every nanosecond. Then you could 
draw little diagrams, as in figure 3, showing elapsed time 
on the multiple cores of a single server. Figure 3 shows 
activity on a single CPU core #2, with elapsed time running 
left to right, thin black lines showing nanoseconds spent 
in the idle loop, half-height rectangles showing user-mode 
execution time, and full-height rectangles showing kernel-
mode execution time. Times are shown in gray on the top 
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and with colors on the bottom.
Colored kernel-mode full-height areas have light blue/

green/red backgrounds and black/gray/none outside edges 
for interrupt request (IRQ), scheduler and system call, and 
page fault, respectively. The kernel foreground has stripes 
in two colors, allowing about 250 combinations to be 
distinguished by interrupt/syscall/fault number. User-mode 
half-height areas also have stripes in two colors, allowing 
programs to be distinguished by process ID number. The 
colors of the horizontal stripe pairs have no particular 
meaning other than being distinctive for each system or 
process number. The vertical widths and positions of the 
stripes have no particular meaning; just their left-to-right 
length is meaningful, showing elapsed time.

These diagrams show all that is happening on a single 
CPU core. Every nanosecond is covered, with nothing 
missing. The concept of “nothing missing” observations 
is vital. If portions are missing, you cannot make strong 
statements about what is happening and, in particular, 
cannot make strong statements about what is not 
happening.

Here is helloworld.c,6 embellished with two extra 
kutrace::mark_a statements to mark the execution instant 
of the first line of the main program and of the last line:

int main(int argc, const char** argv) {
  kutrace::mark_a(“Hello”);
  printf(“hello world\n”);
  kutrace::mark_a(“/Hello”);
  return 0;
}
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What can be observed about the execution of this 
simplest program, using various kinds of tools? Draw 
a little picture in your head of how figure 3 looks for 
helloworld and then continue reading.

Drilling down through successive levels of observation 
detail will illustrate what is likely missing from the picture 
in your head. The diagrams show helloworld running under 
the Linux operating system on a four-core x86 processor. 
Running under Windows or on a different processor would 
give similar results.

Observing user-mode execution of a single program
Many of today’s observation tools can observe something 
about the user-mode code in a single program. Figure 4 
is a little picture of the main program’s user-mode code 
in helloworld. It is running on CPU #1, and its half-height 
user-mode rectangles are drawn with a pair of colors 
based on the PID (process ID). The elapsed time is about 
40 microseconds. The boxed labels Hello and /Hello 
mark the execution of the first and last lines of the main 
program, generated by the kutrace::mark_a statements.
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A CPU profiling tool such as gprof,4 Visual Studio 
Profiling Tools,8 or VTune7 will provide a breakdown of 
main-program CPU time by subroutine name or perhaps by 
line number or call stack, but without any time sequencing. 
Of course, for helloworld, with just one line of code, this 
is fairly uninteresting, but profiles are invaluable for 
identifying or summarizing where time is spent in batch 
programs. They are not as useful for understanding 
distributed transactions.

Some programs have multiple threads, but many 
observation tools can observe only the first thread, or 
they might observe all threads but merge the results 
into a pretend single thread. Both of these designs hide 
information—they leave you a victim of the so-called 
streetlight effect9, looking under the lamppost where the 
light is instead of looking where your lost keys are.

Looking carefully at the diagram in figure 4, you notice a 
little bit of user-mode execution before the Hello marker 
of the first line of the main program. You also notice some 
gaps—white space showing that time marches on but no 
user-mode code is executing (nor is the idle loop executing). 
The picture in your head usually skips over this kind of detail.

User-mode tools show any time in these gaps as 
belonging to the first following user-mode piece of code.
Thus, whatever is in the white gaps is charged to some 
convenient nearby piece of user code, distorting the user-
code analysis and hiding the gaps. The gaps represent 10 
microseconds of the 40 microseconds shown earlier. Read 
on.
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Observing the entire user-mode execution  
of a single program
One thing missing from figure 4 is the execution time spent 
before the first line of main() and after the last line of 
main(). You might think this doesn’t matter.

When I worked at Adobe, we had a mystery in the 
8- to 10-second startup time of an early version of 
Acrobat. User-mode main-program tools did not reveal 
the problem. They were blind to it. We eventually built 
an in-house tool with coverage of all the Acrobat code. 
It immediately revealed the hidden time spent in C++ 
constructors, many of which were run before the first line 
of main(), and these were taking nearly seven seconds. 
Moving the work in these constructors to a separate 
nonblocking thread dramatically improved the application 
startup time. The multimonth mystery was solved by the 
very first output of a tool that could actually observe the 
problem. The fix took about 20 minutes.

