Set Constraints
Approaches to Proving Properties of Programs

Automatic, Low complexity
- Simply Typed Lambda Calculus

Automatic, High complexity
- Static Analysis

Automatic or Semi-automatic, Often undecidable
- Invariant Inference

Manual, Undecidable
- Dependent Types
Closure Analysis: The Problem

• A call graph is a graph where
 • The nodes are function (method) names
 • There is a directed edge \((f,g)\) if \(f\) may call \(g\)

• Call graphs can be overestimates
 • If \(f\) may call \(g\) at run time, there must be an edge \((f,g)\) in the call graph
 • If \(f\) cannot call \(g\) at run time, there is no requirement on the graph

• Call graphs are used heavily in implementations of programming languages
Recall: Untyped Lambda Calculus

e → x | λx.e | e e
A Definition

• Assume all bound variables are unique
 • So a bound variable uniquely identifies a function
 • Can be done by renaming variables

• For each application $e_1 \ e_2$, what is the set of lambda terms $L(e_1)$ to which e_1 may evaluate?
 • $L(...)$ is a set of static, or syntactic, lambdas
 • $L(...)$ defines a call graph
 • the set of functions that may be called by an application
A More General Definition

• To compute $L(\ldots)$ for applications, we must compute it for every expression.

• Define:
 $L(e)$ is the set of syntactic lambda abstractions to which e may evaluate.

• The problem is to compute $L(e)$ for every expression e.
Defining $L(...)$

\[\lambda x . e \]

\[\lambda x . e \subseteq L(\lambda x . e) \]

\[e_1 e_2 \]

for each \[\lambda x . e \subseteq L(e_1) \]

\[L(e_2) \subseteq L(x) \]

\[L(e) \subseteq L(e_1 e_2) \]

The actual argument of the call flows to the formal argument

The value of the application includes the value of the function body
Rephrasing the Constraints with \subseteq

The following constraints have the same least solution as the original constraints:

\[
\begin{align*}
\lambda x. e & \quad \lambda x. e \subseteq L(\lambda x. e) \\
n_1 n_2 & \\
\lambda x. e_0 \subseteq L(n_1) \Rightarrow (L(e_2) \subseteq L(x) \land L(e_0) \subseteq L(n_1 n_2))
\end{align*}
\]

Note: Each $L(e)$ is a set variable

Each $\lambda x. e$ is a constant
Example \(((\lambda x.x) \ (\lambda y.y)) \ (\lambda z.z)\)

\[
\begin{align*}
\lambda x.x & \subseteq L(\lambda x.x) \\
\lambda y.y & \subseteq L(\lambda y.y) \\
\lambda z.z & \subseteq L(\lambda z.z) \\
L(\lambda y.y) & \subseteq L(x) \\
L(x) & \subseteq L((\lambda x.x) \ (\lambda y.y)) \\
L(\lambda z.z) & \subseteq L(y) \\
L(y) & \subseteq L(((\lambda x.x) \ (\lambda y.y)) \ (\lambda z.z))
\end{align*}
\]

Solution:

\[
\begin{align*}
L(\lambda x.x) & = \lambda x.x \\
L(\lambda y.y) & = \lambda y.y \\
L(\lambda z.z) & = \lambda z.z \\
L(\lambda y.y) & = L(x) = L((\lambda x.x) \ (\lambda y.y)) \\
L(\lambda z.z) & = L(y) = L(((\lambda x.x) \ (\lambda y.y)) \ (\lambda z.z))
\end{align*}
\]
The Example \(((\lambda x.x) \ (\lambda y.y)) \ (\lambda z.z)\) with Graphs
The Solution for $$(((\lambda x.x) (\lambda y.y)) (\lambda z.z))$$

The solution is given by the edges whose source is a lambda.
Set Constraints

• A finite set of *constructors*

 \[
 a, b, c, f, g, h \in C
 \]

• Each constructor \(c\) has an *arity* \(a(c)\)

 • Can be 0

• Terms

 • \(T = \{ f(t_1, \ldots, t_{a(f)}) \mid f \in C, \ t_i \in T \}\)
Set Constraints

