Monads

CS242
Lecture 9
Pairs and Currying

• Pairs
 • Constructor: \((e,e')\) or \(<e,e'>\)
 • Destructors: \(p.l, p.r\) or \(p.1, p.2\) or \(fst\ p, snd\ p\)
 • Type: \(A * B\)

• Consider a function \(f\) of type \(A * B \rightarrow C\)
 • From \(f\) we can construct a function of type \(A \rightarrow B \rightarrow C\)
 • \(\lambda a.\lambda b. f\ (a,b)\)
 • Called \textit{currying} the function
Review: Structural Operational Semantics

[Var]
\[E \vdash x \rightarrow E(x) \]

[Abs]
\[E \vdash \lambda x.e \rightarrow < \lambda x.e, E > \]

[Int]
\[E \vdash i \rightarrow i \]

[App]
\[E \vdash e_1 e_2 \rightarrow v' \]

\[E \vdash e_1 \rightarrow < \lambda x.e_0, E' > \]
\[E \vdash e_2 \rightarrow v \]
\[E'[x: v] \vdash e_0 \rightarrow v' \]

Note: \(E[x: v] \) is the same environment as \(E, x:v \). \(E \) is extended (or updated if \(x \) is already present) at point \(x \) to return \(v \).
Review: State

Evaluation rules have the form

\[E, S \leftarrow e \rightarrow v, S' \]

Expressions evaluate to a value and update the state.
Review: Evaluation Rules with State

[Var]

\[E, S \vdash x \rightarrow E(x), S \]

[Int]

\[E, S \vdash i \rightarrow i, S \]

[New]

\[l \notin \text{dom}(S) \]
\[E, S \vdash \text{new} \rightarrow l, S[l = 0] \]

[Abs]

\[E, S \vdash \lambda x. e \rightarrow \langle \lambda x.e, E \rangle, S \]

[App]

\[E, S \vdash e_1 e_2 \rightarrow v', S \]

\[E', x: v, S_2 \vdash e_0 \rightarrow v', S_3 \]
Another Feature: Exceptions

Evaluation rules have one of two forms

\[E \leftarrow e \rightarrow v \] evaluation produces a normal value

\[E \leftarrow e \rightarrow \text{Exc}(v) \] evaluation produces an exception

In the second case further evaluation must be *strict* in the exception: Once produced the exception propagates through all other computation until caught or it is the result of the computation.
Evaluation Rules with Exceptions

[Var]
\[E \vdash x \rightarrow E(x) \]

[Int]
\[E \vdash i \rightarrow i \]

[Abs]
\[E \vdash \lambda x . e \rightarrow \langle \lambda x . e, E \rangle \]
\[E \vdash e \rightarrow v \]

[Raise]
\[E \vdash \text{raise } e \rightarrow \text{Exc}(v) \]

[AppE1]
\[E \vdash e_1 \rightarrow \text{Exc}(v) \]
\[E \vdash e_1 e_2 \rightarrow \text{Exc}(v) \]

[AppE2]
\[E \vdash e_1 \rightarrow \langle \lambda x . e_0, E' \rangle \]
\[E \vdash e_2 \rightarrow \text{Exc}(v) \]
\[E \vdash e_1 e_2 \rightarrow \text{Exc}(v) \]
\[E \vdash e_1 \rightarrow \langle \lambda x . e_0, E' \rangle \]
\[E \vdash e_2 \rightarrow v \]
\[E'[x : v] \vdash e_0 \rightarrow v' \]

[App]
\[E \vdash e_1 e_2 \rightarrow v' \]
Beyond Pure Lambda Calculus

• What do lambda calculus+state and lambda calculus+exceptions have in common?

• Several things
 • They are both lambda calculus + “side information”
 • The side information is threaded through the computation in a specific order
 • There are new primitives for manipulating the side information
 • If the extra primitives are not used, the behavior is pure lambda calculus

• This is how programming languages are often described
 • A core functional part (lambda calculus)
 • Plus additional features that go beyond pure functions
But Why Not Pure Lambda Calculus?