Remember, if you can’t see it, you can’t fix it.
Figure 5 shows the entire user-mode execution of 

helloworld, including all the startup and shutdown time. 
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This superset of figure 4 shows all of the helloworld 
user-mode activity on two of four CPUs, including the 
time before and after main(). The elapsed time is about 
400 microseconds. The boxed labels Hello and /Hello 
mark the execution of the first and last lines of the main 
program, as in figure 4.

This figure reveals that the helloworld process actually 
started execution on CPU #3 and was then migrated by 
the operating system to CPU #1 (it does not reveal why). 
What is all that CPU time doing? It is time spent loading the 
program and initializing it. We rarely think about where a 
program comes from when we run it. In this case, it came 
from the in-RAM file-system cache (because I had run 
the program before; the elapsed time is too short to have 
come from disk; running with an empty file-system cache 
adds another ~11 milliseconds on the front waiting for the 
disk activity).

There is more CPU time than sometimes expected in 
parsing the .exe image, relocating the instructions of the 
image, allocating and initializing the runtime stack, getting 
stdin/stderr/stdout open and available, etc. There is also 
some time spent after the main program exits. We will get 
to that in a moment.

Perhaps you have encountered data-center programs 
or command-line scripts (Perl, Python, JavaScript) 
that run every five minutes. Or perhaps in a database 
environment each query is parsed and optimized before 
accessing the storage devices. Spending several seconds 
at startup or shutdown is unimportant for long executions 
but matters for short ones. Three seconds of startup 
every five minutes is one percent of the total time. Ten 
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such programs/scripts could consume 10 percent of the 
total time. A distinguishing characteristic of startup time 
is that it is serialized with respect to the eventual real 
work, so it undermines any subsequent parallelization. 
Christina Delimitrou and Christos Kozyrakis3 explore 
the relationship between serialization and tail latency at 
several levels.

Observing the entire kernel- plus user-mode  
execution of a single program
Now, about those gaps. They are time spent in kernel-mode 
execution (figure 6). This is the same 400 microseconds of 
figure 5, but with the kernel-mode activity explicitly shown. 
Most of the time is spent handling page faults. The kernel 
time is shown in full-height rectangles.

The tall pink-background rectangles are page-fault 
handling, the greenish ones are system calls, and the 
two with bluish backgrounds (~180 microseconds, ~320 
microseconds) are interrupts. There is more time in kernel 
code than in user code.

It is less common for performance-analysis tools to 
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show details of kernel time. Most are blind to it. Now that 
you can see them, you might ask, What is causing all those 
page faults? It turns out that program loading typically 
maps an executable disk image into virtual memory and 
then uses page faults to transfer pages of that image 
off disk into physical memory. (If the image is already in 
RAM in a file-system cache, these transfers just copy 
from memory to memory, but still take up a significant 
amount of time.) The time hit of these page faults might 
occur substantially later—when an infrequent part of the 
program is first used—taking unexpected milliseconds of 
disk-access time and perhaps hurting some transaction’s 
latency.  

There are also page faults closer to the first line of 
main(). The program’s runtime heap is set up by a brk() 
system call that extends the address space just above the 
loaded program. A common implementation of this builds 
page tables for all the newly allocated heap pages but 
points them all to a single kernel all-zero page and marks 
them copy-on-write. This saves the time of zeroing all 
the new heap pages or, more precisely, defers that time. 
Whenever a heap page is first written to, a page fault 
occurs; the kernel allocates a real physical page and copies 
all the zeros to it, marks the page read-write, and returns.

Figure 7 zooms in a bit on main() to see individual time 
spans and to fill in the gaps of figure 4. This is figure 6 
zoomed in on helloworld’s user-mode plus kernel-mode 
activity. The elapsed time is about 50 microseconds. At the 
far left are four page faults, then a short 330-nanosecond 
call to fstat(), then an Ethernet interrupt, a pair of 
unlabeled calls to brk(), a page fault, a call to write() of 
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the 12 bytes “hello world<cr>”, another page fault, and 
then a system call to exit_group().

