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Review

• Dependent types are a foundation for mathematics
• And typed programming

• A single formalism for defining programs, proofs, and proof rules
• And ensuring they are used in a consistent way

• Relies on constructive interpretations of mathematics
• We must construct (compute) evidence for every assertion
• Constructive proofs exclude proofs by contradiction
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Once More, From the Top …

• Today we will look at Lean (version 3)

• Illustrate basic features with examples

• Focus on using Lean for proofs 
• Not exploring new type theory
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Basics

Type assertions are written ``e : t’’, meaning expression e has type t
Examples:

constant n : nat
constant f : nat -> nat

The #check command prints out information about a name
• Useful for debugging

#check n
#check f
#check f n
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Browser-Based Lean

• There is a nice WebAssembly implementation of Lean
• Simply type expressions into the browser and see the results
• Makes it easy to experiment

https://leanprover-community.github.io/lean-web-editor/
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Recall: Programs as Proofs
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[App]

A d e1 : t → t’ 

A d e2 : t

A d e1 e2 : t’
[Abs]

A, x : t d e : t’

A d λx.e : t → t’ 

From a proof of t → t’ 
and and a proof of t, we 
can prove t ’. 

If assuming t we can 
prove t’, then we can 
prove t → t’. 



Function Definitions

• Lambda calculus (or implication) is built-in to Lean

• Two equivalent definitions of a function:

def app (g: nat -> nat) (x:nat) : nat := g x
def app2 : (nat -> nat) -> nat -> nat := \lam g x => g x 
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Notes

def app (g: nat -> nat) (x:nat) : nat := g x
def app2 : (nat -> nat) -> nat -> nat := λ g x, g x 

• Lean takes unicode seriously!

• Note λ’s can have multiple variables (no need to repeat λ)
• The punctuation is different from other languages

• Definition uses := instead of =
• Write λx, e not λx. e
• A list of variables is separated by spaces, not commas

• Parens often needed if variables are given types (c.f., the arguments to app)
• Types can often be omitted, but not always

• Lean has type inference, but still need enough types for Lean to figure out all the types
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Polymorphic Functions

def polyapp (α : Type) (g: α -> α) (x:α) : α := g x
def polyapp2 : Π α : Type, (α -> α) -> α -> α := λ t g x, g x 
def polyapp3 : ∀ α : Type, (α -> α) -> α -> α := λ t g x, g x 

• These polymorphic versions take a type argument
• And it is a dependent type – the type of the function depends on the type 

argument!
• Which is why we use Π (or ∀, they are synonyms)

• Unicode: \Pi is Π, \forall is ∀, \a is α
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Propositions as Types

A theorem:
constants p q : Prop
theorem t1 : p -> q -> p := λ hp: p, λ hq : q, hp

• But Prop = Type
• And theorem = def!
• Just alternative syntax to emphasize proofs instead of computation
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And More Options

• We could also write this proof

theorem t2 : p → q → p :=
assume hp : p,
assume hq : q,
hp

• This means exactly the same thing
• assume is just longhand for λ
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The Polymorphic Version

• We could also write this proof so it works for any p and q

theorem t3 (p,q: Prop) : p → q → p :=
assume hp : p,
assume hq : q,
hp
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Conjunction: And Introduction
A few proofs of p → q → p ∧ q

lemma a1 (hp : p) (hq : q) : p ∧ q := and.intro hp hq
or
lemma a2 : p → q → p ∧ q := λ hp: p, λ hq : q, and.intro hp hq
or
lemma a3 : p → q → p ∧ q := 

assume hp: p, 
assume hq: q, 
and.intro hp hq

or
lemma a4 (hp : p) (hq : q) : p ∧ q := \< hp,  hq \>

Note: lemma is another synonym for def, the angle brackets are special syntax for and.intro
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Conjunction: And Elimination

Proofs of p ∧ q → q ∧ p

lemma a5 (hpq: p ∧ q) : q ∧ p := and.intro (and.right hpq) (and.left hpq)

lemma a6 (hpq: p ∧ q) : q ∧ p := and.intro hpq.right hpq.left

lemma a7 (hpq: p ∧ q) : q ∧ p := ⟨ hpq.right, hpq.left ⟩
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Disjunction: Or Introduction

Proofs of p → p ∨ q and q → p ∨ q 

lemma o1 (hp : p) : p ∨ q := or.intro_left q hp

lemma o2 : q → p ∨ q := 
assume hq: q, 
or.intro_right p hq
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Disjunction: Or Elimination

Proofs of p ∨ q → q ∨ p

lemma o3 (h : p ∨ q) : q ∨ p :=
or.elim h

(assume hp : p,
or.intro_right q hp)

(assume hq : q,
or.intro_left p hq)

or.elim does a case analysis
Specifically, or.elim is a function 
taking three arguments:

an object of type p ∨ q 
a function of type p → r
a function of type q → r

In this example r = q ∨ p
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Show: Making the Conclusion Explicit

lemma o3 (h : p ∨ q) : q ∨ p :=
or.elim h

(assume hp : p,
show q ∨ p, 
from or.intro_right q hp)

