
The Lean Proof Assistant
CS242

Lecture 18

Alex Aiken CS 242 Lecture 18

Review

• Dependent types are a foundation for mathematics
• And typed programming

• A single formalism for defining programs, proofs, and proof rules
• And ensuring they are used in a consistent way

• Relies on constructive interpretations of mathematics
• We must construct (compute) evidence for every assertion
• Constructive proofs exclude proofs by contradiction

Alex Aiken CS 242 Lecture 18

Once More, From the Top …

• Today we will look at Lean (version 3)

• Illustrate basic features with examples

• Focus on using Lean for proofs
• Not exploring new type theory

Alex Aiken CS 242 Lecture 18

Basics

Type assertions are written ``e : t’’, meaning expression e has type t
Examples:

constant n : nat
constant f : nat -> nat

The #check command prints out information about a name
• Useful for debugging

#check n
#check f
#check f n

Alex Aiken CS 242 Lecture 18

Browser-Based Lean

• There is a nice WebAssembly implementation of Lean
• Simply type expressions into the browser and see the results
• Makes it easy to experiment

https://leanprover-community.github.io/lean-web-editor/

Alex Aiken CS 242 Lecture 18

Recall: Programs as Proofs

Alex Aiken CS 242 Lecture 18

[App]

A d e1 : t → t’

A d e2 : t

A d e1 e2 : t’
[Abs]

A, x : t d e : t’

A d λx.e : t → t’

From a proof of t → t’
and and a proof of t, we
can prove t ’.

If assuming t we can
prove t’, then we can
prove t → t’.

Function Definitions

• Lambda calculus (or implication) is built-in to Lean

• Two equivalent definitions of a function:

def app (g: nat -> nat) (x:nat) : nat := g x
def app2 : (nat -> nat) -> nat -> nat := \lam g x => g x

Alex Aiken CS 242 Lecture 18

Notes

def app (g: nat -> nat) (x:nat) : nat := g x
def app2 : (nat -> nat) -> nat -> nat := λ g x, g x

• Lean takes unicode seriously!

• Note λ’s can have multiple variables (no need to repeat λ)
• The punctuation is different from other languages

• Definition uses := instead of =
• Write λx, e not λx. e
• A list of variables is separated by spaces, not commas

• Parens often needed if variables are given types (c.f., the arguments to app)
• Types can often be omitted, but not always

• Lean has type inference, but still need enough types for Lean to figure out all the types

Alex Aiken CS 242 Lecture 18

Polymorphic Functions

def polyapp (α : Type) (g: α -> α) (x:α) : α := g x
def polyapp2 : Π α : Type, (α -> α) -> α -> α := λ t g x, g x
def polyapp3 : ∀ α : Type, (α -> α) -> α -> α := λ t g x, g x

• These polymorphic versions take a type argument
• And it is a dependent type – the type of the function depends on the type

argument!
• Which is why we use Π (or ∀, they are synonyms)

• Unicode: \Pi is Π, \forall is ∀, \a is α

Alex Aiken CS 242 Lecture 18

Propositions as Types

A theorem:
constants p q : Prop
theorem t1 : p -> q -> p := λ hp: p, λ hq : q, hp

• But Prop = Type
• And theorem = def!
• Just alternative syntax to emphasize proofs instead of computation

Alex Aiken CS 242 Lecture 18

And More Options

• We could also write this proof

theorem t2 : p → q → p :=
assume hp : p,
assume hq : q,
hp

• This means exactly the same thing
• assume is just longhand for λ

Alex Aiken CS 242 Lecture 18

The Polymorphic Version

• We could also write this proof so it works for any p and q

theorem t3 (p,q: Prop) : p → q → p :=
assume hp : p,
assume hq : q,
hp

Alex Aiken CS 242 Lecture 18

Conjunction: And Introduction
A few proofs of p → q → p ∧ q

lemma a1 (hp : p) (hq : q) : p ∧ q := and.intro hp hq
or
lemma a2 : p → q → p ∧ q := λ hp: p, λ hq : q, and.intro hp hq
or
lemma a3 : p → q → p ∧ q :=

assume hp: p,
assume hq: q,
and.intro hp hq

or
lemma a4 (hp : p) (hq : q) : p ∧ q := \< hp, hq \>

Note: lemma is another synonym for def, the angle brackets are special syntax for and.intro