The first four page faults are the tail end of allocating 
the heap. The fstat call is not in the C source but is 
buried in the C runtime library. It is checking that stdout 
is open before writing to it. What are the calls to brk() 
at 336 microseconds and the subsequent page fault? 
Printf allocates something on the heap, so the heap needs 
extending within the C runtime library. Few tools reveal 
possible page faults and zeroing after every malloc(), 
including those in system libraries.

At the far right, the call to exit_group takes 5.5 
microseconds to wind down the program, a relatively short 
shutdown sequence.

But wait! There is more.

Observing the entire kernel- plus user-mode execution of 
a single program, plus other programs
So far, we have looked at all of helloworld but are still 
blind to what else is happening on the entire computer. A 
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couple of unrelated interrupts have taken CPU time away, 
but recall that laggard data-center transactions can be 
caused by interference from other transactions or other 
programs. Tools that can observe a single program are 
blind to the existence and effects of other programs.

What else is running on the same server? Figure 8 
shows all the programs running on this little four-CPU 
server: helloworld plus all the other programs running. 
CPU #0 is completely idle and CPU #2 is running a CPU-
bound batch program; other programs run on CPUs #1 and 
#3. The elapsed time is about 800 microseconds. Figure 
6 is drawn from the middle 400 microseconds. This is the 
“nothing missing” picture showing every nanosecond of 
every CPU core.

The helloworld program was actually run via ssh (secure 
shell) from a remote machine. At the top left on CPU #1 
is an Ethernet interrupt bringing the incoming command 
line ./helloworld, followed by the sshd (ssh daemon) 
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program forwarding it to the command-line processor 
bash.2 via a kernel thread kworker0 on CPU #3. This 
instance of the Linux bash shell clones itself starting at 
about time 900 microseconds on CPU #1, creating hello 
on CPU #3. The migration program moves this to CPU #1. 
(This is the missing reason mentioned from figure 5; Linux 
preferentially executes a cloned program on the CPU core 
that executed the clone() system call, when that core 
is free.) After hello exits, there is some unlabeled sshd 
activity to transmit the result back, and then bash.2 runs 
again on CPU #3 to finish shutting down helloworld and 
send out bash’s prompt for the next remote command. 
During the entire time, an unrelated program memhog_1 
is running on CPU #2, beating that core’s first-level data 
cache to death and marking every four iterations of its 
outer loop. CPU #0 happens to be idle the entire time 
shown but is in fact taking timer interrupts outside the 
figure.

Only with tools that can observe time sequencing can 
you see cause and effect. Only with a nothing-missing 
picture can you notice that periodic background tasks 
cause periodic slowdowns of user-facing transactions. 
Only with tools that can observe everything running on a 
server can you hope to understand sources of serialization 
and interference. Finally, only with fine-grained 
microsecond-scale observations can you see the dynamics 
of this interference. 

In the example, a lot of serialized interaction occurs 
between the sshd/kworker/bash/helloworld programs, 
each waiting for work from another, but without much 
cross-program interference to see. There is some 
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interference, nonetheless. In a large-scale distributed 
transaction system, serialized interactions and 
interference are prevalent.

Take a look at the red sine waves. Those are synthetic 
indications of how long it takes this particular x86 CPU 
to come out of its power-saving deep sleep C6 state—
about 30 microseconds. The effect is that it can add 30 
microseconds to the time it takes to wake up a sleeping 
task. If some complex software progresses by passing 
work successively among dozens of threads, each sleeping 
while waiting for work, then the additional delay adds up. It 
can mean transactions are slower on idle servers than on 
reasonably loaded ones that don’t sleep often. It also can 
ruin the response time of RDMA (remote direct memory 
access) protocols that depend on microsecond-scale 
responses to network interrupts.

One Ethernet interrupt slowed down (took CPU time 
away from) helloworld at time 316.5 microseconds in 
figure 7. What is the effect on a web-server program that 
happens to run on a CPU core that handles the bulk of disk 
interrupts and the disks are highly busy? Or runs on a CPU 
core that handles the bulk of network interrupts and the 
network is highly busy? That program silently suffers in a 
way not observed by many tools.

I once worked on a disk-server box at Google and 
undersized the CPU’s computation ability by 25 percent. 
To size the system, I used measurements from an in-house 
accounting tool that charged for total CPU time spent 
in various user-mode programs, as well as kernel-mode 
code run on their behalf. I was sadly unaware that the 
accounting tool did not know which program to charge 
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for interrupt processing of incoming 
network packets. Outbound packets 
were charged to the sender, but for 
incoming ones the receiver was not 
known until after they were processed. 
The accounting program just threw 
away the incoming network interrupt 
time, a fundamental design flaw. It 
should have simply had a category for 
“incoming network” or even “other” 
and been designed so that all time was 
assigned to some category, “nothing 
missing.” The assumption, of course, 
was that the time involved was small 
and could be ignored. (See sidebar.)