$L \rightarrow 0 ~|~ x ~|~ c(L_1,\ldots,L_n) ~|~ L_1 \cup L_2$

$R \rightarrow 1 ~|~ x ~|~ c(R_1,\ldots,R_n) ~|~ R_1 \cap R_2$

Constraints: $L \subseteq R$ or $c \subseteq R \Rightarrow L' \subseteq R'$
Solving

\[S, L_1 \cup L_2 \subseteq R \rightarrow S, L_1 \cup L_2 \subseteq R, L_1 \subseteq R, L_2 \subseteq R \]

\[S, L \subseteq R_1 \cap R_2 \rightarrow S, L \subseteq R_1 \cap R_2, L \subseteq R_1, L \subseteq R_2 \]

\[S, c(L_1,...,L_n) \subseteq c(R_1,...,R_n) \rightarrow S, c(L_1,...,L_n) \subseteq c(R_1,...,R_n), L_1 \subseteq R_1, ..., L_n \subseteq R_n \]

\[S, c \subseteq R \Rightarrow L' \subseteq R', c \subseteq R \rightarrow S, c \subseteq R \Rightarrow L' \subseteq R', c \subseteq R, L' \subseteq R' \]

\[S, L \subseteq x, x \subseteq R \rightarrow S, L \subseteq x, x \subseteq R, L \subseteq R \]

No solutions if \(c(...) \subseteq 0, 1 \subseteq c(...) \), or \(c(...) \subseteq d(...) \)
Add Integers ...

\[e \rightarrow x \mid \lambda x.e \mid e \ e \mid i \]
Extend $L(...) \text{ With Integers}$

\[\lambda x. e \]
\[\lambda x. e \subseteq L(\lambda x. e) \]

\[i \quad i \subseteq L(i) \quad \text{Idea: Treat integers like lambdas and track their flow.} \]

\[e_1 \quad e_2 \]
\[\text{for each } \lambda x. e \subseteq L(e_1) \]
\[L(e_2) \subseteq L(x) \]
\[L(e) \subseteq L(e_1 \ e_2) \]
Application: Type Inference!

\[\lambda x. e \]
\[\lambda x. e \subseteq L(\lambda x. e) \]

\[i \quad i \subseteq L(i) \]

\[e_1 \ e_2 \]

for each \[\lambda x. e \subseteq L(e_1) \]
\[L(e_2) \subseteq L(x) \]
\[L(e) \subseteq L(e_1 \ e_2) \]

\[L(e_1) \subseteq \{ \lambda x. e \mid \lambda x. e \text{ is a lambda abstraction in the program} \} \]
An Example \(((\lambda x. x) (\lambda y. y)) (\lambda z. z)\)
An Example $((\lambda x.x) \ 1) \ (\lambda z.z)$

There is a path from an integer constant to the set of lambdas – a type error.
Discussion

• Idea: For each application $e_1 e_2$, check if $i \subseteq L(e_1)$
 • If yes, it’s a type error

• More general than simply typed lambda calculus
 • Intuition: Relax = constraints to \subseteq

• Note every pure lambda (with no integers) has a type
Summary So Far

• Set constraints use subset relationships instead of equality

• Natural interpretation as a graph
 • Nodes are sets
 • Directed edges are inclusion constraints
 • Solving the constraints = adding edges to the graph
 • Dynamic transitive closure $O(n^3)$

• Many applications of closure analysis in functional programming
 • Often the first analysis to be done
The Next Step

• So far we’ve only considered sets of atoms
 • Sets where the elements have no structure

• Now consider sets where the elements can be sets of data types
 • E.g., \texttt{cons(A,B)} is the cross product of \texttt{cons(a,b)} for every \texttt{a} in \texttt{A} and \texttt{b} in \texttt{B}
Recall: Simple Type Inference Rules

\[
\begin{align*}
\text{[Var]} & : A, x: \alpha_x \vdash x: \alpha_x \\
\text{[Abs]} & : A, x: \alpha_x \vdash e: t \\
& \quad \Rightarrow A \vdash \lambda x: \alpha_x.e: \alpha_x \rightarrow t
\end{align*}
\]

\[
\begin{align*}
\text{[App]} & : t = t' \rightarrow \beta \\
& \quad \Rightarrow A \vdash e_1: t \\
& \quad \Rightarrow A \vdash e_2: t' \\
& \quad \Rightarrow A \vdash e_1 e_2: \beta
\end{align*}
\]
A Small Change

\[A, x: \alpha_x \vdash x: \alpha_x \]\hspace{1cm}[Var]\hspace{1cm}\[A, x: \alpha_x \vdash e: t \]\hspace{1cm}[Abs]

\[A \vdash \lambda x. e: \alpha_x \rightarrow t \]

\[t \subseteq t' \rightarrow \beta \]

\[A \vdash e_1: t \]

\[A \vdash e_2: t' \]\hspace{1cm}[App]\hspace{1cm}\[A \vdash e_1 e_2: \beta \]
Recall: Solving the (Equality) Constraints

