Clean-Up and Wrap-Up

CS242
Lecture 19
Reminder

• Final exam will be next Wednesday, 3:30-6:30

• Open note, and electronic devices are OK
 • But no internet or computation, only use to read your notes

• Lectures 17 and 18 will not be covered on the exam
The Untyped and Simply Typed Lambda Calculi

Untyped lambda calculus:

\[e \rightarrow x \mid \lambda x.e \mid e\ e \]

Simply typed lambda calculus:

\[e \rightarrow x \mid \lambda x: t.e \mid e\ e \mid i \\
 t \rightarrow \alpha \mid t \rightarrow t \mid \text{int} \]
Extension 1: Algebraic Data Types

General form

DataTable \(A(var_1, \ldots, var_n):\)

...

\(\text{Constructor}_i: t_1 \rightarrow \ldots \rightarrow t_k \rightarrow A(var_1, \ldots, var_n)\)

...

Each constructor defines a pure lambda term.
Example: Lists

Consider the list data type:

List(A):

 nil: List(A)
 cons: A -> List(A) -> List(A)

\[\text{nil: } \lambda n.\lambda c.n\]
\[\text{cons: } \lambda h.\lambda t.\lambda n.\lambda c.c \; h \; (t \; n \; c)\]
Other Examples

• Non-negative integers
• Pairs
• Booleans
• Binary trees

• In general, any tree-shaped data structure
Extension 2: Constants

• We can extend the lambda calculus with additional functions and constants

• Example
 • Add all integers ..., -1, 0, 1, ...
 • And addition. \(+: \text{int} \rightarrow \text{int} \rightarrow \text{int}\)

• Other typical built-ins:
 • Floating point numbers
 • Booleans
 • Characters
 • Strings
 • Arrays
Control Constructs: If and Recursion

We can also extend the calculus with control constructs

\(\text{if}: \text{Bool} \rightarrow \text{t} \rightarrow \text{t}\)

Usage: \(\text{if } e_1 e_2 e_3\)
Typing Checking for If

\[A \vdash e_1 : \text{Bool} \]
\[A \vdash e_2 : t \]
\[A \vdash e_3 : t \]

\[[\text{If}] \]
\[A \vdash \text{if } e_1 \ e_2 \ e_3 : t \]
Typing Inference for If

\[
\begin{align*}
A \vdash e_1 : \text{Bool} \\
A \vdash e_2 : t_1 \\
A \vdash e_3 : t_2 \\
t_1 &= t_2
\end{align*}
\]

\[
\frac{}{A \vdash \text{if } e_1 \ e_2 \ e_3 : t_1}
\]
Recursion

Recall

\[
\text{let } x = e_1 \text{ in } e_2 \quad \text{is equivalent to} \quad (\lambda x. e_2) \ e_1
\]

Extend to recursive definitions

\[
\text{letrec } f = \lambda x. e_1 \text{ in } e_2 \quad \text{is equivalent to} \quad (\lambda f. e_2) \ (Y \ \lambda f. \lambda x. e_1)
\]
Typing Checking for Recursive Definitions

\[\begin{align*}
A, f : t_1 \rightarrow t_2 & \vdash \lambda x. e_1 : t_1 \rightarrow t_2 \\
A, f : t_1 \rightarrow t_2 & \vdash e_2 : t \\
\hline
A \vdash \text{letrec } f = \lambda x. e_1 \text{ in } e_2 : t
\end{align*} \]

\[\text{[Letrec]} \]
Typing Inference for Recursive Definitions

\[A, f: \alpha \to \beta \vdash \lambda x. e_1 : t_1 \to t_2 \]
\[A, f: \alpha \to \beta \vdash e_2 : t \]
\[\alpha = t_1 \quad \beta = t_2 \]

\[\frac{}{A \vdash \text{letrec } f = \lambda x. e_1 \text{ in } e_2 : t} \quad \text{[Letrec]} \]
Extension 3: Polymorphic Types

\[e \rightarrow x \mid \lambda x.e \mid e \ e \mid \text{let } f = \lambda x.e \text{ in } e \mid i \]

\[t \rightarrow \alpha \mid t \rightarrow t \mid \text{int} \]

\[o \rightarrow \forall \alpha.o \mid t \]
Functional Languages

• Lambda calculus + primitive functions + algebraic data types

• These features are the core of all functional languages
 • Lisp, Scheme, Racket

