Evaluation Rules: Static Scope

[Var]
\[E \vdash x \rightarrow E(x) \]

[Abs]
\[E \vdash \lambda x.e \rightarrow < \lambda x.e, E > \]

[Int]
\[E \vdash i \rightarrow i \]

[App]
\[E \vdash e_1 \rightarrow < \lambda x.e_0, E' > \]
\[E \vdash e_2 \rightarrow v \]
\[E'[x: v] \vdash e_0 \rightarrow v' \]
\[E \vdash e_1 e_2 \rightarrow v' \]

Note: \(E[x: v] \) is the same environment as \(E, x:v \). \(E \)
is extended (or updated if \(x \) is already present) at point \(x \) to return \(v \).
Review: State

Evaluation rules have the form

\[E, S \leftarrow e \rightarrow v, S' \]

Expressions evaluate to a value and update the state.
Evaluation Rules with State

- **[Var]**
 \[E, S ⊢ x \rightarrow E(x), S \]

- **[Int]**
 \[E, S ⊢ i \rightarrow i, S \]

- **[New]**
 \[l \notin dom(S) \]
 \[E, S ⊢ \text{new} \rightarrow l, S[l = 0] \]

- **[Abs]**
 \[E, S ⊢ \lambda x. e \rightarrow <\lambda x. e, E>, S \]

- **[App]**
 \[E, S ⊢ e_1 e_2 \rightarrow v', S \]

- **[App]**
 \[E, S_0 ⊢ e_1 \rightarrow <\lambda x. e_0, E'>, S_1 \]
 \[E, S_1 ⊢ e_2 \rightarrow v, S_2 \]
 \[E'[x: v], S_2 ⊢ e_0 \rightarrow v', S_3 \]
Another Feature: Exceptions

Evaluation rules have one of two forms

\[E \vdash e \rightarrow v \quad \text{evaluation produces a normal value} \]
\[E \vdash e \rightarrow \text{Exc}(v) \quad \text{evaluation produces an exception} \]

In the second case further evaluation must be *strict* in the exception: Once produced the exception propagates through all other computation until caught or it is the result of the computation.
Evaluation Rules with Exceptions

- **[Var]**
 \[E \vdash x \rightarrow E(x) \]

- **[Int]**
 \[E \vdash i \rightarrow i \]

- **[Abs]**
 \[E \vdash \lambda x.e \rightarrow <\lambda x.e, E> \]

- **[Raise]**
 \[E \vdash \text{raise } e \rightarrow \text{Exc}(v) \]

- **[AppE1]**
 \[E \vdash e_1 \rightarrow \text{Exc}(v) \]
 \[E \vdash e_1 e_2 \rightarrow \text{Exc}(v) \]

- **[AppE2]**
 \[E \vdash e_1 \rightarrow <\lambda x.e_0, E'> \]
 \[E, S_0 \vdash e_1 e_2 \rightarrow \text{Exc}(v), S_3 \]

- **[App]**
 \[E' \vdash [x: v] \vdash e_0 \rightarrow v' \]
 \[E \vdash e_1 e_2 \rightarrow v' \]
Beyond Pure Lambda Calculus

• What do lambda calculus+state and lambda calculus+exceptions have in common?

• Three things
 • They are both lambda calculus + “side information”
 • There are new primitives for manipulating the side information
 • If the extra primitives are not used, the behavior is pure lambda calculus

• This is how programming languages are often described
 • A core functional part (lambda calculus)
 • Plus additional features that go beyond pure functions
But Why Not Pure Lambda Calculus?

• Why not make the state an explicit argument to functions?
 • A function \(a \rightarrow b \) that works on state could have a type \(a * s \rightarrow b * s \)

• But this exposes the state; the programmer must explicitly manage it.

• An alternative signature: \(a \rightarrow (s \rightarrow b * s) \)

• Factor out \(M b = s \rightarrow b * s \) as an abstract data type
 • \(M b \) is a state transformer
Language Features

• There are many non-functional language features that have similar properties:

• Continuations
• (Certain styles of) concurrency
• Nondeterminism
• Random numbers
• ...
Monads

• We can abstract the common part of these language features
 • Sequencing to thread the extra information through the computation

• Enables us to *program* these features in pure lambda calculus
 • In a concise way

• More general than the state transformer abstraction
 • Monads are an abstraction for defining such abstractions
Types

• A monad $M\ a$ is an abstract type
 • The implementation of M is hidden

• The ``normal'' type is a

• The extra information is hidden in the abstraction
Operations

return: a → M a

A function for creating an element of a monad.

bind: M a → (a → M b) → M b

Sequencing: Take an element of a monad, unwrap the value inside, and apply a function returning an element of the monad with a possibly different type.

Bind is usually written v >>= f, for monad value v and function f.
Discussion

• One take: Not much here!
 • Pretty basic

• A second take: Just the right abstraction, and simple!
 • It turns out that return/bind are enough to implement many language features within the lambda calculus

• Keep in mind that return and bind are different for each monad
 • We have to find appropriate definitions
Partial Functions

• Start with a very simple monad

• An option type Maybe(a) is either a value of type a or nothing

• Useful for expressing the result of partial functions w/o exceptions

• Examples
 • head: List(a) -> Maybe(a) returns nothing if the list is empty
 • div: int -> int -> Maybe(int) returns nothing if the divisor is zero
Partial Functions

data Maybe a =
 Just a
| Nothing

Example use to compose partial functions f and g:

$$
\lambda x.\text{let } y = f \, x \text{ in }
\text{case } y \text{ of }
 \text{Nothing: Nothing }
 \text{Just } v: g(v)
$$
Partial Functions with Monads

data Maybe a =
 Just a
 | Nothing

-- monad M = Maybe
return = Just
v >>= f = case v of
 Nothing -> Nothing
 Just x -> f x
Composing Partial Functions

