Program Verification via Type Theory

CS242
Lecture 12
Projects

There will be three projects:

• Program verification using dependent types
 • Today’s lecture

• Gradual typing: Integrating static and dynamic type checking
 • Wednesday’s lecture

• Writing an async library using Rust’s novel features
 • Already covered ...
Program Verification

• Proving properties of programs

• But not just that programs are well-typed
 • Much deeper, almost arbitrary properties
 • And often verifying full functional correctness

• Components
 • A specification: What the property the program is supposed to have
 • A proof: Written mostly manually
 • A proof assistant: Supports defining the concepts, managing the proof, checking the proof, some automation of easy parts of the proof

• Proof assistants are based on type theory
Type Theory

• Pioneered by Bertrand Russell in the early 20th century
 • And greatly extended in computer science

• Original goal: A basis for all mathematics
 • An alternative to set theory

• Allows the formalization of
 • Programs
 • Propositions (types)
 • Proofs that programs satisfy the propositions
 • Uniformly in one system
Caveats

• There are multiple versions of type theory

• We will look at one, and mostly by example
 • At the level we consider, there aren’t significant differences with other approaches

• Type theory is a big topic
 • Whole courses are devoted to it
 • (But the same is true of other topics in this class!)
Lambda Application and Abstraction Rules

\[\frac{A \vdash e_1 : t \to t'}{A \vdash e_1 e_2 : t'} \quad \text{[App]} \]

If \(e_1 : t \to t' \) and \(e_2 : t \), then \(e_1 e_2 \) has type \(t' \).

\[A, x : t \vdash e : t' \quad \text{[Abs]} \]

If assuming \(x : t \) implies \(e : t' \), then \(\lambda x. e : t \to t' \).

Function Type Elimination

Function Type Introduction
Ignore the Programs for a Moment ...

\[\begin{align*}
A \vdash e_1 : t \to t' \\
A \vdash e_2 : t \\
\hline
A \vdash e_1 e_2 : t' \\
\end{align*} \]

[App]

From a proof of \(t \to t' \) and a proof of \(t \), we can prove \(t' \).

Implication Elimination (modus ponens)

\[\begin{align*}
A, x : t & \vdash e : t' \\
A & \vdash \lambda x.e : t \to t' \\
\hline
A & \vdash \lambda x.e : t \to t' \\
\end{align*} \]

[Abs]

If assuming \(t \) we can prove \(t' \), then we can prove \(t \to t' \).

Implication Introduction
Types As Propositions

\[A \vdash e_1 : t \rightarrow t' \]
\[A \vdash e_2 : t \]
\[\frac{A \vdash e_1 e_2 : t'}{[\text{App}]} \]

\[A \vdash \lambda x . e : t \rightarrow t' \]
\[A, x : t \vdash e : t' \]
\[\frac{A \vdash \lambda x . e : t \rightarrow t'}{[\text{Abs}]} \]

From a proof of \(t \rightarrow t' \) and a proof of \(t \), we can prove \(t' \).

If assuming \(t \) we can prove \(t' \), then we can prove \(t \rightarrow t' \).

Here we regard the types as propositions: If we can prove certain propositions are true, then we can prove that other propositions are true.

But what are the proofs?

Alex Aiken CS 242 Lecture 12
Programs as Proofs

\[A \vdash e_1 : t \to t' \]
\[A \vdash e_2 : t \]
\[A \vdash e_1 e_2 : t' \]

[App]

\[A, x : t \vdash e : t' \]
\[A \vdash \lambda x . e : t \to t' \]

[Abs]

From a proof of \(t \to t' \) and a proof of \(t \), we can prove \(t' \).

If assuming \(t \) we can prove \(t' \), then we can prove \(t \to t' \).

Answer: The programs! \(e : t \) is a proof that there is a program of type \(t \).
The Curry-Howard Isomorphism

• There is a isomorphism between programs/types and proofs/propositions.

