Clean-Up and Wrap-Up

CS242
Lecture 18
The Final

- Final exam will be 12:15-3:15 next Thursday (Dec. 15)

- Open note, and electronic devices are OK
 - But no internet or computation, only use to read your notes

- Invariants (lecture 17) could be on the exam
 - But not invariant inference
The Untyped and Simply Typed Lambda Calculi

Untyped lambda calculus:

\[
\begin{align*}
 e & \rightarrow x \mid \lambda x.e \mid e\ e
\end{align*}
\]

Simply typed lambda calculus:

\[
\begin{align*}
 e & \rightarrow x \mid \lambda x:\ t.e \mid e\ e \mid i \\
 t & \rightarrow \alpha \mid t \rightarrow t \mid \text{int}
\end{align*}
\]
Extension 1: Algebraic Data Types

General form

```
DataType A(var₁,...,varₙ):

... Constructorᵢ: t₁ → ... → tₖ → A(var₁,...,varₙ)

...
```

Each constructor defines a pure lambda term.
Example: Lists

Consider the list data type:

List(A):

nil: List(A)

cons: A -> List(A) -> List(A)

nil: \(\lambda n.\lambda c.n \)

cons: \(\lambda h.\lambda t.\lambda n.\lambda c.h\ (t\ n\ c) \)
Other Examples

• Non-negative integers
• Pairs
• Booleans
• Binary trees

• In general, any tree-shaped data structure
Extension 2: Constants

• We can extend the lambda calculus with additional functions and constants

• Example
 • Add all integers ..., -1, 0, 1, ...
 • And addition. \(+: \text{int} \rightarrow \text{int} \rightarrow \text{int}\)

• Other typical built-ins:
 • Floating point numbers
 • Booleans
 • Characters
 • Strings
 • Arrays
Control Constructs: If and Recursion

We can also extend the calculus with control constructs

\[
\text{if: } \text{Bool} \to t \to t
\]

Usage: \text{if } e_1 e_2 e_3
Typing Checking for If

\[A \vdash e_1 : \text{Bool} \]
\[A \vdash e_2 : t \]
\[A \vdash e_3 : t \]

\[\frac{}{A \vdash \text{if } e_1 e_2 e_3 : t} \]
Typing Inference for If

\[\begin{align*}
A & \vdash e_1 : \text{Bool} \\
A & \vdash e_2 : t_1 \\
A & \vdash e_3 : t_2 \\
t_1 & = t_2 \\
\hline
A & \vdash \text{if } e_1 \text{ e}_2 \text{ e}_3 : t_1
\end{align*} \]
Recursion

Recall
\[
\text{let } x = e_1 \text{ in } e_2 \quad \text{is equivalent to} \quad (\lambda x.e_2) \ e_1
\]

Extend to recursive definitions
\[
\text{letrec } f = \lambda x.e_1 \text{ in } e_2 \quad \text{is equivalent to} \quad (\lambda f.e_2) \ (Y \ \lambda f.\lambda x.e_1)
\]
Typing Checking for Recursive Definitions

\[
A, f : t_1 \rightarrow t_2 \vdash \lambda x. e_1 : t_1 \rightarrow t_2
\]

\[
A, f : t_1 \rightarrow t_2 \vdash e_2 : t
\]

\[
\begin{array}{c}
\hline
A \vdash \text{letrec } f = \lambda x. e_1 \text{ in } e_2 : t \\
\end{array}
\]

[Letrec]
Typing Inference for Recursive Definitions

\[\text{letrec} \quad \text{A} \quad \text{f} = \lambda x. e_1 \text{ in } e_2 : t\]

\[A, f : \alpha \rightarrow \beta \vdash \lambda x. e_1 : t_1 \rightarrow t_2\]

\[A, f : \alpha \rightarrow \beta \vdash e_2 : t\]

\[\alpha = t_1 \quad \beta = t_2\]

\[
\frac{}{A \vdash \text{letrec } f = \lambda x. e_1 \text{ in } e_2 : t} \quad \text{[Letrec]}
\]
Extension 3: Polymorphic Types

\[e \rightarrow x \mid \lambda x.e \mid e \ e \mid \text{let } f = \lambda x.e \text{ in } e \mid i \]

\[t \rightarrow \alpha \mid t \rightarrow t \mid \text{int} \]

\[o \rightarrow \forall \alpha.o \mid t \]
Subtyping: A Subtle Topic

\[A \vdash e_1 : \text{Bool} \]
\[A \vdash e_2 : t_1 \]
\[A \vdash e_3 : t_2 \]
\[t_1 = t_2 \]

\[A \vdash \text{if } e_1 e_2 e_3 : t_1 \]

[If]

\[A \vdash e_1 : \text{Bool} \]
\[A \vdash e_2 : t_1 \]
\[A \vdash e_3 : t_2 \]
\[t_1 < t \quad t_2 < t \]

\[A \vdash \text{if } e_1 e_2 e_3 : t \]
Java’s Type Rule for ? (Approximately ...)

\[
\begin{align*}
A & \vdash e_1 : \text{Bool} \\
A & \vdash e_2 : t_1 \\
A & \vdash e_3 : t_2 \\
t_3 & = \text{lub}(t_1, t_2) \\
\hline
A & \vdash e_1 ? e_2 : e_3 : t_3
\end{align*}
\]
What Else Didn’t We Talk About?