The unseen reality was that one 
entire CPU core was consumed by 
interrupt handling of heavy network 
traffic. This didn’t matter much on a 32-
core compute server, but it made a 25 
percent difference on a little four-core 
disk server. (The project recovered only 
because the disk-server software folks 
spent two painful months making that 
software 30 percent faster.)

Now take a look at the idle time 
in figure 8. More specifically, look at 
all the transitions out of idle. What 
are these? Each transition out of 
idle fundamentally represents some 
program that is waiting for some 

Never Too Small  
to be Ignored 
 In complex software, an 
 assumption that the time 
involved is small and can be ignored is 
death. I worked for a while on Gmail, 
in a normal development environment 
with offline load tests used to run a 
bunch of fake mail transactions and 
measure whether the current release 
was faster or slower than before. Of 
course, rare tertiary transactions 
were not in the load tests because the 
time involved was “small and could 
be ignored”—until we found a user 
with 100,000 mail messages and an 
offline program that used the tertiary 
IMAP (Internet Message Access 
Protocol) interface to access them 
and that program had an N**2 bug in 
the number of mail messages and that 
caused each access to trigger a Gmail 
bug that took 20 minutes of server 
CPU time each time the user logged in. 
It took much too long to find the one 
user and the untested Gmail path and 
then fix it, and add IMAP transactions 
to the load tests.

3
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event; that event finally happens, so the program becomes 
runnable again. The key information is what happens 
(probably on a different CPU) just before a core comes out 
of idle. The activity there—disk interrupt, timer interrupt, 
freeing a contended software lock, and so on—indicates 
what the program was waiting for. Within a single server, 
some laggard transaction delays are not from CPU 
interference per se, but from waiting on other programs or 
other threads of the same program. 

In this environment, you want broad-brush tools that 
can identify the reason for each wait, not just that so many 
seconds were spent waiting for unknown events. Then you 
can see the unexpected program dynamics (event A causes 
event B) that are causing much too much waiting. Perhaps 
a burst of 163 transactions that are supposed to be done 
in parallel across 16 cores are, in fact, running sequentially 
on a single core, making the “last guy” wait over 10 times 
longer than the picture in the programmer’s head. Real 
event in my former life. 

Observing Cross-Domain and Cross-CPU interference
There are times, however, when the CPU-bound portion of 
some transaction is executing but processing unusually 
slowly. 

Figures 9a and 9b zoom in on some of the page faults, 
but in addition they show the IPC (instructions per cycle) 
spent in each time span. This is not some coarse average 
over several seconds; it is a fine-grained measurement for 
each and every microsecond-scale time span shown—just 
the sort of measurement advocated a dozen years ago.11 At 
its peak, our chip can execute four IPCs. A low IPC means 
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that most of the execution slots are wasted. For the first 
page fault in figure 9a, labeled 266.51us page_fault; 
1.95us IPC=0.625, the time span is 1.95 microseconds, 
or about 6,000 cycles on this particular machine. During 
this time, CPU #1 executed about 3,700 instructions, so 
3,700/6,000 = 0.625 IPC. There is a wealth of information 
here about interference. Some page faults and other 
activity from figure 8 with IPC are also shown. User-
mode code slows down because of kernel-mode cache 
interference and then recovers.

In figure 9a the angle of the little triangle on the 
helloworld user code on CPU #1 at about 259 microseconds 
indicates that hello executed about 0.75 IPC. Now look at 
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the little piece of hello just after the first page fault. Its IPC 
dropped below 0.125. In fact, hello runs slowly with low IPCs 
after each of the five page faults, then it picks up again on 
the right after the mprotect calls. You are looking directly 
at the speed consequence of page-fault kernel code trashing 
the caches that helloworld is using.

Figure 9b shows the opposite effect. Kernel-mode code 
starts slowly with a cold cache because of user-mode 
cache interference and then speeds up. Look at the low 
IPC for the first page fault on CPU #1 and then look at the 
page-fault code’s IPC rising on subsequent page faults. It 
is getting faster because more of its stuff is in the caches; 
just as in figure 9a, the user program is getting slower as 
less of its stuff is in the caches. Also note that the IPC in 
the page-fault handler is much higher than in the user code 
over this small set of time intervals. Conventional wisdom 
is that kernel code always executes with a cold cache, so 
it is inherently slow. That is seen to be false when you can 
actually observe the true CPU behavior.