• Two interpretations of $\vdash e : t$

• We have a proof that the program e has type t
 • \rightarrow is a constructor for function types

• e is a proof of t
 • \rightarrow is logical implication
Discussion

• This seems interesting ... but is it useful?

• Not so far

• If we use more expressive types, we can express more propositions.

• We need more than implication!
Propositional Logic

• As an example, we show how to define the rest of propositional logic

• This is just one of many theories we could define
 • But a particularly useful one

• We will define:
 • And
 • Or
 • Not
And

A ⊢ e₁ : t₁
A ⊢ e₂ : t₂
A ⊢ ? : t₁ ∧ t₂

[And-Intro]

A ⊢ e : t₁ ∧ t₂
A ⊢ ? : t₁

[And-Elim-Left]

A ⊢ e : t₁ ∧ t₂
A ⊢ ? : t₂

[And-Elim-Right]

What program is a proof of \(t₁ ∧ t₂ \)?
Pairs

\[
\begin{aligned}
\text{A} \vdash e_1 : t_1 \\
\text{A} \vdash e_2 : t_2 \\
\hline
\text{A} \vdash (e_1, e_2) : t_1 \land t_2
\end{aligned}
\]
[And-Intro]

\[
\begin{aligned}
\text{A} \vdash e : t_1 \land t_2 \\
\hline
\text{A} \vdash e.left : t_1
\end{aligned}
\]
[And-Elim-Left]

\[
\begin{aligned}
\text{A} \vdash e : t_1 \land t_2 \\
\hline
\text{A} \vdash e.right : t_2
\end{aligned}
\]
[And-Elim-Right]
Or

\[
\begin{align*}
A \vdash e : t_1 \\
\hline
A \vdash e : t_1 \lor t_2
\end{align*}
\] [Or-Intro-Left]

\[
\begin{align*}
A \vdash e : t_2 \\
\hline
A \vdash e : t_1 \lor t_2
\end{align*}
\] [Or-Intro-Right]

\[
\begin{align*}
A \vdash e : t_1 \lor t_2 \\
\hline
A \vdash ? : ?
\end{align*}
\] [Or-Elim]
Hmmmm ...

• The Or elimination rule isn’t obvious

• We need to exhibit a program that works regardless of whether \(e \) is an element of \(t_1 \) or \(t_2 \).

• Solution
 • The elimination is done by another program that does a case analysis
Or Elimination

\[A \vdash e_0 : t_1 \lor t_2 \quad A, x : t_1 \vdash e_1 : t_0 \quad A, x : t_2 \vdash e_2 : t_0 \]

\[A \vdash (\lambda x. \text{case } x \text{ of } t_1 \rightarrow e_1; t_2 \rightarrow e_2) \ e_0 : t_0 \]
Discussion

• This is not the “or” of classical logic
 • In constructive logic, we must construct evidence for everything we prove

• More restricted
 • To use a disjunction, we must know which case we are in

• A dual explanation
 • To create a disjunction, we must compute a value of one of the types

• Thus $t \lor \neg t$ is not an axiom of this system!
 • And this is the only classical axiom that must be excluded
Negation

- \(\neg p \) is defined as \(p \rightarrow \text{false} \)
 - Proposition \(p \) implies a contradiction

- \text{False} is the empty type – there is no evidence for \text{false}

- Thus \(\neg p \) either does not have any elements, or only non-terminating functions
 - Depending on what else is included in the theory we are using
What is Negation Good For?