Consider the composition of two partial functions f and g:
\[\lambda x. \ x >>= f >>= g \]

The *Maybe* monad handles the *Nothing* case transparently

- The case analysis is hidden inside of \ggg
- Automatically short-circuits the computation if f returns *Nothing*
Example

head x = case x of
 Nil: Nothing
 Cons(a,as) : Just(a)

-- take the head of the first list of a list of lists
λl. return l >>= head >>= head
The State Monad

return: \(a \rightarrow M \ a \)

\[
\text{return} = \lambda v.\lambda s.(v,s) \quad \text{-- note } M \ a = s \rightarrow a \times s \quad \text{where } s \text{ is the state type}
\]

\[
\text{p} \gg= f = \lambda s. \text{let } (v,s') = p \ s \text{ in } f \ v \ s'
\]
Example Use

-- increment a global counter each time function foo is called
-- the state is a single integer
foo = \lambda x. \text{return } e \gg= \lambda v. \text{inc} \gg= \lambda z. \text{return } v
bar = \text{reset} \gg= \text{foo} \gg= \text{foo}

-- inc and reset are new operations that manipulate the state
inc = \lambda i. (i+1, i+1)
reset = \lambda i. (0,0)
Nicer Syntax ...

-- increment a global counter each time function foo is called
-- the state is just a single integer

foo x = do {
 v = return e
 z = inc
 return v
}
First Principles ...

• We want a stateful function of type $a \rightarrow b$
 • Which is a pure function of type $a \rightarrow s \rightarrow (b,s)$ if we make the state explicit

• The second piece $s \rightarrow (b,s)$ is a state transformer

• How do we compose a state transformer $s \rightarrow (a,s)$ and a stateful function $a \rightarrow s \rightarrow (b,s)$?
 • This is what bind does.
Discussion

• Return & bind do just a few things:

• The e in `return e` is a pure computation
 • Doesn’t know about the state, can be written normally

• Bind handles the “plumbing” of the monad
 • Hides the manipulation of the state except through state primitives
 • And correctly sequences it through the computation
Exceptions

data Exceptional e a =
 Success a
 | Exception e

-- monad M = Exceptional e
return: a → M a
return = Success

>>=: M a → (a → M b) → M b
v >>= f = case v of
 Exception l -> Exception l
 Success r -> f r

throw = Exception

catch e h = case e of
 Exception l -> h l
 Success r -> Success r
Using Exceptions

Consider composition of two functions f and g that can raise exceptions:
$$\lambda x. x >>= f >>= g$$

Easy to add a handler for f:
$$\lambda x. (catch (x >>= f) h) >>= g$$

Or for both f and g:
$$\lambda x. catch (x >>= f >>= g) h$$

The threading of the exceptions is tedious without bind.
The Continuation Monad

newtype Cont r a = (a → r) → r -- r is the result type of the computation

A continuation monad \(M = \text{Cont} r \)
return: \(a → M a \)
return = \(\lambda a.\lambda k. k a \)

\(\triangleright==: M a → (a → M b) → M b \)
c \(\triangleright=\) f = \(\lambda k. c (\lambda a. f a k) \)

return 6 \(\triangleright=\) λi. return 7 * i
The Continuation Monad

• Allows building continuations by extending existing continuations
 • Continuations are composed in pieces

• Note there is no automatic translation
 • This is not a CPS transformation!

• The programmer must build up the desired continuations by hand
Discussion

• Monads are a way of programming language features

• And it’s just programming!
 • No need for a compiler
 • Can add or remove features as desired

• Examples of good uses:
 • A small part of the program needs state
 • Use the State monad just in that portion
 • Part of the program needs State and Exceptions
 • Again, just use these monads in the parts where they are needed
Comments

• Three features are important to making monads work

• Higher-order functions
 • Bind is a higher order function
 • Many of the monads wrap higher order functions (continuations)

• Type checking
 • The type checker will complain if monads are used incorrectly
 • Necessary for most programmers to avoid getting tangled up
Upsides

• Since it is ``just programming’’, users can write their own monads
 • And they do
 • Many programming patterns are usefully abstracted as monads

• Monads are ubiquitous in Haskell
 • Where they were pioneered

• And have appeared in many other settings
 • Again, easy to adopt new ways of structuring software
 • Even in languages without monads built-in
Downsides

• Monads are not a panacea
 • “It’s just programming”

• There are three main limitations
 • Multiple monads don’t compose particularly well
 • State(Exceptions(LC)) has different semantics than Exceptions(State(LC))
 • Monads don’t commute
 • To use monads, your program must be structured using return/bind
 • Contagious: Whole program tends to end up being written monadically
 • Major hit when converting non-monadic code to monadic code
 • Performance is not what it could be if the features were built in
 • No free lunch – there is a reason compilers are large and complicated

• And the programs end up looking like C++!
A New View of Languages

• We now view languages as having a pure core and a number of monads added on

• Most languages have the monads built in
 • State, Exceptions, Concurrency, ...

• But now we realize many of these features can be implemented within a language with higher-order features
History

• Monads were first used in language semantics
 • An idea borrowed from category theory in mathematics
 • Instead of messy environments with state, exceptions, continuations, use monads to structure the execution rules

• Haskell is a pure functional language
 • The designers insisted on purity
 • But how to handle I/O with the outside world?
 • Monads provided an elegant solution
 • Built-in I/O was the first use of monads in Haskell