
CS242 Final
Fall 2024

• Please read all instructions (including these) carefully.

• There are 4 questions on the exam, all with multiple parts. You have 3 hours to work on
the exam.

• The exam is open note. You may use laptops, phones and e-readers to read electronic
notes, but not for computation or access to the internet for any reason.

• Please write your answers in the space provided on the exam, and clearly mark your
solutions. Do not write on the back of exam pages or other pages.

• Several questions ask you to write programs in one of the languages covered in the course
(e.g., Rust, Haskell, and Agda). For these problems, grading will not be strict about the
syntax—if we can understand your solution, we will ignore syntax errors. However, if
your answer is ambiguous or we cannot decipher it because of confusion about syntax, we
will grade it accordingly, so striving to write clear solutions as much within the language
syntax as you can will be beneficial.

• Solutions will be graded on correctness and clarity. Each problem has a relatively simple
and straightforward solution. You may get as few as 0 points for a question if your solution
is far more complicated than necessary. Partial solutions will be graded for partial credit.

NAME:

STUDENT ID:

In accordance with both the letter and spirit of the Honor Code, I have neither given nor
received assistance on this examination.

SIGNATURE:

Problem Max points Points
1 30
2 26
3 30
4 24

TOTAL 110

1

1. Types and Continuations (30 points)

For each of the following problems, write a lambda term for which the given type is the
most general type possible (i.e., the type that would be assigned by type inference). You
may use integer constants (of type Int) and addition (of type Int → Int → Int) in your
answers. Do not use types in your lambda terms — lambda abstractions should have the
form λx.e, not λx : t.e.

a. (1 point) α → (α → β) → β

λx.λf.f x

b. (1 point) α → β → Int

λx.λy.0

c. (2 points) α → (α → β) → Int

λx.λf.(λz.0) (f x)

For parts d and e, recall the definition of the CPS Monad from lecture 9, slide 27:

Cont r a = (a → r) → r

d. (2 points) Cont r Int

λk.k 0

e. (5 points) Int → Cont Int a

λi.λk.(λz.0) (λf.λg.f (g (λa.1 + i)) (g k))

2

f. (6 points) For remaining subproblems we will use Haskell syntax. You may use the
following Haskell definitions:

newtype Cont r a = Cont ((a -> r) -> r)

extract :: Cont r a -> ((a -> r) -> r)
extract (Cont f) = f

It turns out that for every Applicative instance (recall lecture 13), there is an inverted
Applicative instance whose (<*>) operator performs the side effects in the opposite
order (i.e., right-to-left). Write Haskell code that implements an inverted Applicative
instance for Cont below:

instance Applicative (Cont r) where
pure :: a -> Cont r a
pure x =

Cont (\k -> k x)

(<*>) :: Cont r (a -> b) -> Cont r a -> Cont r b
f <*> x = let f' = extract f

x' = extract x
in Cont $ \k -> x' (\a -> f' (\atob -> k (atob a)))

3

Here are some additional Haskell definitions for subproblems g, h, and i:

double :: Int -> Int
double x = 2 * x

inc :: Int -> Int
inc x = x + 1

g :: Cont Int (Int -> Int)
g = Cont (\k -> inc (k inc))

a :: Cont Int Int
a = Cont $ \k -> k (double (k 3))

b :: Cont Int Int
b = g <*> a

runCont :: Cont r r -> r
runCont c = (extract c) (\x -> x)

f5 :: Int
f5 = runCont b

g. (3 points) Evaluate the above Haskell program using the standard Applicative instance
for Cont:
f5 = 10

h. (3 points) Evaluate the above Haskell program using the inverted Applicative instance
for Cont:
f5 = 12

4

i. (7 points) Consider the following code:

f4' [] ys k = return ys
f4' xs [] k = return xs
f4' (x:xr) (y:yr) k

= if (x < y)
then do rest <- f4' xr (y:yr) k

return (x:rest)
else if (y < x)

then do rest <- f4' (x:xr) yr k
return (y:rest)

else (k [])

f4 :: [Int]
-> ([Int] -> Cont r [Int])
-> Cont r [Int]

f4 [] _ = return []
f4 (h:[]) k = if (h < 0)

then (k [])
else return [h]

f4 l k =
let n = length l

n' = n `div` 2
(a, b) = splitAt n' l

in do a' <- f4 a k
b' <- f4 b k
f4' a' b' k

f44 :: [Int] -> [Int]
f44 xs = runCont (callCC (f4 xs))

Give a concise English description of the input-output functionality of this program.

f44 performs a mergesort, with the exception that the empty list is returned
if any of the elements are repeated or less than 0.