Apply the following rewrite rules until no new constraints can be added

\[S, t = \alpha \quad \Rightarrow \quad S, t = \alpha, \alpha = t \quad \text{[Reflexivity]} \]

\[S, \alpha = t_1, \alpha = t_2 \quad \Rightarrow \quad S, \alpha = t_1, \alpha = t_2, t_1 = t_2 \quad \text{[Transitivity]} \]

\[S, t_1 \rightarrow t_2 = t_3 \rightarrow t_4 \Rightarrow \quad S, t_1 \rightarrow t_2 = t_3 \rightarrow t_4, t_1 = t_3, t_2 = t_4 \quad \text{[Structure]} \]
Solving the Subset Constraints

Apply the following rewrite rules until no new constraints can be added

\[S, t_1 \subseteq t_2, t_2 \subseteq t_3 \Rightarrow S, t_1 \subseteq t_2, t_2 \subseteq t_3, t_1 \subseteq t_3 \quad \text{[Transitivity]} \]

\[S, t_1 \rightarrow t_2 \subseteq t_3 \rightarrow t_4 \Rightarrow S, t_1 \rightarrow t_2 \subseteq t_3 \rightarrow t_4, t_1 \ ? t_3, t_2 \ ? t_4 \quad \text{[Subtyping]} \]
What is the subtyping rule for $t_1 \rightarrow t_2 \subseteq t_3 \rightarrow t_4$?
What is the subtyping rule for $\text{cons}(A,B) \subseteq \text{cons}(A',B')$?

$$\text{cons}(A,B) \subseteq \text{cons}(A',B') \Rightarrow A \subseteq A' \land B \subseteq B'$$
What is the subtyping rule for $t_1 \rightarrow t_2 \subseteq t_3 \rightarrow t_4$?

\[
t_1 \rightarrow t_2 \subseteq t_3 \rightarrow t_4 \Rightarrow t_3 \subseteq t_1 \land t_2 \subseteq t_4
\]
Terminology

• We say that the function type constructor is
 • *Contravariant* in the first argument (the domain)
 • *Covariant* in the second argument (the range)

• Constructors in set constraints have fixed variance
 • Covariant, contravariant, or invariant in every argument position
 • Examples: \texttt{cons(+,+)} \quad \rightarrow +

• Note that contravariance adds nothing to the graph representation
 • The directed edge is just added in the opposite direction for contravariant relationships
 • And in both directions for invariant relationships
Solving the Subset Constraints

Apply the following rewrite rules until no new constraints can be added

\[S, t_1 \subseteq t_2, t_2 \subseteq t_3 \Rightarrow S, t_1 \subseteq t_2, t_2 \subseteq t_3, t_1 \subseteq t_3 \] [Transitivity]

\[S, t_1 \rightarrow t_2 \subseteq t_3 \rightarrow t_4 \Rightarrow S, t_1 \rightarrow t_2 \subseteq t_3 \rightarrow t_4, t_3 \subseteq t_1, t_2 \subseteq t_4 \] [Subtyping]
Comparisons

• The lambda calculus with type equality

• The lambda calculus with subtyping

• Which is equivalent to closure analysis
Recall

\(\lambda x. e \)
\(\lambda x. e \subseteq L(\lambda x. e) \)

\(i \subseteq L(i) \)

\(e_1 \ e_2 \)
for each \(\lambda x. e \subseteq L(e_1) \)
\(L(e_2) \subseteq L(x) \)
\(L(e) \subseteq L(e_1 \ e_2) \)
\(L(e_1) \subseteq \{ \lambda x. e \mid \lambda x. e \text{ is a lambda abstraction in the program} \} \)
The Analogy...

e_1 \ e_2

for each $\lambda x. e \subseteq L(e_1)$

$L(e_2) \subseteq L(x)$

$L(e) \subseteq L(e_1 \ e_2)$

$L(e_1) \subseteq \{\lambda x. e \mid \lambda x. e \text{ is a lambda abstraction in the program}\}$

$t \subseteq t' \rightarrow \beta$

$A \vdash e_1 : t$

$A \vdash e_2 : t'$

$A \vdash e_1 e_2 : \beta$

For each $t_1 \rightarrow t_2 \subseteq t$

We have $t_1 \rightarrow t_2 \subseteq t' \rightarrow \beta$

So $t' \subseteq t_1$ and $t_2 \subseteq \beta$

Observe $L(e_2) \equiv t'$, $L(x) \equiv t_1$, $L(e) \equiv t_2$, $L(e_1 \ e_2) \equiv \beta$
Control Flow Graphs in OO Languages

