
acmqueue | september-october 2018 1

tools

A
s software moves off the desktop and into data
centers, and cell phones use server requests
as the other half of apps, the observation tools
for large-scale distributed transaction systems
are not keeping up with the complexity of the

environment. Exploring a simpler environment can help
expose some of the problems that confront today’s
tool users and tool builders. There is a lot to be learned
from careful observation of a program and its complete
surrounding context, even one as trivial as “Hello, World!”.
This article walks through six different views of the
execution of “Hello, World!” to see what is often missing in
today’s tools; the same analysis applies to complex data-
center software. Tool designers and tool users must insist
on filling in the gaps. If you can’t see it, you can’t fix it.

Too often a service provider has a performance promise
to keep (“99 percent of all web-page requests will be
served within 800 milliseconds...”) but few tools for

Six different
views of the
execution of

“Hello, World!”
show what is

often missing in
today’s tools

RICHARD L. SITES

1 of 27 TEXT
ONLY

BENCHMARKING
“Hello, World!”
“A good performance evaluation provides a deep understanding of
a system’s behavior, quantifying not only the overall behavior,
but also its internal mechanisms and policies. It explains why a system
behaves the way it does, what limits that behavior, and
what problems must be addressed in order to improve the system.”10

acmqueue | september-october 2018 2

tools

measuring the existence of laggard transactions, and none
at all for understanding their root causes. Such promises
are built on sand.

Figure 1 is part of a single web-search query that
takes 160 milliseconds, shown across the top line, with
the partial call tree of the remote services it uses shown

2 of 27

400 ms

...

80 120 160 200

FIGURE 1: Dapper output

acmqueue | september-october 2018 3

tools

underneath (circa 2005). That query is, in fact, spread
out across some 2,000 servers, each doing part of the
search. The diagram shows part of the top-level RPC
(remote procedure call) tree, with the work distributed
across time on the x-axis and across different servers on
the y-axis. After preliminary calls at the upper left, there
are 93 parallel calls to subsearches done on 93 different
servers (not all shown). These take varying amounts of
time to return, from about 30 to 120 milliseconds. One in
particular takes about four times longer than the rest. The
top-level server executes very little code and is mostly
waiting for this straggler to finish. Without observing
these cross-server dynamics, we have no idea why the
total query takes so long. But even with good RPC tools
such as Dapper12 and its lookalikes, the question remains
why an individual server doing a CPU-bound piece of the
work takes four times longer than others doing nearly
identical work.

Why does this matter? Because most transaction
systems provide apparent speed by doing many
suboperations in parallel, returning an overall result when
all suboperations complete. At about 100:1 parallel fanout,
this means that almost all top-level searches run at the
speed of the 99th-percentile slowest subsearch. That is why
it matters. With 1,000 transactions per second, there are
(by definition) 10 of them every second that exceed the
99th-percentile response time. What tools can be used to
find the root causes of such slow responses?

As Sun Microsystems’ Bryan Cantrill1 observed more
than 10 years ago, there have been two profound shifts of
observation: from development to production and from

3 of 27

acmqueue | september-october 2018 4

tools

programs to systems. Looking at an empty development
system running a single program provides little insight.
Today we must look at live production systems running
dozens of programs simultaneously to understand their
real performance and the underlying software dynamics.
But we must look with tools that show enough information
to be useful in that context—in particular, tools that can
help reveal why that laggard server response took four
times longer than the others. Traditional benchmark
programs by design have repeatable performance and can
be studied in isolation. Online transactions, even the same
transaction repeated, vary and do not have repeatable
performance. Observation tools for benchmarks are
generally not very useful for transactions.

The problem of poor tools can be shown by exploring
the simplest of all programs, helloworld.c, slowly
revealing the underlying dynamics that are invisible in
most of today’s performance tools. Who would bother to
benchmark “Hello, World!”? Hold your skepticism that this
is so trivial that it is uninteresting.

Programmers have pictures in their heads of what their
programs are doing. Those pictures are too simplistic and
essentially always wrong. Sometimes the performance
problem they are looking for is in the missing parts, or in
the not-visible dynamics of “event A causes event B”, with
time sequencing and cause and effect not observed at all.

