• Please read all instructions (including these) carefully.

• There are 4 questions on the exam, some with multiple parts. You have 90 minutes to work on the exam.

• The exam is open note. You may use laptops, phones and e-readers to read electronic notes, but not for computation or access to the internet for any reason.

• Please write your answers in the space provided on the exam, and clearly mark your solutions. Do not write on the back of exam pages or other pages.

• Solutions will be graded on correctness and clarity. Each problem has a relatively simple and straightforward solution. You may get as few as 0 points for a question if your solution is far more complicated than necessary. Partial solutions will be graded for partial credit.

NAME:

In accordance with both the letter and spirit of the Honor Code, I have neither given nor received assistance on this examination.

SIGNATURE:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Max points</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>
1. **Lambda Calculus** (25 points)

Recall the following definitions of booleans, integers, and lists from homework 1:

```lisp
def T = λx. λy. x;
def F = λx. λy. y;
def not = λb. b F T
def inc = λn. λf. λx. f (n f x);
def 0 = λf. λx. x;
def cons = λh. λt. λf. λx. f h (t f x);
def nil = λf. λx. x;
```

For the following problems, feel free to define and use helper functions.

(a) Write a lambda expression `xor` that returns the xor of two booleans. Recall that `xor` is true iff exactly one of its two boolean arguments is true.

```lisp
def xor = λa. λb.__________________________
```

```lisp
def xor = λa. λb. a (not b) b;
```

(b) Write a lambda expression `num_odds` that returns the number of odd integers in a list of integers.

```lisp
def num_odds = λl.__________________________
```

```lisp
def is_odd = λn. n not F;
def num_odds = λl. (λn. λc.(is_odd n) (inc c) c) 0;
```
2. **Object Calculus** (10 points)

Consider the following object calculus, extended with some constants. Objects are defined by

\[o = [\ldots, 1_i : \zeta(x) e_i, \ldots] \]

where the method bodies \(e_i \) can use variables \(x \), integers \(i \), sums of integers \(e + e' \), method selections \(e.l \), and method overrides \(e.l \leftarrow \zeta(y) e' \). Consider the following object calculus program:

\[o = [a : \zeta(x) 0, b : \text{______________}] \]

Fill in the \(b \) field with a method that, when invoked, returns an object of the same kind with the \(a \) field changed to a method that returns the old value of \(a \) incremented by 1. For example, the expression \(o.b.b.b.b.b.a \) should evaluate to 5 (that is the number 5, not an encoding of 5).

\[o = [a : \zeta(x)0, b : \zeta(y)a \leftarrow \zeta(y)a + 1] \]
3. **Simple Types** (30 points)

In this problem we extend the Simply Typed Lambda Calculus (STLC) with some new features. As a reminder, STLC has no polymorphic (quantified) types. The STLC’s syntax is:

Constants
\[c \ ::= \ 0 \mid 1 \mid \ldots \]

Expressions
\[e \ ::= \ x \mid \lambda x : \tau.e \mid e \ e \mid c \]

Types
\[\tau \ ::= \ \text{int} \mid \tau \to \tau \mid \alpha \]

Recall that the type checking rules \(\Gamma \vdash e : \tau \) for the STLC are:

\[
\begin{array}{c}
\Gamma \vdash c : \text{int} \\
\Gamma, x : \tau \vdash x : \tau \\
\Gamma \vdash \lambda x : \tau.e : \tau \to \tau' \\
\Gamma \vdash e_1 : \tau \to \tau' \\
\Gamma \vdash e_2 : \tau
\end{array}
\]

(a) We add *product* types to the STLC. Product types provide a way to construct and use pairs by packing two values together into a single value. Here we are introducing pairs as a new primitive type instead of using an encoding in the lambda calculus itself. Pairs are formed by the constructor \(\langle e_1, e_2 \rangle \), and are eliminated through the accessors \(\text{l} \) and \(\text{r} \). For example \(\langle 3, 4 \rangle.\text{x} \to 4 \) and \(\langle 3, 4 \rangle.\text{1} \to 3 \).

A pair of expressions \(\langle e_1, e_2 \rangle \) has type \(\tau_1 \times \tau_2 \) if \(e_1 : \tau_1 \) and \(e_2 : \tau_2 \). We extend the syntax of the STLC as follows:

Expressions
\[e \ ::= \ \ldots \mid \langle e, e \rangle \mid e.\text{l} \mid e.\text{r} \]

Types
\[\tau \ ::= \ \ldots \mid \tau \times \tau \]

Fill in the typing rules for pairs:

\[
\begin{array}{c}
\Gamma \vdash \langle e_1, e_2 \rangle : \boxed{} \\
\Gamma \vdash e.\text{l} : \boxed{} \\
\Gamma \vdash e.\text{r} : \boxed{}
\end{array}
\]
(b) Consider the following approach to adding pairs to the STLC by using an encoding instead of adding them as primitives to the language:

\[
\begin{align*}
\Gamma \vdash e_1 : \tau_1 & \quad \Gamma \vdash e_1 : \tau_2 \\
\Gamma \vdash \langle e_1, e_2 \rangle : \tau_1 \times \tau_2 & \quad \Gamma \vdash e.1 : \tau_1 \\
\Gamma \vdash e : \tau_1 \times \tau_2 & \quad \Gamma \vdash e.\text{r} : \tau_2
\end{align*}
\]

\[
\begin{align*}
\text{let } \text{pair} &= \lambda x. \lambda y. \lambda f. f \ x \ y \\
\text{let } \text{dotl} &= \lambda p. p \ (\lambda x. \lambda y. x) \\
\text{let } \text{dotr} &= \lambda p. p \ (\lambda x. \lambda y. y) \\
\text{let } p &= \text{pair} \ 0 \ (\lambda f. f) \\
\text{let } x &= \text{dotl} \ p \\
\text{let } y &= \text{dotr} \ p
\end{align*}
\]

Is this program well typed? If so, provide the types of `pair`, `dotl` and `dotr`. If not, explain why the program cannot be typed. The program is not well-typed, because the third argument to `pair` cannot be both `\text{int} \to (\alpha \to \alpha) \to \text{int}` and `\text{int} \to (\alpha \to \alpha) \to (\alpha \to \alpha)`.
4. Combinator Calculi (25 points)

(a) Show that the I combinator in the SKI calculus isn’t needed: Write a combinator using only S and K that implements I. There is a solution that uses three combinators. S K K

(b) Consider the following combinator language:

- $\langle x_1, \ldots, x_n \rangle$ is a list of length n
- $\text{fold } f \ y \langle x_1, \ldots, x_n \rangle = f \ x_1 (f \ x_2 (\ldots (f \ x_n \ y)\ldots))$
- $\text{cons } x_0 \langle x_1, \ldots, x_n \rangle = \langle x_0, x_1, \ldots, x_n \rangle$
- $\langle \rangle$ is the empty list, so we don’t need a separate empty list constructor

Note that fold performs a reduction starting from the right end of the list using y as the initial value. In the following problems, you may use fold, cons and lambda expressions (including helper function definitions if you like) in your solution, but you may not use any form of iteration or recursion other than fold.

i. Write a function append that appends an element x to the right end of a list l.

$$\text{append } x \ l = \text{fold } \text{cons} \ \langle x \rangle \ l$$

ii. Using append, write a function reverse that reverses a list l.

$$\text{reverse } l = \text{fold } \text{append} \ \langle \rangle \ l$$