• Consider a method call $e_0.f(e_1, ..., e_n)$

• To build a control-flow graph, we need to know which f methods may be called
 • Depends on the class of e_0 at runtime

• The problem:
 • For each expression, estimate the set of classes it could evaluate to at runtime
An OO Language

P ::= C₁ . . . Cₙ E
C ::= class ClassId M₁ . . . Mₙ

M ::= MId(Id) E

E ::= Id := E | E.MId(E) | E;E | new ClassId | if E E E
Example Program

class A
 foo(x) x.bar(x)
 bar(y) z := new B; z.bar(y)

class B
 bar(w) w.bar(new B)
Constraints

id := e
 C(e) ⊆ C(id)
 C(e) ⊆ C(id := e)

e_1; e_2
 C(e_2) ⊆ C(e_1; e_2)

new A
 A ⊆ C(new A)

if e_1 e_2 e_3
 C(e_2) ⊆ C(if e_1 e_2 e_3)
 C(e_3) ⊆ C(if e_1 e_2 e_3)

\(e_0.f(e_1) \)

for each class A with a method \(f(x) \) e

A ⊆ C(e_0) ⇒
 C(e_1) ⊆ C(x) ∧
 C(e) ⊆ C(e_0.f(e_1))
Example Program w/Constraints

class A
 foo(x) (new A).bar(x)
 bar(y) z := new B; z.bar(z)

class B
 bar(w) w.bar(new B)
Notes

• Receiver class analysis of OO languages and control flow analysis of functional languages are the same problem

• Receiver class analysis is important in practice
 • Heavily object-oriented code pays a high price for indirect method calls
 • If we can show that only one method can be called, the function can be statically bound
 • Or even inlined and optimized
Type Safety

• Notice that our OO language is untyped
 • We can run \((\text{new } A).f(0)\) even if \(A\) has no \(f\) method
 • Gives a runtime error

• By adding upper bounds to the constraints, we can make receiver class analysis into a type inference procedure for our language
Type Inference

\[\text{id} := e\]
\[C(e) \subseteq C(\text{id})\]
\[C(e) \subseteq C(\text{id} := e)\]
\[e_1; e_2\]
\[C(e_2) \subseteq C(e_1; e_2)\]
\[\text{new } A\]
\[A \subseteq C(\text{new } A)\]
\[\text{if } e_1 e_2 e_3\]
\[C(e_2) \subseteq C(\text{if } e_1 e_2 e_3)\]
\[C(e_3) \subseteq C(\text{if } e_1 e_2 e_3)\]
\[C(e_1) \subseteq \text{Bool}\]

\[e_0.\text{f}(e_1)\]

\text{for each class } A \text{ with a method } f(x) \text{ e}

\[A \subseteq C(e_0) \Rightarrow\]
\[C(e_1) \subseteq C(x) \land\]
\[C(e) \subseteq C(e_0.\text{f}(e_1))\]
\[C(e_0) \subseteq \{ A \mid A \text{ has an } f \text{ method } \}\]
Example Revisited: Type Safety

class A
 foo(x) (new A).bar(x)
 bar(y) z := new B; z.bar(z)

class B
 bar(w) w.bar(new B)

A ⊆ C(new A)
C(x) ⊆ C(y)
C(z := new B; z.bar(z)) ⊆ C((new A).bar(x))
B ⊆ C(new B)
C(new B) ⊆ C(z)
C(new B) ⊆ C(z := new B)
B ⊆ C(z)
C(z) ⊆ C(w)
C(w.bar(new B)) ⊆ C(z.bar(z))
B ⊆ C(w)
C(new B) ⊆ C(w)
C(w.bar(new B)) ⊆ C(w.bar(new B))
Type Inference (Cont.)

• These constraints may not have a solution

• If there is a solution, every dispatch will succeed at runtime

• Note: Requires a whole-program analysis
Alias Analysis

• In languages with side effects, we want to know which locations may have aliases
 • More than one “name”
 • More than one pointer to them

• E.g.,
 \[
 Y = \&Z \\
 X = Y \\
 *X = W \quad // \text{changes the value of } *Y \\
 *Y
 \]
Z = 1
W = 0
Y = &Z
X = Y
*X = W // changes the value of *Y
*Y
The Encoding of a Location

• For a pointer program variable x:

A label: A set of 0-ary constructors (constants)

A field used for reading from the location

A field used for writing to the location

$\text{ref}(l_x, \alpha_x, \alpha_x)$
The Encoding of a Location

• For a program variable x:

\[\text{ref}(l_x, \alpha_x, \alpha_x) \]