• There are uses for negation

• If we are just interested in proving things, proof by contradiction is an important technique
 • Recall one goal is to formalize mathematics

• But there are also computational interpretations
Type Theory for Continuations (Sketch)

Recall $\neg p = p \rightarrow \text{false}$

In pure lambda calculus, a function of type $\neg p$ can’t be called

• Because false has no elements in its type

• But in a language with continuations:
 • Recall that a continuation has the form $\lambda v. e$ and does not return when called
 • So it is sensible to give continuations a type $p \rightarrow \text{false} = \neg p$
Constructive vs. Classical Logic

• Constructive logic gives us programs we can run

• Type theory can also have classical axioms
 • What axioms are used is not the distinguishing feature of type theory
 • But if we use classical logic, we also lose the ability to use the proofs as programs, as they are no longer constructive

• In applications to software, we are generally interested in constructive proofs
Summary

• We have shown how to define propositional logic in type theory
 • Give sensible type rules for and, or and not
 • Show how to construct programs that have the postulated types

• Example: We can prove \((a \rightarrow b) \rightarrow (a \rightarrow c) \rightarrow (a \rightarrow b \land c)\)
Taking It to the Next Level

• We want to be able to define new kinds of theories within the system

• and, or, & not should definable within the system

• The type checking rules should also be definable
Boolean Connectives Revisited

• What are \textit{and}, \textit{or} and \textit{not}?

• They are functions that take types and construct new types

• Introduce a new type \texttt{Type} that contains all types
 • \texttt{Type} = \{ Int, Bool, Int \to Int, ... \}

• \texttt{and}: Type \to Type \to Type
• \texttt{or}: Type \to Type \to Type
• \texttt{not}: Type \to Type
Inference Rules Revisited

• An inference rule is a function that takes proofs of propositions as arguments and produces a proof of a proposition as a result

• Define a new type \textbf{Proof}

 • And-Intro: \textbf{Proof} \rightarrow \textbf{Proof} \rightarrow \textbf{Proof}
 • And-Elim-Left: \textbf{Proof} \rightarrow \textbf{Proof}
 • And-Elim-Right: \textbf{Proof} \rightarrow \textbf{Proof}
Review

So now we can:

• Define new types
• Define new type combinators (and, or, not ...)
• Define new inference rules (and-intro, ...)

• All using a uniform system based on types
• Note the system also checks type functions and inference rules are correctly used
 • E.g., we can only build valid proofs
Are We Done?

• Not yet

• There are three more important features of type theories:
 • Type stratification
 • Inductively defined data types
 • Pi types
Type Stratification

• Recall we "Introduce a new type Type that contains all types"
 • Type = \{ Int, Bool, Int \rightarrow Int, \ldots \}

• So is Type \in Type ?
And Now ... A Little Set Theory

• Recall in the early 20th century there was a systematic effort to understand the foundations of logic
 • As part of the goal of formalizing mathematics

• \textit{Set theory} was recognized as a potential foundation
Why Set Theory?

• A function f can be represented as a set of (input,output) pairs:

$$\{(x_i,y_i) \mid f(x_i) = y_i\}$$

• Natural numbers:

$$\begin{align*}
0 &\equiv \emptyset \\
\text{Succ}(n) &\equiv n \cup \{n\}
\end{align*}$$

• And so on ...
Russell’s Paradox

Consider $R = \{ x \mid x \notin x \}$

Now we can easily show:

- $R \notin R \Rightarrow R \in R$
- $R \in R \Rightarrow R \notin R$

So we conclude:

$R \in R \iff R \notin R$
Implications

• Russell’s paradox showed naïve set theory is inconsistent
 • Can prove “false is true” and so can prove anything
 • Not a great foundation for mathematics!

• Led to a reconsideration of the foundations of set theory
 • Over a couple of decades

• One conclusion: No set could be an element of itself
 • Set theory should be well-founded
What Does Well-Founded Mean?

• There is no set of all sets
• Instead, there is an infinite hierarchy of stratified sets

• We define “small” sets at stratum 0
• The set of all level 0 sets is a stratum 1 set
• The set of all level 1 sets is a stratum 2 set
• ...

• In this way no set can be an element of itself
 • Stratum n sets can only contain small sets of stratum n and sets of strata less than n
• Similar to the definition of ordinals
Back To Types ...

• Recall that types are sets
 • So Russell’s paradox applies to types as well

• Implies we will need a type hierarchy
 • In a consistent type system
 • The set of all types lives at a higher level in the hierarchy than ordinary types
Ordinary Types

0 : Int
succ : Int → Int
add : Int → Int → Int

true : Bool
false : Bool
and : Bool → Bool → Bool
Next Level ...