Especially “interesting” laggard transactions are
those that take too long on a heavily loaded production
system but not on a development system or a nearly idle
production system. On a single server, such laggards can
be caused by complex interactions and interference from

4 of 27

acmqueue | september-october 2018 5

tools

other transactions or other programs.5 It is not predictable
which transactions will encounter interference, and they
typically run at full speed if repeated. A histogram of
response times in such an environment shows a long tail of
infrequent slow responses, with a 99th-percentile response
time that is perhaps 10 times the average response time,
as seen in figure 2. The figure is a latency (response time)
histogram of a single disk read from a network disk-server
program (circa 2012). The median is 26 milliseconds, but
the 99th-percentile latency is 696 milliseconds—25 times
slower. (The time scale in the diagram changes by 10 times
at 100 milliseconds and again at 1,000 milliseconds).
Google’s Jeffrey Dean and Luiz Andre Barroso2 discuss
data-center tail latency in more detail.

5 of 27

0 20 40 60 80 100 300 500 700 900 1500
latency (msec)

0

3000

6000

9000

12000

15000

co
un

t

median = 26 msec 99%ile = 696 msec

FIGURE 2: Latency histogram

acmqueue | september-october 2018 6

tools

TODAY’S OBSERVATION TOOLS
In exploring possible performance-observation tools, it is
important to understand what is missing from the tool’s
purview. Too much missing means uninformed guesses or
misdirected effort. You could understand a lot about the
software running on a single server if you could see what
each CPU core is doing every nanosecond. Then you could
draw little diagrams, as in figure 3, showing elapsed time
on the multiple cores of a single server. Figure 3 shows
activity on a single CPU core #2, with elapsed time running
left to right, thin black lines showing nanoseconds spent
in the idle loop, half-height rectangles showing user-mode
execution time, and full-height rectangles showing kernel-
mode execution time. Times are shown in gray on the top

6 of 27

3
idle kernel user kernel idle

IRQ

sched

pagefault

syscall

sched

2

1

0
a.

CP
U

 n
um

be
r

3

2

1

0
b.

CP
U

 n
um

be
r

FIGURE 3: Activity on a single CPU core #2

acmqueue | september-october 2018 7

tools

and with colors on the bottom.
Colored kernel-mode full-height areas have light blue/

green/red backgrounds and black/gray/none outside edges
for interrupt request (IRQ), scheduler and system call, and
page fault, respectively. The kernel foreground has stripes
in two colors, allowing about 250 combinations to be
distinguished by interrupt/syscall/fault number. User-mode
half-height areas also have stripes in two colors, allowing
programs to be distinguished by process ID number. The
colors of the horizontal stripe pairs have no particular
meaning other than being distinctive for each system or
process number. The vertical widths and positions of the
stripes have no particular meaning; just their left-to-right
length is meaningful, showing elapsed time.

These diagrams show all that is happening on a single
CPU core. Every nanosecond is covered, with nothing
missing. The concept of “nothing missing” observations
is vital. If portions are missing, you cannot make strong
statements about what is happening and, in particular,
cannot make strong statements about what is not
happening.

Here is helloworld.c,6 embellished with two extra
kutrace::mark_a statements to mark the execution instant
of the first line of the main program and of the last line:

int main(int argc, const char** argv) {
 kutrace::mark_a(“Hello”);
 printf(“hello world\n”);
 kutrace::mark_a(“/Hello”);
 return 0;
}

7 of 27

acmqueue | september-october 2018 8

tools

What can be observed about the execution of this
simplest program, using various kinds of tools? Draw
a little picture in your head of how figure 3 looks for
helloworld and then continue reading.

Drilling down through successive levels of observation
detail will illustrate what is likely missing from the picture
in your head. The diagrams show helloworld running under
the Linux operating system on a four-core x86 processor.
Running under Windows or on a different processor would
give similar results.

Observing user-mode execution of a single program
Many of today’s observation tools can observe something
about the user-mode code in a single program. Figure 4
is a little picture of the main program’s user-mode code
in helloworld. It is running on CPU #1, and its half-height
user-mode rectangles are drawn with a pair of colors
based on the PID (process ID). The elapsed time is about
40 microseconds. The boxed labels Hello and /Hello
mark the execution of the first and last lines of the main
program, generated by the kutrace::mark_a statements.

