CS242 Midterm
Fall 2021

- Please read all instructions (including these) carefully.

- There are 4 questions on the exam, some with multiple parts. You have 90 minutes to work on the exam.

- The exam is open note. You may use laptops, phones and e-readers to read electronic notes, but not for computation or access to the internet for any reason.

- Please write your answers in the space provided on the exam, and clearly mark your solutions. Do not write on the back of exam pages or other pages.

- Solutions will be graded on correctness and clarity. Each problem has a relatively simple and straightforward solution. You may get as few as 0 points for a question if your solution is far more complicated than necessary. Partial solutions will be graded for partial credit.

NAME: ________________________________

In accordance with both the letter and spirit of the Honor Code, I have neither given nor received assistance on this examination.

SIGNATURE: ________________________________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Max points</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>
1. **Lambda Calculus** (25 points)

 Recall the following definitions of booleans, integers, and lists from homework 1:

   ```
   def T = λx. λy. x;
   def F = λx. λy. y;
   def not = λb. b F T
   def inc = λn. λf. λx. f (n f x);
   def 0 = λf. λx. x;
   def cons = λh. λt. λf. λx. f h (t f x);
   def nil = λf. λx. x;
   ```

 For the following problems, feel free to define and use helper functions.

 (a) Write a lambda expression `xor` that returns the xor of two booleans. Recall that xor is true iff exactly one of its two boolean arguments is true.

   ```
   def xor = λa. λb.______________________________
   ```

 (b) Write a lambda expression `num_odds` that returns the number of odd integers in a list of integers.

   ```
   def num_odds = λl.______________________________
   ```

 (c) Write a lambda expression `is_odd` that checks if an integer is odd.

   ```
   def is_odd = λn. n not F;
   ```

   ```
   def num_odds = λl. l (λn. λc.(is_odd n) (inc c) c) 0;
   ```
2. **Object Calculus** (10 points)

Consider the following object calculus, extended with some constants. Objects are defined by

$$o = [\ldots, l_i : \zeta(x) e_i, \ldots]$$

where the method bodies e_i can use variables x, integers i, sums of integers $e+e'$, method selections $e.l$, and method overrides $e.l \leftarrow \zeta(y) e'$. Consider the following object calculus program:

$$o = [a : \zeta(x) 0, \ b : \ldots]$$

Fill in the b field with a method that, when invoked, returns an object of the same kind with the a field changed to a method that returns the old value of a incremented by 1. For example, the expression $o.b.b.b.b.b.a$ should evaluate to 5 (that is the number 5, not an encoding of 5).

$$o = [a : \zeta(x)0, \ b : \zeta(y).a \leq \zeta(x).a + 1]$$
3. **Simple Types** (30 points)

In this problem we extend the Simply Typed Lambda Calculus (STLC) with some new features. As a reminder, STLC has no polymorphic (quantified) types. The STLC’s syntax is:

- **Constants** $c ::= 0 | 1 | \ldots$
- **Expressions** $e ::= x | \lambda x : \tau . e | e \ e | c$
- **Types** $\tau ::= \text{int} | \tau \rightarrow \tau | \alpha$

Recall that the type checking rules $\Gamma \vdash e : \tau$ for the STLC are:

\[
\begin{align*}
\Gamma \vdash c : \text{int} & \quad \Gamma, x : \tau \vdash x : \tau \\
\Gamma \vdash \lambda x : \tau . e : \tau \rightarrow \tau' & \quad \Gamma \vdash e_1 : \tau \rightarrow \tau' \quad \Gamma \vdash e_2 : \tau \\
\hline
\end{align*}
\]

(a) We add *product* types to the STLC. Product types provide a way to construct and use pairs by packing two values together into a single value. Here we are introducing pairs as a new primitive type instead of using an encoding in the lambda calculus itself. Pairs are formed by the constructor $\langle e_1, e_2 \rangle$, and are eliminated through the accessors l and r. For example $\langle 3, 4 \rangle . r \rightarrow 4$ and $\langle 3, 4 \rangle . l \rightarrow 3$.

A pair of expressions $\langle e_1, e_2 \rangle$ has type $\tau_1 \times \tau_2$ if $e_1 : \tau_1$ and $e_2 : \tau_2$. We extend the syntax of the STLC as follows:

- **Expressions** $e ::= \ldots | \langle e, e \rangle | e . l | e . r$
- **Types** $\tau ::= \ldots | \tau \times \tau$

Fill in the typing rules for pairs:

\[
\begin{align*}
\Gamma \vdash \langle e_1, e_2 \rangle : & \\
\Gamma \vdash e . l : & \\
\Gamma \vdash e . r : & \\
\end{align*}
\]
Γ ⊢ e₁ : τ₁ Γ ⊢ e₂ : τ₂ Γ ⊢ ⟨e₁, e₂⟩ : τ₁ × τ₂ Γ ⊢ e : τ₁ × τ₂ Γ ⊢ e.l : τ₁ Γ ⊢ e.r : τ₂

(b) Consider the following approach to adding pairs to the STLC by using an encoding instead of adding them as primitives to the language:

\[
\begin{align*}
\text{let } \text{pair} & = \lambda x. \lambda y. \lambda f. f \, x \, y \\
\text{let } \text{dotl} & = \lambda p. p \, (\lambda x. \lambda y. x) \\
\text{let } \text{dotr} & = \lambda p. p \, (\lambda x. \lambda y. y) \\
\text{let } p & = \text{pair} \, 0 \, (\lambda f. f) \\
\text{let } x & = \text{dotl} \, p \\
\text{let } y & = \text{dotr} \, p
\end{align*}
\]

Is this program well typed? If so, provide the types of \text{pair}, \text{dotl} and \text{dotr}. If not, explain why the program cannot be typed.

The program is not well-typed, because the third argument to pair cannot be both \(\text{int} \rightarrow (\alpha \rightarrow \alpha) \rightarrow \text{int}\) and \(\text{int} \rightarrow (\alpha \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha)\).
4. **Combinator Calculi** (25 points)

(a) Show that the I combinator in the SKI calculus isn’t needed: Write a combinator using only S and K that implements I. There is a solution that uses three combinators.

\[S \ K \ K \]

(b) Consider the following combinator language:

- \(\langle x_1, \ldots, x_n \rangle \) is a list of length \(n \)
- \(\text{fold} \) \(f \ y \ \langle x_1, \ldots, x_n \rangle = f \ x_1 \ (f \ x_2 \ (\ldots (f \ x_n \ y)\ldots)) \)
- \(\text{cons} \) \(x_0 \ \langle x_1, \ldots, x_n \rangle = \langle x_0, x_1, \ldots, x_n \rangle \)
- \(\langle \rangle \) is the empty list, so we don’t need a separate empty list constructor

Note that \text{fold} performs a reduction starting from the right end of the list using \(y \) as the initial value. In the following problems, you may use \text{fold}, \text{cons} and lambda expressions (including helper function definitions if you like) in your solution, but you may not use any form of iteration or recursion other than \text{fold}.

i. Write a function \text{append} that appends an element \(x \) to the right end of a list \(l \).

\[
\text{append} \ x \ l = \text{fold} \ \text{cons} \ \langle x \rangle \ l
\]

ii. Using \text{append}, write a function \text{reverse} that reverses a list \(l \).

\[
\text{reverse} \ l = \text{fold} \ \text{append} \ \langle \rangle \ l
\]