• For the example with state, why not make the state an explicit argument to functions?
 • A function $a \rightarrow b$ that works on state type s could have a type $a \times s \rightarrow b \times s$

• But this signature exposes the state
 • The programmer must explicitly manage it

• An alternative (curried) signature: $a \rightarrow (s \rightarrow b \times s)$
 • $s \rightarrow b \times s$ is a state transformer

• Factor out $M b = s \rightarrow b \times s$ as an abstract data type
Language Features

• There are many non-functional language features that have similar properties:

• Continuations
• (Certain styles of) concurrency
• Nondeterminism
• Random numbers
• ...
Monads

• We can abstract the common part of these language features
 • Sequencing to thread the extra information through the computation

• Enables *programming* these features in pure lambda calculus
 • In a concise way

• More general than the state transformer abstraction
 • Monads are an abstraction for defining such abstractions
Types

• A monad $M \ a$ is an abstract type
 • The implementation of M is hidden

• The ``normal” functional type is a
 • The type of the normal value of the computation

• The extra or side information is hidden in the abstraction M
Operations

return: \(a \rightarrow M \ a \)

A function for creating an element of a monad.

bind: \(M \ a \rightarrow (a \rightarrow M \ b) \rightarrow M \ b \)

Sequencing: Take an element of a monad, unwrap the value inside, and apply a function returning an element of the monad with a value of possibly different type.

Bind is usually written \(v >>= f \), for monad value \(v \) and function \(f \).
Discussion

• One take: Not much here!
 • Pretty basic

• A second take: Just the right abstraction, and simple!
 • It turns out that \texttt{return/bind} are enough to implement many language features within the lambda calculus

• Keep in mind that \texttt{return} and \texttt{bind} are different for each monad
 • We have to find appropriate definitions
Partial Functions

• Start with a very simple monad

• An option type \texttt{Maybe(a)} is either a value of type \texttt{a} or nothing

• Useful for expressing the result of partial functions w/o exceptions

• Examples
 • head: List(a) -> Maybe(a) returns nothing if the list is empty
 • div: int -> int -> Maybe(int) returns nothing if the divisor is zero
Partial Functions

Maybe a =
 Just a
| Nothing

Example use to compose partial functions f and g:
λx.let y = f x in
 case y of
 Nothing: Nothing
 Just v: g(v)

Recall

Just = λa.λj.λn.j a
Nothing = λj.λn.n

Equivalent to y g Nothing
Partial Functions with Monads

Maybe a =
 Just a
| Nothing

-- monad M = Maybe
return = Just
v >>= f = case v of
 Nothing -> Nothing
 Just x -> f x
Composing Partial Functions

Consider the composition of two partial functions \(f \) and \(g \):
\[
\lambda x. \ x >>= f >>= g
\]

The **Maybe** monad handles the **Nothing** case transparently
- The case analysis is hidden inside of \(>>= \)
- Automatically short-circuits the computation if \(f \) returns **Nothing**
Example

head x = case x of
 Nil: Nothing
 Cons(a,as) : Just(a)

-- take the head of the first list of a list of lists
λl. return l >>= head >>= head
The State Monad

return: $a \rightarrow M a$

return = $\lambda v. \lambda s. (v, s)$ \hspace{1cm} -- note $M a = s \rightarrow a \ast s$ where s is the state type

$\ggg: M a \rightarrow (a \rightarrow M b) \rightarrow M b$

$p \ggg f = \lambda s. \text{let } (v, s') = p s \text{ in } f v s'$
Example Use

-- increment a global counter each time function foo is called
-- the state is a single integer
foo = λx. return 3 >>= λv. inc >>= λz.return v
bar = reset >>= foo >>= foo

-- inc and reset are new operations that manipulate the state
inc = λi.(i+1, i+1)
reset = λi.(0,0)
Nicer Syntax ...

-- increment a global counter each time function `foo` is called
-- the state is just a single integer

// interpret assignment `:=` as bind, taking a value of type `M a`
// unwrapping the value of type `a`

```haskell
foo x = do {
  v := return 3
  z := inc
  return v }
```
First Principles ...