8 of 27

FIGURE 4: The helloworld main program user-mode activity

hello

3

2

1

0

CP
U

 n
um

be
r

/hello

300us 305us 310us 315us 325us320us 330us 335us 340us

acmqueue | september-october 2018 9

tools

A CPU profiling tool such as gprof,4 Visual Studio
Profiling Tools,8 or VTune7 will provide a breakdown of
main-program CPU time by subroutine name or perhaps by
line number or call stack, but without any time sequencing.
Of course, for helloworld, with just one line of code, this
is fairly uninteresting, but profiles are invaluable for
identifying or summarizing where time is spent in batch
programs. They are not as useful for understanding
distributed transactions.

Some programs have multiple threads, but many
observation tools can observe only the first thread, or
they might observe all threads but merge the results
into a pretend single thread. Both of these designs hide
information—they leave you a victim of the so-called
streetlight effect9, looking under the lamppost where the
light is instead of looking where your lost keys are.

Looking carefully at the diagram in figure 4, you notice a
little bit of user-mode execution before the Hello marker
of the first line of the main program. You also notice some
gaps—white space showing that time marches on but no
user-mode code is executing (nor is the idle loop executing).
The picture in your head usually skips over this kind of detail.

User-mode tools show any time in these gaps as
belonging to the first following user-mode piece of code.
Thus, whatever is in the white gaps is charged to some
convenient nearby piece of user code, distorting the user-
code analysis and hiding the gaps. The gaps represent 10
microseconds of the 40 microseconds shown earlier. Read
on.

9 of 27

acmqueue | september-october 2018 10

tools

Observing the entire user-mode execution
of a single program
One thing missing from figure 4 is the execution time spent
before the first line of main() and after the last line of
main(). You might think this doesn’t matter.

When I worked at Adobe, we had a mystery in the
8- to 10-second startup time of an early version of
Acrobat. User-mode main-program tools did not reveal
the problem. They were blind to it. We eventually built
an in-house tool with coverage of all the Acrobat code.
It immediately revealed the hidden time spent in C++
constructors, many of which were run before the first line
of main(), and these were taking nearly seven seconds.
Moving the work in these constructors to a separate
nonblocking thread dramatically improved the application
startup time. The multimonth mystery was solved by the
very first output of a tool that could actually observe the
problem. The fix took about 20 minutes.

Remember, if you can’t see it, you can’t fix it.
Figure 5 shows the entire user-mode execution of

helloworld, including all the startup and shutdown time.

3

2

1

0

CP
U

 n
um

be
r

hello /hello

917_000us 050us 100us 150us 250us200us 300us 350us

FIGURE 5: All of the helloworld user-mode activity

10 of 27

acmqueue | september-october 2018 11

tools

This superset of figure 4 shows all of the helloworld
user-mode activity on two of four CPUs, including the
time before and after main(). The elapsed time is about
400 microseconds. The boxed labels Hello and /Hello
mark the execution of the first and last lines of the main
program, as in figure 4.

This figure reveals that the helloworld process actually
started execution on CPU #3 and was then migrated by
the operating system to CPU #1 (it does not reveal why).
What is all that CPU time doing? It is time spent loading the
program and initializing it. We rarely think about where a
program comes from when we run it. In this case, it came
from the in-RAM file-system cache (because I had run
the program before; the elapsed time is too short to have
come from disk; running with an empty file-system cache
adds another ~11 milliseconds on the front waiting for the
disk activity).

There is more CPU time than sometimes expected in
parsing the .exe image, relocating the instructions of the
image, allocating and initializing the runtime stack, getting
stdin/stderr/stdout open and available, etc. There is also
some time spent after the main program exits. We will get
to that in a moment.

Perhaps you have encountered data-center programs
or command-line scripts (Perl, Python, JavaScript)
that run every five minutes. Or perhaps in a database
environment each query is parsed and optimized before
accessing the storage devices. Spending several seconds
at startup or shutdown is unimportant for long executions
but matters for short ones. Three seconds of startup
every five minutes is one percent of the total time. Ten

11 of 27

acmqueue | september-october 2018 12

tools

such programs/scripts could consume 10 percent of the
total time. A distinguishing characteristic of startup time
is that it is serialized with respect to the eventual real
work, so it undermines any subsequent parallelization.
Christina Delimitrou and Christos Kozyrakis3 explore
the relationship between serialization and tail latency at
several levels.