• Plus polymorphic types for typed functional languages
 • ML, OCaml, Haskell
Monads

• Plumbs generalized “state” through a computation
 • Makes implicit arguments (like global variables and state) explicit
 • Does the sequencing through higher-order functions

• Many language features can be expressed as monads
 • State
 • Continuations
 • Exceptions
 • (Some kinds of) threads

• All except pure functional languages have some built-in monads
 • Typically state and exceptions, continuations and threads are less common
 • Haskell exposes monads to the programmer – define your own language features!
Objects

• Objects are something different
 • Typed object-oriented languages are not easily translated into typed functional languages

• Method override is difficult to deal with in typed systems

• Solutions
 • Restrict method override: Java, C++ limit it to inheritance between classes
 • Go to an untyped language: Python, Javascript
 • Use traits, mixins: Scala
Typing Inference for If with Subtyping

\[
\begin{align*}
A \vdash e_1 : \mathsf{Bool} \\
A \vdash e_2 : t_1 \\
A \vdash e_3 : t_2 \\
t_1 = t_2 \\
\hline
A \vdash \text{if } e_1 e_2 e_3 : t_1
\end{align*}
\]

\[
\begin{align*}
A \vdash e_1 : \mathsf{Bool} \\
A \vdash e_2 : t_1 \\
A \vdash e_3 : t_2 \\
t_1 < t \\
t_2 < t \\
\hline
A \vdash \text{if } e_1 e_2 e_3 : t
\end{align*}
\]
Java’s Type Rule for If

\[
\begin{align*}
A & \vdash e_1 : \text{Bool} \\
A & \vdash e_2 : t_1 \\
A & \vdash e_3 : t_2 \\
t_1 < t_2 & \text{ or } t_2 < t_1
\end{align*}
\]

\[
A \vdash \text{if } e_1 e_2 e_3 : \max(t_1, t_2)
\]
Object Oriented vs Functional Languages

• Functional language example:

\[f \text{ cons}(a,b) = a \]
\[f \text{ nil} = \text{nil} \]

Adding a new function is a local change.
Adding a new kind of data, such as a new constructor to a data type, requires updating every function that uses that type.
Object Oriented vs Functional Languages

• Object-oriented language example:

Class List of
 method cons(x,y) ...
 method nil ...
end

Adding a new kind of data type is a local change.

Adding a new function (method) may require updating many classes with a definition of that method (modulo inheritance).
Bottom Line

• There is no single best way to combine functional and object-oriented features.

• Emphasizing some features requires restricting other features.
Adding Objects to Functional Languages

- *Type classes* are Haskell’s way of providing object-like features
 - But really much closer to Java’s interfaces than objects

- Examples

 \[
 (\neq) \, :: \, \text{Eq } a \rightarrow a \rightarrow a \rightarrow \text{bool}
 \]

 Any type \(a\) *that supports equality should be part of the Eq class*

 \[
 (<) \, :: \, \text{Ord } a \rightarrow a \rightarrow a \rightarrow \text{bool}
 \]

 Any type \(a\) *that supports ordering should be part of the Ord class*
Type Classes

(<) :: Ord a => a -> a -> bool

Idea: Code that requires certain functionality can require a value of the appropriate type class, without saying how it is implemented.

Example: A generic sorting function can take a comparison function < in the Ord type class as an argument.
Adding Functions to OO Languages

• C++ has had lambdas since C++14
 • Involves explicitly naming captured variables
 • And whether they are captured by value or reference

• Java has had lambdas since Java 8

• And both have polymorphic types
 • C++ has templates
 • Java has generics
What Didn’t We Talk About?