• Traditional overloading

• Having multiple functions of different types with the same name

 +: int → int → int
 +: float → float → float
 +: string → string → string

Overloading rules in languages with subtyping are complicated.
Functional Languages

• Lambda calculus + primitive functions + algebraic data types

• These features are the core of all functional languages
 • Lisp, Scheme, Racket

• Plus polymorphic types for typed functional languages
 • ML, OCaml, Haskell
Monads

• Plumbs generalized “state” through a computation
 • Makes implicit arguments (like global variables and state) explicit
 • Does the sequencing through higher-order functions

• Many language features can be expressed as monads
 • State
 • Continuations
 • Exceptions
 • (Some kinds of) threads

• All except pure functional languages have some built-in monads
 • Typically state and exceptions, continuations and threads are less common
 • Haskell exposes monads to the programmer – define your own language features!
Objects

• Objects are something different
 • Typed object-oriented languages are not easily translated into typed functional languages

• Unrestricted method override is difficult to deal with in typed systems

• Solutions
 • Restrict method override: Java, C++ limit it to inheritance between classes
 • Use core functional language + records to get most of OO: OCaml, Haskell
 • Go to an untyped language: Python, Javascript
 • Use traits, mixins: Scala
Big Picture

• All mainstream languages have converged on supporting
 • Objects
 • First-class functions

• The details vary
 • Because the theory suggests there is no one best design

• But why did this happen?
Object Oriented vs Functional Languages

• Functional language example:

\[f \text{ cons}(a,b) = a \]
\[f \text{ nil} = \text{nil} \]

Adding a new function is a local change.
Adding a new kind of data, such as a new constructor to a data type, requires updating every function that uses that type.
Object Oriented vs Functional Languages

• Object-oriented language example:

Class List of
 method cons(x,y) ...
 method nil ...
end

Adding a new kind of data type is a local change.
Adding a new function (method) may require updating many classes with a definition of that method (modulo inheritance).
Adding Objects to Functional Languages

• *Type classes* are Haskell’s way of providing object-like features
 • But really much closer to Java’s interfaces than objects

• Examples

\[
(==) :: \text{Eq} \ a \Rightarrow \ a \rightarrow \ a \rightarrow \ \text{bool}
\]

Any type \(a\) that supports equality should be part of the \text{Eq} class

\[
(<) :: \text{Ord} \ a \Rightarrow \ a \rightarrow \ a \rightarrow \ \text{bool}
\]

Any type \(a\) that supports ordering should be part of the \text{Ord} class
Type Classes

(<) :: Ord a => a -> a -> bool

Idea: Code that requires certain functionality can require a value of the appropriate type class, without saying how it is implemented.

Example: A generic sorting function can take a comparison function < in the Ord type class as an argument.
Adding Functions to OO Languages

• C++ has had lambdas since C++14
 • Involves explicitly naming captured variables
 • And whether they are captured by value or reference

• Java has had lambdas since Java 8

• And both have polymorphic types
 • C++ has templates
 • Java has generics
Bottom Line

• There is no single best way to combine functional and object-oriented features.

• Emphasizing some features requires restricting other features.
Approaches to Proving Properties of Programs

- **Simply Typed Lambda Calculus**: Automatic, Low complexity
- **Static Analysis**: Automatic, High complexity
- **Invariant Inference**: Automatic or Semi-automatic, Often undecidable
- **Dependent Types**: Manual, Undecidable
Inductive (Loop) Invariants

while (B) {
 ...
 code ...
 ...
}
A Loop Invariant Example

```
int A[10];
i = 1
// i = 1
while i < 11 {
    // ∀1 ≤ j < i. A[j] = 0
    A[i] = 0;
    i += 1
}
// ∀1 ≤ j ≤ 10. A[j] = 0
```

Three conditions:

- \(i = 1 \Rightarrow \forall 1 \leq j < i. A[j] = 0 \)
- \(\forall 1 \leq j < i. A[j] = 0 \)
- \(\{ A[i] = 0; i = i + 1 \} \)
- \(\forall 1 \leq j < i. A[j] = 0 \)
- \(((\forall 1 \leq j < i. A[j] = 0) \land i \geq 11) \Rightarrow \forall 1 \leq j \leq 10. A[j] = 0 \)
Types As Propositions

From a proof of $t \rightarrow t'$ and a proof of t, we can prove t'.

Here we regard the types as propositions: If we can prove certain propositions are true, then we can prove that other propositions are true.
Approaches to Proving Properties of Programs

Automatic, Low complexity
- Simply Typed Lambda Calculus
- Gradual Types

Automatic, High complexity
- Static Analysis
- Every optimizing compiler

Automatic or Semi-automatic Often undecidable
- Invariant Inference
- Still figuring this part out ...

Manual, Undecidable
- Dependent Types
- Emerging from the lab ...

Every typed language
- Gradual Types
Other topics ...

• Concurrency and parallelism

• Particularly parallelism ala the Pi Calculus

• Very different from sequential languages
 • Not well-modeled by lambda calculus, object calculus, etc.
 • Requires entirely different approaches that makes concurrency primitive

• Will be an increasingly important aspect of programming languages
The End ... and Thanks!