Observing the entire kernel- plus user-mode
execution of a single program
Now, about those gaps. They are time spent in kernel-mode
execution (figure 6). This is the same 400 microseconds of
figure 5, but with the kernel-mode activity explicitly shown.
Most of the time is spent handling page faults. The kernel
time is shown in full-height rectangles.

The tall pink-background rectangles are page-fault
handling, the greenish ones are system calls, and the
two with bluish backgrounds (~180 microseconds, ~320
microseconds) are interrupts. There is more time in kernel
code than in user code.

It is less common for performance-analysis tools to

3

2

1

0

CP
U

 n
um

be
r

fig.7

/hellohello

917_000us 050us 100us 150us 250us200us 300us 350us

FIGURE 6: Kernel-mode activity shown explicitly

12 of 27

acmqueue | september-october 2018 13

tools

show details of kernel time. Most are blind to it. Now that
you can see them, you might ask, What is causing all those
page faults? It turns out that program loading typically
maps an executable disk image into virtual memory and
then uses page faults to transfer pages of that image
off disk into physical memory. (If the image is already in
RAM in a file-system cache, these transfers just copy
from memory to memory, but still take up a significant
amount of time.) The time hit of these page faults might
occur substantially later—when an infrequent part of the
program is first used—taking unexpected milliseconds of
disk-access time and perhaps hurting some transaction’s
latency.

There are also page faults closer to the first line of
main(). The program’s runtime heap is set up by a brk()
system call that extends the address space just above the
loaded program. A common implementation of this builds
page tables for all the newly allocated heap pages but
points them all to a single kernel all-zero page and marks
them copy-on-write. This saves the time of zeroing all
the new heap pages or, more precisely, defers that time.
Whenever a heap page is first written to, a page fault
occurs; the kernel allocates a real physical page and copies
all the zeros to it, marks the page read-write, and returns.

Figure 7 zooms in a bit on main() to see individual time
spans and to fill in the gaps of figure 4. This is figure 6
zoomed in on helloworld’s user-mode plus kernel-mode
activity. The elapsed time is about 50 microseconds. At the
far left are four page faults, then a short 330-nanosecond
call to fstat(), then an Ethernet interrupt, a pair of
unlabeled calls to brk(), a page fault, a call to write() of

13 of 27

acmqueue | september-october 2018 14

tools

the 12 bytes “hello world<cr>”, another page fault, and
then a system call to exit_group().

The first four page faults are the tail end of allocating
the heap. The fstat call is not in the C source but is
buried in the C runtime library. It is checking that stdout
is open before writing to it. What are the calls to brk()
at 336 microseconds and the subsequent page fault?
Printf allocates something on the heap, so the heap needs
extending within the C runtime library. Few tools reveal
possible page faults and zeroing after every malloc(),
including those in system libraries.

At the far right, the call to exit_group takes 5.5
microseconds to wind down the program, a relatively short
shutdown sequence.

But wait! There is more.

Observing the entire kernel- plus user-mode execution of
a single program, plus other programs
So far, we have looked at all of helloworld but are still
blind to what else is happening on the entire computer. A

3

2

1

0

CP
U

 n
um

be
r

299.57us page_fault; 1.44us IPC=0.75

307.69us fstat(1)=0; 330ns IPC=0.375

316.49us eth0; 1.78us IPC=0

337.92us write(1)=12;
2.70us IPC=0.25

344.16us
exit_group(0)=0;
5.48us IPC=0.875

hello /hello

300us 305us 310us 315us 325us 335us 345us320us 330us 340us 350us

FIGURE 7: Detail of main program from Figure 6

14 of 27

acmqueue | september-october 2018 15

tools

couple of unrelated interrupts have taken CPU time away,
but recall that laggard data-center transactions can be
caused by interference from other transactions or other
programs. Tools that can observe a single program are
blind to the existence and effects of other programs.

What else is running on the same server? Figure 8
shows all the programs running on this little four-CPU
server: helloworld plus all the other programs running.
CPU #0 is completely idle and CPU #2 is running a CPU-
bound batch program; other programs run on CPUs #1 and
#3. The elapsed time is about 800 microseconds. Figure
6 is drawn from the middle 400 microseconds. This is the
“nothing missing” picture showing every nanosecond of
every CPU core.