• We want a stateful function of type \(a \to b \)
 • Which is a pure function of type \(a \to s \to (b,s) \) if we make the state explicit

• The second piece \(s \to (b,s) \) is a state transformer

• How do we compose a state transformer \(s \to (a,s) \) and a stateful function \(a \to s \to (b,s) \)?
 • This is what bind does.
Discussion

• Return & bind do just a few things:

• The e in return e is a pure computation
 • Doesn’t know about the state, can be written normally

• Bind handles the “plumbing” of the monad
 • Hides the manipulation of the state except through state primitives
 • And correctly sequences it through the computation
Exceptions

Exceptional e a =
 Success a
 | Exception e

-- monad M = Exceptional e
return: a → M a
return = Success

>>=: M a → (a → M b) → M b
v >>= f = case v of
 Exception l -> Exception l
 Success r -> f r

throw = Exception

catch e h = case e of
 Exception l -> h l
 Success r -> Success r
Using Exceptions

Consider composition of two functions f and g that can raise exceptions:

$$\lambda x. \text{return } x >>= f >>= g$$

Easy to add a handler for f:

$$\lambda x. \text{(catch (return } x >>= f) h) >>= g$$

Or for both f and g:

$$\lambda x. \text{catch (return } x >>= f >>= g) h$$

The threading of the exceptions is tedious without bind
The Continuation Monad

\[\text{Cont } r \ a \ = \ (a \to r) \to r \quad \text{-- } r \text{ is the result type of the computation} \]

A continuation monad \(M = \text{Cont } r \)

return: \(a \to M \ a \)

return = \(\lambda a.\lambda k. \ k \ a \)

\[c \gg= f = \lambda k. \ c \ (\lambda a. \ f \ a \ k) \]

\[\text{return } 6 \gg= \lambda i. \ \text{return} \ (7 \times i) \]
The Continuation Monad

• Allows building continuations by extending existing continuations
 • Continuations are composed in pieces

• Note there is no automatic translation
 • This is not a CPS transformation!

• The programmer must build up the desired continuations by hand
• Monads are an abstraction for programming language features

• And it’s just programming!
 • No need for a compiler
 • Can add or remove features as desired

• Examples of good uses:
 • A small part of the program needs state
 • Use the State monad just in that portion
 • Part of the program needs State and Exceptions
 • Again, just use these monads in the parts where they are needed
Comments

• Three features are important to making monads work

• Higher-order functions
 • Bind is a higher order function
 • Many of the monads wrap higher order functions (continuations)

• Type checking
 • The type checker will complain if monads are used incorrectly
 • Necessary for most programmers to avoid getting tangled up
Upsides

• Since it is ``just programming'', users can write their own monads
 • And they do
 • Many programming patterns are usefully abstracted as monads

• Monads are ubiquitous in Haskell
 • Where they were pioneered

• And have appeared in many other settings
 • Again, easy to adopt new ways of structuring software
 • Even in languages without monads built-in
Downsides

• Monads are not a panacea
 • “It’s just programming”

• There are three main limitations
 • Multiple monads don’t always compose well
 • State(Exceptions(LC)) has different semantics than Exceptions(State(LC))
 • Monads don’t commute
 • To use monads, your program must be structured using return/bind
 • Contagious: Whole program tends to end up being written monadically
 • Major hit when converting non-monadic code to monadic code
 • Performance is not what it could be if the features were built in
 • No free lunch – there is a reason compilers are large and complicated

• And the programs end up looking like C++!
A New View of Languages

• Monads were first used in language semantics
 • An idea borrowed from category theory in mathematics
 • Instead of messy environments with state, exceptions, continuations, use monads to structure the execution rules

• We now view languages as a pure core with monad extensions

• Most languages have the monads built in
 • State, Exceptions, Concurrency, ...
 • Better performance, debugging support, and error messages

• But now we realize many of these features can be implemented within a language with higher-order features
 • Bridges (one of) the divides between functional and Turing languages