• Overloading

• Having multiple functions of different types with the same name

 +: int → int → int
 +: float → float → float
 +: string → string → string

 Overloading rules in languages with subtyping are complicated.
Approaches to Proving Properties of Programs

- Simply Typed Lambda Calculus
- Static Analysis
- Invariant Inference
- Dependent Types

- Automatic, Low complexity
- Automatic, High complexity
- Automatic or Semi-automatic, Often undecidable
- Manual, Undecidable
Recall: Simple Type Inference Rules

[Var]
\[A, \ x : \alpha_x \vdash x : \alpha_x \]

[App]
\[t = t' \rightarrow \beta \]
\[A \vdash e_1 : t \]
\[A \vdash e_2 : t' \]
\[A \vdash e_1 \ e_2 : \beta \]

[Abs]
\[A, \ x : \alpha_x \vdash \ e : t \]
\[A \vdash \lambda x : \alpha_x \cdot e : \alpha_x \rightarrow t \]

[If]
\[A \vdash e_1 : \text{bool} \]
\[A \vdash e_2 : t_1 \]
\[A \vdash e_3 : t_2 \]
\[t_1 = t_2 \]
\[A \vdash \text{if} \ e_1 \ e_2 \ e_3 : t_1 \]
A Small Change

[Var]

\[\text{A, } x: \alpha_x \vdash x: \alpha_x \]

\[t \subseteq t' \Rightarrow \beta \]

\[\text{A} \vdash e_1: t \]

\[\text{A} \vdash e_2: t' \]

\[\text{A} \vdash e_1 e_2: \beta \]

[App]

\[\text{A} \vdash \lambda x. e: \alpha_x \rightarrow t \]

\[\text{A} \vdash e_1 : \text{Bool} \]

\[\text{A} \vdash e_2 : t_1 \]

\[\text{A} \vdash e_3 : t_2 \]

\[t_1 \subseteq \alpha \quad t_2 \subseteq \alpha \]

[If]

\[\text{A} \vdash \text{if } e_1 e_2 e_3 : \alpha \]

\[\text{A} \vdash \lambda x. e : \alpha_x \rightarrow t \]
Contravariance

An unexpected fact of life: The contravariance of function types.

\[t_1 \rightarrow t_2 \subseteq t_3 \rightarrow t_4 \Rightarrow t_3 \subseteq t_1 \land t_2 \subseteq t_4 \]

Recall: Contravariance also shows up in handling mutable references. These issues only matter in typed languages with subtyping, but that is any typed language with object-oriented features.
Inductive (Loop) Invariants

while (B) {
 ...
 code ...
 ...
}
A Loop Invariant Example

```java
int A[10];
i = 1
// i = 1
while (i < 11) {
    // ∀ 1 ≤ j < i. A[j] = 0
    A[i] = 0;
    i += 1
}
// ∀ 1 ≤ j ≤ 10. A[j] = 0
```

Three conditions:

- \(i = 1 \Rightarrow \forall 1 \leq j < i. \ A[j] = 0 \)
- \(\forall 1 \leq j < i. \ A[j] = 0 \)
- \(\{ A[i] = 0; \ i = i + 1 \} \)
- \(\forall 1 \leq j < i. \ A[j] = 0 \)
- \(((\forall 1 \leq j < i. \ A[j] = 0) \land \ i \geq 11) \Rightarrow \forall 1 \leq j \leq 10. \ A[j] = 0 \)
Types As Propositions

\[A \vdash e_1 : t \rightarrow t' \]
\[A \vdash e_2 : t \]
\[A \vdash e_1 e_2 : t' \] \[\text{[App]}\]

\[A, x : t \vdash e : t' \]
\[A \vdash \lambda x . e : t \rightarrow t' \] \[\text{[Abs]}\]

From a proof of \(t \rightarrow t' \) and and a proof of \(t \), we can prove \(t' \).

If assuming \(t \) we can prove \(t' \), then we can prove \(t \rightarrow t' \).

Here we regard the types as propositions: If we can prove certain propositions are true, then we can prove that other propositions are true.
Approaches to Proving Properties of Programs

- **Automatic, Low complexity**
 - Simply Typed
 - Lambda Calculus
 - Every typed language

- **Automatic, High complexity**
 - Gradual Types
 - Static Analysis
 - Every optimizing compiler

- **Automatic or Semi-automatic, Often undecidable**
 - Invariant Inference
 - Still figuring this part out ...

- **Manual, Undecidable**
 - Dependent Types
 - Emerging from the lab ...

Alex Aiken CS 242 Lecture 15
Other topics ...

• Concurrency and parallelism

• Particularly parallelism ala the Pi Calculus

• Very different from sequential languages
 • Not well-modeled by lambda calculus, object calculus, etc.
 • Requires entirely different approaches that makes concurrency primitive

• Will be an increasingly important aspect of programming languages
The End ... and Thanks!