The helloworld program was actually run via ssh (secure
shell) from a remote machine. At the top left on CPU #1
is an Ethernet interrupt bringing the incoming command
line ./helloworld, followed by the sshd (ssh daemon)

3

2

1

0

CP
U

 n
um

be
r

sshd.2~2

bash.2~3

hello.~3 migrat~2

766.71us eth0; 2.00us IPC=0

806.14us kworker/u8:2.3010; 3.73us IPC=0.125

memhog_1

fig. 9b fig. 6 fig. 9a
1518.0us eth0;

1.70us IPC=0

1373.5us bash.2473;
3.55us IPC=0.25

hello /hello

800us 900us
917_000us

200us 400us100us 300us 500us

FIGURE 8: helloworld plus all the other programs running

15 of 27

acmqueue | september-october 2018 16

tools

program forwarding it to the command-line processor
bash.2 via a kernel thread kworker0 on CPU #3. This
instance of the Linux bash shell clones itself starting at
about time 900 microseconds on CPU #1, creating hello
on CPU #3. The migration program moves this to CPU #1.
(This is the missing reason mentioned from figure 5; Linux
preferentially executes a cloned program on the CPU core
that executed the clone() system call, when that core
is free.) After hello exits, there is some unlabeled sshd
activity to transmit the result back, and then bash.2 runs
again on CPU #3 to finish shutting down helloworld and
send out bash’s prompt for the next remote command.
During the entire time, an unrelated program memhog_1
is running on CPU #2, beating that core’s first-level data
cache to death and marking every four iterations of its
outer loop. CPU #0 happens to be idle the entire time
shown but is in fact taking timer interrupts outside the
figure.

Only with tools that can observe time sequencing can
you see cause and effect. Only with a nothing-missing
picture can you notice that periodic background tasks
cause periodic slowdowns of user-facing transactions.
Only with tools that can observe everything running on a
server can you hope to understand sources of serialization
and interference. Finally, only with fine-grained
microsecond-scale observations can you see the dynamics
of this interference.

In the example, a lot of serialized interaction occurs
between the sshd/kworker/bash/helloworld programs,
each waiting for work from another, but without much
cross-program interference to see. There is some

16 of 27

acmqueue | september-october 2018 17

tools

interference, nonetheless. In a large-scale distributed
transaction system, serialized interactions and
interference are prevalent.

Take a look at the red sine waves. Those are synthetic
indications of how long it takes this particular x86 CPU
to come out of its power-saving deep sleep C6 state—
about 30 microseconds. The effect is that it can add 30
microseconds to the time it takes to wake up a sleeping
task. If some complex software progresses by passing
work successively among dozens of threads, each sleeping
while waiting for work, then the additional delay adds up. It
can mean transactions are slower on idle servers than on
reasonably loaded ones that don’t sleep often. It also can
ruin the response time of RDMA (remote direct memory
access) protocols that depend on microsecond-scale
responses to network interrupts.

One Ethernet interrupt slowed down (took CPU time
away from) helloworld at time 316.5 microseconds in
figure 7. What is the effect on a web-server program that
happens to run on a CPU core that handles the bulk of disk
interrupts and the disks are highly busy? Or runs on a CPU
core that handles the bulk of network interrupts and the
network is highly busy? That program silently suffers in a
way not observed by many tools.

I once worked on a disk-server box at Google and
undersized the CPU’s computation ability by 25 percent.
To size the system, I used measurements from an in-house
accounting tool that charged for total CPU time spent
in various user-mode programs, as well as kernel-mode
code run on their behalf. I was sadly unaware that the
accounting tool did not know which program to charge

17 of 27

acmqueue | september-october 2018 18

tools

for interrupt processing of incoming
network packets. Outbound packets
were charged to the sender, but for
incoming ones the receiver was not
known until after they were processed.
The accounting program just threw
away the incoming network interrupt
time, a fundamental design flaw. It
should have simply had a category for
“incoming network” or even “other”
and been designed so that all time was
assigned to some category, “nothing
missing.” The assumption, of course,
was that the time involved was small
and could be ignored. (See sidebar.)

The unseen reality was that one
entire CPU core was consumed by
interrupt handling of heavy network
traffic. This didn’t matter much on a 32-
core compute server, but it made a 25
percent difference on a little four-core
disk server. (The project recovered only
because the disk-server software folks
spent two painful months making that
software 30 percent faster.)