Alex Aiken CS 242 Lecture 18

Conjunction: And Elimination

Proofs of p ∧ q → q ∧ p

lemma a5 (hpq: p ∧ q) : q ∧ p := and.intro (and.right hpq) (and.left hpq)

lemma a6 (hpq: p ∧ q) : q ∧ p := and.intro hpq.right hpq.left

lemma a7 (hpq: p ∧ q) : q ∧ p := ⟨ hpq.right, hpq.left ⟩

Alex Aiken CS 242 Lecture 18

Disjunction: Or Introduction

Proofs of p → p ∨ q and q → p ∨ q

lemma o1 (hp : p) : p ∨ q := or.intro_left q hp

lemma o2 : q → p ∨ q :=
assume hq: q,
or.intro_right p hq

Alex Aiken CS 242 Lecture 18

Disjunction: Or Elimination

Proofs of p ∨ q → q ∨ p

lemma o3 (h : p ∨ q) : q ∨ p :=
or.elim h

(assume hp : p,
or.intro_right q hp)

(assume hq : q,
or.intro_left p hq)

or.elim does a case analysis
Specifically, or.elim is a function
taking three arguments:

an object of type p ∨ q
a function of type p → r
a function of type q → r

In this example r = q ∨ p

Alex Aiken CS 242 Lecture 18

Show: Making the Conclusion Explicit

lemma o3 (h : p ∨ q) : q ∨ p :=
or.elim h

(assume hp : p,
show q ∨ p,
from or.intro_right q hp)

(assume hq : q,
show q ∨ p,
from or.intro_left p hq)

• show allows the user to state the
goal
• The proposition (type) we are

trying to prove

• Helpful for making proofs clearer
• And detecting bugs in the proof

earlier

Alex Aiken CS 242 Lecture 18

Structuring Longer Proofs

lemma a8 (h : p ∧ q) : q ∧ p :=
have hp : p, from and.left h,
have hq : q, from and.right h,
show q ∧ p, from and.intro hq hp

have h from t in e
is equivalent to
(λh.e) t

Recall (λh.e) t is also equivalent to
let h = t in e

Useful for structuring longer
arguments in a series of steps

Alex Aiken CS 242 Lecture 18

A More Complex Lemma

(p → q) → (p → r) → (p → q ⋀ r)

lemma imp (f1: p -> q) (f2: p -> r) (x:p) : q ∧ r :=
have hq: q, from f1 x,
have hr: r, from f2 x,
show q ∧ r, from ⟨ hq, hr ⟩

Alex Aiken CS 242 Lecture 18

Quantifiers

• We’ve already seen examples of universal quantifiers

• Recall
def polyapp (α : Type) (g: α -> α) (x:α) : α := g x
def polyapp2 : Π α : Type, (α -> α) -> α -> α := λ t g x, g x
def polyapp3 : ∀ α : Type, (α -> α) -> α -> α := λ t g x, g x

If we define polymorphic functions, we are carrying out universal proofs.

The intro and elimination of universal quantifiers is implicit in polymorphic type checking.

A very common case, though there are times we want explicit ∀-intro and ∀-elim.