- A label: A set of 0-ary constructors (constants)
 - covariant

- A field used for reading from the location
 - covariant

- A field used for writing to the location
 - contravariant
\[
\text{ref}(l_1, t_1, t_2) \subseteq \text{ref}(l_2, t_3, t_4) \Rightarrow \\
\text{ref}(l_1, t_1, t_2) \subseteq \text{ref}(l_2, t_3, t_4), l_1 \subseteq l_2, t_1 \subseteq t_3, t_4 \subseteq t_2
\]
A Pointer Language

P ::= S ... S
S ::= E = E | E
E ::= *E | &E | x
Inference Rules

\[
\begin{align*}
\text{Var} & : \quad x : \text{ref}(l, \alpha, \alpha) \\
& \quad e : t \\
& \quad t \subseteq \text{ref}(1, \alpha, 0) \\
& \quad \alpha \text{ fresh} \\
\hline
& \quad *e : \alpha
\end{align*}
\]

\[
\begin{align*}
\text{Deref} & : \quad e : t \\
& \quad \&e : \text{ref}(0, t, t) \\
& \quad e_1 : t_1 \quad e_2 : t_2 \\
& \quad t_1 \subseteq \text{ref}(1, 1, \alpha) \quad \alpha \text{ fresh} \\
& \quad t_2 \subseteq \text{ref}(1, \beta, 0) \quad \beta \text{ fresh} \\
& \quad \beta \subseteq \alpha \\
\hline
& \quad e_1 = e_2 : t_2
\end{align*}
\]

\[
\begin{align*}
\text{Assign} & : \quad e : t \\
& \quad e_1 = e_2 : t_2
\end{align*}
\]
Example

\[Y = \&Z \]
\[X = Y \]
\[\ast X = W \]
\[\ast Y \]

\[\begin{align*}
Y &= \&Z : \\
X &= Y : \\
\ast X &= W : \\
\ast Y &= \\
\end{align*} \]

\[\begin{align*}
Y : \text{ref}(l_y, Y, Y) \\
X : \text{ref}(l_x, X, X) \\
W : \text{ref}(l_w, W, W) \\
Z : \text{ref}(l_z, Z, Z) \\
\end{align*} \]

\[\begin{align*}
\&Z : \text{ref}(0, \text{ref}(l_z, Z, Z), \text{ref}(l_z, Z, Z)) \\
Y &= \&Z : \\
\text{ref}(l_y, Y, Y) &\subseteq \text{ref}(1,1,A) \\
\text{ref}(0, \text{ref}(l_z, Z, Z), \text{ref}(l_z, Z, Z)) &\subseteq \text{ref}(1,B,0) \\
B &\subseteq A \\
A &\subseteq Y \\
\text{ref}(l_z, Z, Z) &\subseteq B \\
\text{ref}(l_z, Z, Z) &\subseteq Y \\
\end{align*} \]

\[\begin{align*}
X &= Y : \\
\text{ref}(l_x, X, X) &\subseteq \text{ref}(1,1,C) \\
\text{ref}(l_y, Y, Y) &\subseteq \text{ref}(1,D,0) \\
C &\subseteq X \\
Y &\subseteq D \\
D &\subseteq C \\
Y &\subseteq X \\
\end{align*} \]

\[\begin{align*}
\ast X: \\
\text{ref}(l_x, X, X) &\subseteq \text{ref}(1, E, 0) \\
X &\subseteq E \\
\ast X &= W: \\
E &\subseteq \text{ref}(1,1,F) \\
\text{ref}(l_w, W, W) &\subseteq \text{ref}(1,G,0) \\
\text{ref}(l_z, Z, Z) &\subseteq Y \subseteq X \subseteq \text{ref}(1,1,F) \\
G &\subseteq F \\
F &\subseteq Z \\
W &\subseteq G \\
W &\subseteq Z \\
\ast Y: \\
\text{ref}(l_y, Y, Y) &\subseteq \text{ref}(1, H, 0) \\
Y &\subseteq H \\
\end{align*} \]
In Practice

• Many natural inclusion-based analysis problems are equivalent to dynamic transitive closure

• Not trivial to implement well
 • $O(n^3)$ suggests it may be slow
 • Many naïve implementations have failed
 • But today these algorithms can scale to millions of lines code
Applications

• Used heavily in compilers, bug-finding tools
 • Reason about data flow in a program
 • Useful for finding opportunities for optimizations
 • E.g., a dynamic dispatch that has exactly one possible target

• Not currently used in type checking or inference
 • The types are harder to read and interpret
Summary

• Set constraints have many applications in static analysis
 • Closure analysis
 • Receiver class analysis
 • Alias analysis
 • And more ...

• Used often in programming tools