Now take a look at the idle time
in figure 8. More specifically, look at
all the transitions out of idle. What
are these? Each transition out of
idle fundamentally represents some
program that is waiting for some

Never Too Small
to be Ignored
 In complex software, an
 assumption that the time
involved is small and can be ignored is
death. I worked for a while on Gmail,
in a normal development environment
with offline load tests used to run a
bunch of fake mail transactions and
measure whether the current release
was faster or slower than before. Of
course, rare tertiary transactions
were not in the load tests because the
time involved was “small and could
be ignored”—until we found a user
with 100,000 mail messages and an
offline program that used the tertiary
IMAP (Internet Message Access
Protocol) interface to access them
and that program had an N**2 bug in
the number of mail messages and that
caused each access to trigger a Gmail
bug that took 20 minutes of server
CPU time each time the user logged in.
It took much too long to find the one
user and the untested Gmail path and
then fix it, and add IMAP transactions
to the load tests.

3

18 of 27

acmqueue | september-october 2018 19

tools

event; that event finally happens, so the program becomes
runnable again. The key information is what happens
(probably on a different CPU) just before a core comes out
of idle. The activity there—disk interrupt, timer interrupt,
freeing a contended software lock, and so on—indicates
what the program was waiting for. Within a single server,
some laggard transaction delays are not from CPU
interference per se, but from waiting on other programs or
other threads of the same program.

In this environment, you want broad-brush tools that
can identify the reason for each wait, not just that so many
seconds were spent waiting for unknown events. Then you
can see the unexpected program dynamics (event A causes
event B) that are causing much too much waiting. Perhaps
a burst of 163 transactions that are supposed to be done
in parallel across 16 cores are, in fact, running sequentially
on a single core, making the “last guy” wait over 10 times
longer than the picture in the programmer’s head. Real
event in my former life.

Observing Cross-Domain and Cross-CPU interference
There are times, however, when the CPU-bound portion of
some transaction is executing but processing unusually
slowly.

Figures 9a and 9b zoom in on some of the page faults,
but in addition they show the IPC (instructions per cycle)
spent in each time span. This is not some coarse average
over several seconds; it is a fine-grained measurement for
each and every microsecond-scale time span shown—just
the sort of measurement advocated a dozen years ago.11 At
its peak, our chip can execute four IPCs. A low IPC means

19 of 27

acmqueue | september-october 2018 20

tools

that most of the execution slots are wasted. For the first
page fault in figure 9a, labeled 266.51us page_fault;
1.95us IPC=0.625, the time span is 1.95 microseconds,
or about 6,000 cycles on this particular machine. During
this time, CPU #1 executed about 3,700 instructions, so
3,700/6,000 = 0.625 IPC. There is a wealth of information
here about interference. Some page faults and other
activity from figure 8 with IPC are also shown. User-
mode code slows down because of kernel-mode cache
interference and then recovers.

In figure 9a the angle of the little triangle on the
helloworld user code on CPU #1 at about 259 microseconds
indicates that hello executed about 0.75 IPC. Now look at

3
2

1

0
a.

CP
U

 n
um

be
r

3
2
1

0
b.

CP
U

 n
um

be
r

IPC
0
0.25
0.5
0.75
1
1.5
2
3

979.65us page_fault; 2.83us IPC=0.125 991.32us page_fault; 870ns IPC=0.5

275.08us hello.3063;
760ns IPC=0.125

266.51us page_fault;
1.95us IPC=0.625

278.44us mprotect(0)=0;
1.52us IPC=0.375

IPC
0
0.25
0.5
0.75
1
1.5
2
3

258us
260us

262us
264us

266us
268us

270us
272us

274us
284us

282us
280us276us

278us

980us 982us 984us 986us 988us 990us 992us

FIGURE 9: Page faults and other activity from Figure 8

20 of 27

acmqueue | september-october 2018 21

tools

the little piece of hello just after the first page fault. Its IPC
dropped below 0.125. In fact, hello runs slowly with low IPCs
after each of the five page faults, then it picks up again on
the right after the mprotect calls. You are looking directly
at the speed consequence of page-fault kernel code trashing
the caches that helloworld is using.