(assume hq : q,
show q ∨ p,
from or.intro_left p hq)

• show allows the user to state the 
goal
• The proposition (type) we are 

trying to prove

• Helpful for making proofs clearer
• And detecting bugs in the proof 

earlier
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Structuring Longer Proofs

lemma a8 (h : p ∧ q) : q ∧ p := 
have hp : p, from and.left h,
have hq : q, from and.right h,
show q ∧ p, from and.intro hq hp

have h from t in e
is equivalent to
(λh.e) t

Recall (λh.e) t is also equivalent to
let h = t in e

Useful for structuring longer 
arguments in a series of steps
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A More Complex Lemma

(p → q) → (p → r) → (p → q ⋀ r ) 

lemma imp (f1: p -> q) (f2: p -> r) (x:p) : q ∧ r :=
have hq: q, from f1 x,
have hr: r, from f2 x,
show q ∧ r, from ⟨ hq, hr ⟩
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Quantifiers

• We’ve already seen examples of universal quantifiers

• Recall
def polyapp (α : Type) (g: α -> α) (x:α) : α := g x
def polyapp2 : Π α : Type, (α -> α) -> α -> α := λ t g x, g x 
def polyapp3 : ∀ α : Type, (α -> α) -> α -> α := λ t g x, g x 

If we define polymorphic functions, we are carrying out universal proofs.

The intro and elimination of universal quantifiers is implicit in polymorphic type checking.

A very common case, though there are times we want explicit ∀-intro and ∀-elim.
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Existential Quantifier Elimination

Eliminating an existential quantifier from h: ∃ x: t, p x has the form

exists.elim h
(assume y : t,
assume z : p y,
e)
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Existential Quantifier Introduction

Consider a proposition of the form E(p)

The exists.intro p E(p) = ∃ x. E(x)

We replace the subexpression p by the existentially bound variable
• Not entirely trivial, as p could be a complex expression that the 

system needs to search for in E(p)
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A Proof with Quantifiers

If x is even, then x2 is even.
definition even (x : nat) := ∃ k, x = 2 * k

theorem x_even_x2_even (x: nat) (h: even x) : even (x * x) :=
exists.elim h
(assume k,
assume hk : x = 2 * k,
show even (x * x),
from exists.intro (k * x)

(calc x * x = (2 * k) * x : by rw hk
...      = 2 * (k * x) : by rw nat.mul_assoc

)
)
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Calculational Proofs and Tactics

calc x * x = (2 * k) * x : by rw hk
...      = 2 * (k * x) : by rw nat.mul_assoc

Calc is a special proof mode for “calculation”
• Proofs that involve the transitivity of equality

• At each step we must show the justification for the equality
• rw stands for “rewrite”, any rule that involves an algebraic rewrite
• rw hk means a substitution using the type of hk (recall hk: x = 2 * k)
• rw nat.mulassoc means apply the associativity law for multiplication (x * y)* z = x * (y * z)

• Lean automates some patterns of rules (tactics)
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Summary

• There are many more features of Lean
• Many other propositions, functions, and proof combinators
• Lots of libraries
• Many other alternative shorthands

• With practice, writing proofs becomes like programming
• Dependent type theory shows, in fact, that it is just programming!
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Final Thoughts
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The Big Picture: Language Goals
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Productivity

Safety Performance

Python

CCoq, Lean

ML, Haskell Matlab, NumPy

Rust

Java, C++



Language Goals 

• Every programming language has as goals
• Performance
• Productivity
• Safety

• But there are tradeoffs

• And different designs make different choices
• One of the reasons we have so many programming languages

Alex Aiken      CS 242     Lecture 1



Tradeoffs: Productivity vs. Safety
Proving Properties of Programs
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Automatic, 
Low complexity

Manual, 
Undecidable

Simply Typed 
Lambda Calculus

Dependent TypesStatic Analysis

Automatic, 
High complexity

Invariant Inference

Automatic or Semi-automatic
Often undecidable



Tradeoffs: Productivity vs. Safety
Proving Properties of Programs
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Automatic, 
Low complexity

Manual, 
Undecidable

Simply Typed 
Lambda Calculus

Dependent TypesStatic Analysis

Automatic, 
High complexity

Invariant Inference

Automatic or Semi-automatic
Often undecidable

Every optimizing 
compiler

Gradual Types

Emerging from 
the lab …Every typed 

language

Still figuring this 
part out …



Tradeoffs: Productivity vs. Performance

• Array programming languages support both!

• But …
• Limited to arrays
• First-order – no higher order functions, no objects …
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Tradeoffs: Performance vs. Safety
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10 Versions of Matrix Multiply  from Leiserson & Shun



Tradeoffs: Performance vs. Safety
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#10 is much more complicated than #1 !



• These tradeoffs explain why there are so many different languages
- But there are many fewer language building blocks
- Put together in endless variations

• New language technology is always coming 
- New ideas in programming
- Changes in underlying hardware
- Changes in needs (e.g., security)

• We have focused on
- The building blocks of programming languages that have stood the test of time
- New and emerging ideas in programming

The Last Slide …



Thanks!
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