5

2. Evaluation Order, Termination, and Confluence (26 points)

You’re the on-call engineer at the hot new startup ski.ai™, whose website allows anyone
in the world to execute any SKI expression they choose. At 3am you’re awakened by an
emergency alert: requests are failing, the site is down, and AWS expenditures are through
the roof! You rush to the logs and find the culprit: someone has entered the expression
(S I I) (S I I). Immediately you realize what’s gone wrong: someone has entered an SKI
expression that doesn’t terminate, and now all of your servers are spending all of their cycles
in an infinite loop. You call a meeting of your top engineers, but unfortunately they are
asleep, and only Alex, Ben, and Colin are available. You explain the problem to them.

a. (4 points) Alex answers first: “I’ve got the fix!” he shouts, and begins drawing on the
whiteboard. “Whenever our evaluator applies a reduction, if it yields the same AST we
know we’ve hit an infinite loop!”. On the whiteboard you see written:
def eval(ast):

while not is_fully_evaluated(ski_expr):
new_ski_expr = apply_single_reduction(ski_expr)
if new_ski_expr == ski_expr:

return ski_expr
else:

ski_expr = new_ski_expr
“With this deployed, we can be sure that any SKI expression will eventually terminate,”
Alex says. Thanks to that fantastic CS242 class you took back at Stanford, you’re able
to immediately write an SKI expression that doesn’t terminate under normal
order evaluation despite Alex’s fix. You may include a brief justification for your
answer for possible partial credit.
For all parts of this problem you may find it useful to refer to Lecture 4, slides 11-19.
You can also use any combinator defined in the lecture notes in your answers (e.g., true,
pair, c1, fac, Y, . . .).

(S I I) (S I I)
This non-terminating expression does not rewrite to itself in a single step, and
so will not terminate with this definition of eval.

6

b. (6 points) “Exactly what I was thinking!” says Ben. “Here’s an actual fix:”
def eval(ski_expr):

seen_before = set()
while ski_expr not in seen_before:

seen_before.add(ski_expr)
ski_expr = apply_single_reduction(ski_expr)

if is_fully_evaluated(ski_expr):
return ski_expr

CS242 saves you again! You quickly spot the flaw and write an SKI expression
in the space below that doesn’t terminate under normal order evaluation
despite Ben’s fix. You may include a brief justification for your answer for possible
partial credit.

(S I I) (S I I) also works as an answer to this problem: under normal order, the
reduction sequence is
(S I I) (S I I) ->
I (S I I) (I (S I I)) ->
(S I I) (I (S I I)) ->
I (I (S I I)) (I (I (S I I))) ->
I (S I I) (I (I (S I I))) ->
(S I I) (I (I (S I I))) ->
...
Every time (S I I) comes into function position, it’s argument has grown in size
by one additional application of I, so terms never repeat.

7

c. (8 points) Finally, Colin stands up and walks to the whiteboard. “I think I’ve got the
solution,” he says, and writes the following on the board:
def eval(ski_expr, fuel: int):

while not is_fully_evaluated(ski_expr) and fuel > 0:
ski_expr = apply_single_reduction(ski_expr)
fuel = fuel - 1

return ski_expr
“This way we can only perform at most a finite number of reductions, so execution
should always terminate,” he says. “You’re right about that,” you say, “but now the
language is no longer confluent.” Write an SKI expression, an initial fuel value,
and two valid sequences of reductions given that fuel value that produce
different results. For example, if your SKI expression is (I I) I and your chosen
fuel value is 2, then a valid reduction sequence would be (I I) I → I I → I because
this sequence shows two steps of reduction of (I I) I.

i. SKI expression:

(K I S) (K I S)

ii. Fuel value (e.g., 2): 1

iii. Reduction sequence 1:

(K I S) (K I S) → I (K I S)

iv. Reduction sequence 2:

(K I S) (K I S) → (K I S) I

8

d. (8 points) “Not only that”, Alex says, “but now we can’t use normal order anymore,
as there are programs for which normal order doesn’t finish evaluating but another
evaluation order would.” He looks to you for help, and smiling, you write an SKI
expression, an initial fuel value, the reduction sequence for normal order,
and the alternative reduction sequence that returns a fully evaluated result.
Formally, if your SKI expression is e and e →fuel e′ under normal order evaluation
and e →fuel e′′ via the alternative reduction sequence, e′ should not be fully evaluated
under normal order, while e′′ should be the term that would result from full normal
order evaluation.

i. SKI expression:

S I I (I I)

ii. Fuel value (e.g., 2): 5

iii. Normal order reduction sequence:

S I I (I I) → (I (I I)) (I (I I)) → (I I) (I (I I)) → I (I (I I)) → I (I I) → I I

iv. Alternative reduction sequence:

S I I (I I) → S I I I → (I I) (I I) → I (I I) → I I → I

9

3. Rust (30 points)

Consider the following Rust function (where “· · ·” is an unspecified, valid boolean ex-
pression):

fn swizzle<'a, 'b, 'c, 'd, 'e, 'f>(x: &'a str, y: &'b str, z: &'c str)
-> (&'d str, &'e str, &'f str)

where ???
{

(if · · · { x } else { y },
if · · · { x } else { z },
if · · · { y } else { z })

}

a. (6 points) In the box below, write the lifetime constraints that should be placed in the
where clause to yield the most general signature for swizzle that passes the borrow
checker. Recall that Rust considers lifetime 'a to be a subtype of lifetime 'b if lifetime
'a is longer than lifetime'b—that is, the lifetime'a contains the lifetime'b—and that
a lifetime constraint has the syntax 'a:'b, where 'a is a subtype of 'b. You may also
find it helpful to review the discussion of lifetimes in lecture 11, slides 30-34.