Figure 9b shows the opposite effect. Kernel-mode code
starts slowly with a cold cache because of user-mode
cache interference and then speeds up. Look at the low
IPC for the first page fault on CPU #1 and then look at the
page-fault code’s IPC rising on subsequent page faults. It
is getting faster because more of its stuff is in the caches;
just as in figure 9a, the user program is getting slower as
less of its stuff is in the caches. Also note that the IPC in
the page-fault handler is much higher than in the user code
over this small set of time intervals. Conventional wisdom
is that kernel code always executes with a cold cache, so
it is inherently slow. That is seen to be false when you can
actually observe the true CPU behavior.

A Note About Observation Overhead
A tool that gives you fine-grained observations but slows
down the programs being observed by 20 times is fine for
understanding SPEC (Standard Performance Evaluation
Corporation) benchmarks and other batch programs. It is
useless in a production data center. Even a seven percent
slowdown, such as caused by tcpdump, is unacceptable in a
live user-facing data center during the busiest hour of the
day. The more interesting tail-latency problems, of course,
occur only in a live user-facing data center during the
busiest hour of the day. What to do?

21 of 27

acmqueue | september-october 2018 22

tools

Only fine-grained observation tools with one percent or
less CPU overhead are acceptable for live user traffic. This
means that tool designers and tool users must measure
each tool’s overhead and insist on it being tiny. I generated
the diagrams in this article with a software tool13 carefully
engineered to have ¼ percent overhead when tracing
200,000 kernel-user transition events per second per
CPU core, and less than one percent overhead when also
tracking IPC (because of the incredibly slow read of the
x86 instructions-retired performance counter, and then
the slow divide).

The table in figure 10 gives a short list of CPU
observation tools (other tools can observe disk and
network traffic, not discussed here). These performance
observation tools are all findable via a web search for
“<name> linux” or “<name> windows”. Lowercase names are
Linux tools, capitalized names are Windows tools.

Sampling tools periodically examine the CPU program
counter to give an overview of top CPU resource
consumers by subroutine or line number; they typically
require recompilation from source code to use effectively.
Counting tools periodically examine various hardware
and software counters, either for a single program or for
all programs running on a server. Because they execute
infrequently, sampling and counting tools are fairly low
overhead and therefore could be run on live data-center
machines. Tracing tools record time-sequenced events,
either for a single program or for all programs running on
a server. They typically slow down execution by 30 times or
so, making them completely unsuitable for live data-center
machines. KUTrace, the tool used to produce figures 3-9, is

22 of 27

acmqueue | september-october 2018 23

tools

the exception with less than one percent overhead. Tracers
are the only tools that can directly reveal cross-thread
and cross-program interference. Only full traces have the
“nothing missing” property.

CONCLUSIONS
There is a lot to be learned from careful observation of
a program and its complete surrounding context, even
one as “trivial” as helloworld. Some or all of these were
probably missing from the picture in your head:
3 User-mode execution gaps

Tool Type
One prog.

main()
User-mode

Any exe
Any lang No
re-compile

One prog.
Entire

User-mode

Kernel-
mode

Syscall

Kernel-
mode
Fault

Kernel-
mode
IRQ

All
server
prog.

Low
over-
head

gprof profiler
VTune
 profiler
Visual Studio
 profiler

sample
y y

strace
Process
 Monitor

trace y y y y

Visual Studio count y y y y y y y

perf
Performance
 Monitor
Task Manager

count y y y y y y y y

ftrace trace y y y y y y y

kutrace trace y y y y y y y y

FIGURE 10: A small sample of performance observation tools

23 of 27

acmqueue | september-october 2018 24

tools

3 Startup/shutdown time
3 Page-fault time, interrupt time, system-call time
3 More time in kernel code than in user code
3 Late page-in of rarely used code
3 fstat(), malloc() from within C runtime library
3 Possible page faults and zeroing after every malloc()
3 Resuming from power-saving sleep states
3 Serialized waiting for others; not executing at all
3 Cache interference

If you substitute for helloworld
a nontrivial data-center program,
you can learn even more about
that program and its interactions
with interfering processes on a
single server. Finding and tracking
down one such interference effect
at Google paid for 10 years of my
salary, in terms of money saved
after a 20-minute fix.