A Note About Observation Overhead
A tool that gives you fine-grained observations but slows 
down the programs being observed by 20 times is fine for 
understanding SPEC (Standard Performance Evaluation 
Corporation) benchmarks and other batch programs. It is 
useless in a production data center. Even a seven percent 
slowdown, such as caused by tcpdump, is unacceptable in a 
live user-facing data center during the busiest hour of the 
day. The more interesting tail-latency problems, of course, 
occur only in a live user-facing data center during the 
busiest hour of the day. What to do?
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Only fine-grained observation tools with one percent or 
less CPU overhead are acceptable for live user traffic. This 
means that tool designers and tool users must measure 
each tool’s overhead and insist on it being tiny. I generated 
the diagrams in this article with a software tool13 carefully 
engineered to have ¼ percent overhead when tracing 
200,000 kernel-user transition events per second per 
CPU core, and less than one percent overhead when also 
tracking IPC (because of the incredibly slow read of the 
x86 instructions-retired performance counter, and then 
the slow divide). 

The table in figure 10 gives a short list of CPU 
observation tools (other tools can observe disk and 
network traffic, not discussed here). These performance 
observation tools are all findable via a web search for 
“<name> linux” or “<name> windows”. Lowercase names are 
Linux tools, capitalized names are Windows tools. 

Sampling tools periodically examine the CPU program 
counter to give an overview of top CPU resource 
consumers by subroutine or line number; they typically 
require recompilation from source code to use effectively. 
Counting tools periodically examine various hardware 
and software counters, either for a single program or for 
all programs running on a server. Because they execute 
infrequently, sampling and counting tools are fairly low 
overhead and therefore could be run on live data-center 
machines. Tracing tools record time-sequenced events, 
either for a single program or for all programs running on 
a server. They typically slow down execution by 30 times or 
so, making them completely unsuitable for live data-center 
machines. KUTrace, the tool used to produce figures 3-9, is 
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the exception with less than one percent overhead. Tracers 
are the only tools that can directly reveal cross-thread 
and cross-program interference. Only full traces have the 
“nothing missing” property.

CONCLUSIONS
There is a lot to be learned from careful observation of 
a program and its complete surrounding context, even 
one as “trivial” as helloworld. Some or all of these were 
probably missing from the picture in your head:
3 User-mode execution gaps

Tool Type
One prog.  

main()  
User-mode

Any exe  
Any lang No 
re-compile

One prog. 
Entire  

User-mode

Kernel- 
mode  

Syscall

Kernel- 
mode 
Fault

Kernel-
mode  
IRQ

All 
server 
prog.

Low  
over- 
head

gprof profiler
VTune
  profiler
Visual Studio  
  profiler

sample
y y

strace
Process  
  Monitor

trace y y y y

Visual Studio count y y y y y y y

perf 
Performance  
  Monitor
Task Manager

count y y y y y y y y

ftrace trace y y y y y y y

kutrace trace y y y y y y y y

FIGURE 10: A small sample of performance observation tools  
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3 Startup/shutdown time
3 Page-fault time, interrupt time, system-call time 
3 More time in kernel code than in user code
3 Late page-in of rarely used code
3 fstat(), malloc() from within C runtime library
3 Possible page faults and zeroing after every malloc()
3 Resuming from power-saving sleep states
3 Serialized waiting for others; not executing at all
3 Cache interference

If you substitute for helloworld 
a nontrivial data-center program, 
you can learn even more about 
that program and its interactions 
with interfering processes on a 
single server. Finding and tracking 
down one such interference effect 
at Google paid for 10 years of my 
salary, in terms of money saved 
after a 20-minute fix. 

As more and more software 
moves off the desktop and into 
data centers, and more and more 
cell phones use server requests as 
the other half of apps, observation 
tools for large-scale distributed 
transaction systems are not 
keeping up. This makes it tempting 
to look under the lamppost using 
simpler tools. You will waste a lot 
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of high-pressure time following that path when you have a 
sudden complex performance crisis.

Instead, know what each tool you use is blind to, know 
what information you need to understand a performance 
problem, and then look for tools that can actually observe 
that information directly—and do so with low enough 
overhead and distortion to remain useful. 

You may now resume your skepticism.
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