• What are Int, Bool, \(\alpha \rightarrow \beta \), ...?

• They are types
 • Int : Type
 • Bool: Type
 • Int \rightarrow Int: Type

• Int, Bool, etc. are at level 0 of the type hierarchy
• Type is at level 1
Next Level ...

• What are \(\rightarrow \) and \texttt{and}?

• They are functions of types that produce types
 • \(\rightarrow : \text{Type} \rightarrow \text{Type} \rightarrow \text{Type} \)
 • \texttt{and}: \text{Type} \rightarrow \text{Type} \rightarrow \text{Type}

• These are functions that operate on elements of type level 1
Inductively Defined Data Types

• Dependent type theories generally include inductively defined data types as a primitive concept
 • So users can define natural numbers, lists, trees, etc.
 • With constructors of the appropriate types

• We have already talked about how to represent inductively defined data types as lambda terms in previous lectures.
 • Nothing new here ...
Pi Types

• What we have discussed so far is still missing an important feature

• We can’t express type functions that depend on their arguments

• Example cons: $\alpha \rightarrow \text{List}(\alpha) \rightarrow \text{List}(\alpha)$
 • What is the type of cons?
 • Explanation 1: cons has a family of types indexed by a parameter α
 • Explanation 2: cons has many types, one for each α
 • a product or intersection of an infinite set of types
Pi Types

Defining the List data type:

List: Type → Type
Cons: \(\Pi \alpha : \text{Type}. \, \alpha \to \text{List}(\alpha) \to \text{List}(\alpha) \)
Nil: \(\Pi \alpha : \text{Type}. \, \text{List}(\alpha) \)

Polymorphic types are an example of dependent types: The type depends on a parameter. Note how \(\Pi \) functions like \(\forall \).
Pi Types

The parameter in a Pi type doesn’t have to range over Type.

A polymorphic array that includes its length in the type:

\[\text{Array: Type } \rightarrow \text{ Int } \rightarrow \text{ Type} \]

\[\text{mkarray: } \Pi \alpha : \text{ Type}. \Pi \beta : \text{ Int}. \alpha \rightarrow \beta \rightarrow \text{ Array}(\alpha, \beta) \]

Here \(\beta \) is an integer – which could be any expression of type \(\text{Int}! \)
Discussion

• Without Pi types, type theory is very limited
 • E.g., simply typed lambda calculus

• Pi types are extremely powerful
 • The construct for creating infinite families of types
 • The signature feature of dependent type theories
 • Play a somewhat similar role to set comprehension in set theory

• Dependent type systems are often undecidable
 • Performing computation as part of type checking is bound to quickly run into computability issues!
Type Theory

• A foundation for all mathematics
 • Especially constructive mathematics
 • Sufficiently powerful to prove anything we can think of proving
 • And there for also a foundation for verifying the correctness of software

• Key features
 • Isomorphism of programs/types with proofs/propositions
 • Type hierarchy allows uniform definition of types, type operations, proofs, ...
 • Dependent types allow very expressive (even to the point of undecidability) types to be constructed
Type Theory in the Real World

• Type theory has been used to verify the correctness of real systems

• CompCert
 • A formally verified (subset of) C compiler

• Sel4
 • A formally verified OS microkernel
 • Has many but not all features of a real OS
State of Practice

• Compcert and Sel4 show that formal verification using type theory-based proof assistants is becoming practical

• Compcert and Sel4 have very high levels of assurance
 • Debugging is not an issue
 • Guaranteed, for example, to be extremely secure

• But Compcert and Sel4 have shown the software engineering costs of full formal verification are still high
 • Sel4 has over 1M lines of proofs
 • Modifications may require much more reproving than recoding

• The biggest barrier for most systems, though, is having the specification
 • Have to know what to prove to use a theorem prover!