Alex Aiken CS 242 Lecture 18

Existential Quantifier Elimination

Eliminating an existential quantifier from h: ∃ x: t, p x has the form

exists.elim h
(assume y : t,
assume z : p y,
e)

Alex Aiken CS 242 Lecture 18

Existential Quantifier Introduction

Consider a proposition of the form E(p)

The exists.intro p E(p) = ∃ x. E(x)

We replace the subexpression p by the existentially bound variable
• Not entirely trivial, as p could be a complex expression that the

system needs to search for in E(p)

Alex Aiken CS 242 Lecture 18

A Proof with Quantifiers

If x is even, then x2 is even.
definition even (x : nat) := ∃ k, x = 2 * k

theorem x_even_x2_even (x: nat) (h: even x) : even (x * x) :=
exists.elim h
(assume k,
assume hk : x = 2 * k,
show even (x * x),
from exists.intro (k * x)

(calc x * x = (2 * k) * x : by rw hk
... = 2 * (k * x) : by rw nat.mul_assoc

)
)

Alex Aiken CS 242 Lecture 18

Calculational Proofs and Tactics

calc x * x = (2 * k) * x : by rw hk
... = 2 * (k * x) : by rw nat.mul_assoc

Calc is a special proof mode for “calculation”
• Proofs that involve the transitivity of equality

• At each step we must show the justification for the equality
• rw stands for “rewrite”, any rule that involves an algebraic rewrite
• rw hk means a substitution using the type of hk (recall hk: x = 2 * k)
• rw nat.mulassoc means apply the associativity law for multiplication (x * y)* z = x * (y * z)

• Lean automates some patterns of rules (tactics)

Alex Aiken CS 242 Lecture 18

Summary

• There are many more features of Lean
• Many other propositions, functions, and proof combinators
• Lots of libraries
• Many other alternative shorthands

• With practice, writing proofs becomes like programming
• Dependent type theory shows, in fact, that it is just programming!

Alex Aiken CS 242 Lecture 18

Final Thoughts

Alex Aiken CS 242 Lecture 18

The Big Picture: Language Goals

Alex Aiken CS 242 Lecture 1

Productivity

Safety Performance

Python

CCoq, Lean

ML, Haskell Matlab, NumPy

Rust

Java, C++

Language Goals

• Every programming language has as goals
• Performance
• Productivity
• Safety

• But there are tradeoffs

• And different designs make different choices
• One of the reasons we have so many programming languages

Alex Aiken CS 242 Lecture 1

Tradeoffs: Productivity vs. Safety
Proving Properties of Programs

Alex Aiken CS 242 Lecture 18

Automatic,
Low complexity

Manual,
Undecidable

Simply Typed
Lambda Calculus

Dependent TypesStatic Analysis

Automatic,
High complexity

Invariant Inference

Automatic or Semi-automatic
Often undecidable

Tradeoffs: Productivity vs. Safety
Proving Properties of Programs

Alex Aiken CS 242 Lecture 18

Automatic,
Low complexity

Manual,
Undecidable

Simply Typed
Lambda Calculus

Dependent TypesStatic Analysis

Automatic,
High complexity

Invariant Inference

Automatic or Semi-automatic
Often undecidable

Every optimizing
compiler

Gradual Types

Emerging from
the lab …Every typed

language

Still figuring this
part out …

Tradeoffs: Productivity vs. Performance

• Array programming languages support both!

• But …
• Limited to arrays
• First-order – no higher order functions, no objects …

Alex Aiken CS 242 Lecture 18

Tradeoffs: Performance vs. Safety

Alex Aiken CS 242 Lecture 18

10 Versions of Matrix Multiply from Leiserson & Shun

Tradeoffs: Performance vs. Safety

Alex Aiken CS 242 Lecture 18

#10 is much more complicated than #1 !

• These tradeoffs explain why there are so many different languages
- But there are many fewer language building blocks
- Put together in endless variations

• New language technology is always coming
- New ideas in programming
- Changes in underlying hardware
- Changes in needs (e.g., security)

• We have focused on
- The building blocks of programming languages that have stood the test of time
- New and emerging ideas in programming

The Last Slide …

Thanks!

Alex Aiken CS 242 Lecture 18