As more and more software
moves off the desktop and into
data centers, and more and more
cell phones use server requests as
the other half of apps, observation
tools for large-scale distributed
transaction systems are not
keeping up. This makes it tempting
to look under the lamppost using
simpler tools. You will waste a lot

Related articles

3 Network Applications Are Interactive
The network era requires new models, with
interactions instead of algorithms.
Antony Alappatt
https://queue.acm.org/detail.cfm?id=3145628

3 Sir, Please Step Away from the ASR-33!
To move forward with programming
languages we need to break free from the
tyranny of ASCII.
Poul-Henning Kamp
https://queue.acm.org/detail.cfm?id=1871406

3 Simplicity Betrayed
Emulating a video system shows how even a
simple interface can be more complex—and
capable—than it appears.
George Phillips
https://queue.acm.org/detail.cfm?id=1755886

24 of 27

acmqueue | september-october 2018 25

tools

of high-pressure time following that path when you have a
sudden complex performance crisis.

Instead, know what each tool you use is blind to, know
what information you need to understand a performance
problem, and then look for tools that can actually observe
that information directly—and do so with low enough
overhead and distortion to remain useful.

You may now resume your skepticism.

Acknowledgments
My thanks to Lance Berc, V. Bruce Hunt, Amer Diwan, Mark
Hill, Michael Brown, and the ACM referees for materially
improving the draft of this article.

References
1. Cantrill, B. 2006. Hidden in plain sight; acmqueue 4 (1),

26-36.
2. Dean, J., Barroso, L. A. 2013. The tail at scale.

Communications of the ACM 56 (2), 74-80.
3. Delimitrou, C., Kozyrakis, C. 2018. Amdahl’s law for tail

latency. Communications of the ACM 61 (8), 65-72.
4. Graham, S. L., et al. 1982. gprof: a call graph execution

profiler. Proceedings of the 1982 SIGPLAN Symposium
on Compiler Construction, SIGPLAN Notices 17 (6), 120-
126; https://docs.freebsd.org/44doc/psd/18.gprof/paper.
pdf.

5. Gregg, B. 2012. Thinking methodically about
performance; acmqueue 10 (12).

6. Kernighan, B. W. 1974. Programming in C: a tutorial;
https://www.lysator.liu.se/c/bwk-tutor.html.

7. Intel. 2018. Modern processor performance analysis.

25 of 27

https://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf
https://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf
https://www.lysator.liu.se/c/bwk-tutor.html

acmqueue | september-october 2018 26

tools

Intel Developer Zone; https://software.intel.com/en-us/
intel-vtune-amplifier-xe.

8. Microsoft. 2015. Beginners guide to performance
profiling. Microsoft Developer Network; https://msdn.
microsoft.com/en-us/library/ms182372.aspx.

9 Norton, R. A. 2010 Streetlight Effect; https://
en.wikipedia.org/wiki/Streetlight_effect.

10. Ousterhout, J. 2018. Always measure one level deeper.
Communications of the ACM 61 (7), 74-83

11. Purdy, M. 2006. Modern performance monitoring.
acmqueue 4 (1), 48-57.

12. Sigelman, B. H., et.al. 2010. Dapper, a large-scale
distributed systems tracing infrastructure. Google AI;
http://research.google.com/pubs/pub36356.html.

13. Sites, R. 2017. KUTrace: where have all the nanoseconds
gone? Tracing Summit, Prague, Czech Republic; https://
tracingsummit.org/w/images/3/30/TS17-kutrace.pdf.

Dr. Richard L. Sites wrote his first computer program in 1959
and has spent most of his career at the boundary between
hardware and software, with a particular interest in CPU/
software performance. He was head of a VAX microcode team
at Digital Equipment Corporation, and then with Rich Witek,
co-architect of the DEC Alpha processors. With Michael Uhler,
he invented the performance counters found in nearly all
processors today. With Ben Sigelman, et al., he helped design
and has heavily used the Dapper RPC tracing tool. With Ross
Biro, he built the first version of KUTrace at Google. He has
done low-overhead microcode and software tracing at DEC,
Adobe, Google, and more recently consulting at Tesla. He

26 of 27

https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://research.google.com/pubs/pub36356.html
https://tracingsummit.org/w/images/3/30/TS17-kutrace.pdf
https://tracingsummit.org/w/images/3/30/TS17-kutrace.pdf

acmqueue | september-october 2018 27

tools

studied at MIT, University of North Carolina, and Stanford
University. He holds 35 patents and is a member of the
National Academy of Engineering.
Copyright © 2018 held by owner/author. Publication rights licensed to ACM.

27 of 27