'a: 'd, 'b: 'd, 'a: 'e, 'c: 'e, 'b: 'f, 'c: 'f

10

Let T1 <: T2 denote that T1 is a subtype of T2. Recall Rust’s subtyping rules for borrows
and functions, as induced by the subtyping relation on lifetimes:

L ∈ Lifetime
T, S ∈ Type ::= & ' L T | &mut ' L T | T1 → T2 | · · ·

T <: T
L1 <: L2 T1 <: T2

& ' L1 T1 <: & ' L2 T2

L1 <: L2

&mut ' L1 T <: &mut ' L2 T
S1 <: T1 T2 <: S2

T1 → T2 <: S1 → S2

Subtyping is discussed in lecture 18, slides 37-50. Here is a brief review of some Rust features
used in this problem:

• String literal expressions, e.g. "hello", have type & ' static str, where ' static is
the lifetime of the program (the longest lifetime).

• String::from creates a new, owned String object from a string literal, e.g.
String::from("hello"). For all ' a, String::as_str takes a & ' a String and re-
turns a & ' a str, e.g. s.as_str().

• A scope can be created anywhere, e.g. { e }, and all values declared in that scope are
dropped where it ends. A scope is an expression and it evaluates to the value of the
final expression in the scope, as for function bodies.

• The syntax for a closure is |args| body. The trait that is satisfied by closures/functions
mapping Args to Ret is Fn(Args) -> Ret.

b. (8 points) Suppose, counterfactually, that function types were contravariant in their
range (the type of the return value). Write a launder function such that the Rust
code below exhibits a use-after-free error. Both the type signature and the code for
launder are important in your answer.

let hello = {
let hello = String::from("hello");
launder(|| hello.as_str())

};
println!("{hello}");

fn launder<F: Fn() -> &'static str>(f: F) -> &'static str {
f()

}

11

c. (8 points) Suppose, counterfactually, that function types were covariant in their
argument type. Write a launder function such that the Rust code below exhibits a
use-after-free error. Both the type signature and the code for launder are important
in your answer.

let hello = &mut "hello";
{

let world = String::from("world");
launder(|s| { *hello = s; }, world.as_str())

}
println!("{hello}");

fn launder<'a, F: Fn(&'a str)>(f: F, s: &'a str) {
f(s)

}

d. (8 points) Suppose, counterfactually, that mutable borrows were covariant in type com-
ponent T as well as the lifetimes:

L1 <: L2 T1 <: T2

&mut ' L1 T1 <: &mut ' L2 T2

Write a launder function such that the Rust code below exhibits a use-after-free error.
Both the type signature and the code for launder are important in your answer.

let mut hello: &'static str = "hello";
{

let world = String::from("world");
launder(&mut hello, world.as_str());

}
println!("{hello}");

fn launder<'a>(r: &mut &'a str, s: &'a str) {
*r = s;

}

12

4. Dependent Types (24 points)

Assume the existence of the type Nat of natural numbers with constructors zero and
suc as usual and (infix) addition _+_ : Nat -> Nat -> Nat and (infix) multiplication
* : Nat -> Nat -> Nat. In Agda, we can define Vec, the type of arrays indexed by
their length, as follows:

data Vec (A : Set) : Nat -> Set where
nil : Vec A zero
cons : (n : Nat) -> A -> Vec A n -> Vec A (suc n)

Fill in the Agda functions below according to their specifications using only Nat, zero, suc,
+, _*_, Vec, nil, cons, and built-in Agda constructs. Give a type signature and a
definition for each function.

a. (8 points) Define append. Given a Vec of values of type A, [x1, . . . , xn], and another
Vec of values of type A, [y1, . . . , ym], append should return [x1, . . . , xn, y1, . . . , ym].

append : (A : Set)
-> (m : Nat) -> Vec A m
-> (n : Nat) -> Vec A n -> Vec A (m + n)

append A zero nil n ys = ys
append A (suc m) (cons m x xs) n ys =

cons (m + n) x (append A m xs n ys)

b. (8 points) Define dot, the pointwise product of two vectors. Given a Vec of natural
numbers, [x1, . . . , xn], and another Vec of natural numbers of the same length,
[y1, . . . , yn], dot should return [x1 ∗ y1, . . . , xn ∗ yn]. An application of dot should not
type-check if its inputs are vectors of unequal length.

dot : (n : Nat) -> Vec Nat n -> Vec Nat n -> Vec Nat n
dot zero nil nil = nil
dot (suc n) (cons n x xs) (cons n y ys) =

cons n (x * y) (dot n xs ys)

13

c. (8 points) Define first. Given a non-empty Vec of values of type A, [x1, . . . , xn],
first should return x1. An application of first should not type-check if its input is
the empty vector.

first : (A : Set) -> (n : Nat) -> Vec A (suc n) -> A
first A n (cons n x xs) = x

14

