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Abstract

We discuss gateway queueing algorithms and their
role in controlling congestion in datagram networks.
A fair queueing algorithm, based on an earlier
suggestion by Nagle, is proposed. Analysis and
simulations are used to compare this algorithm to
other congestion control schemes. We find that fair
queueing provides several important advantages over
the usual first-come-first-serve queueing algorithm:
fair allocation of bandwidth, lower delay for sources
using less than their full share of bandwidth, and
protection from ill-behaved sources.

1. Introduction

Datagram networks have long suffered from perfor-
mance degradation in the presence of congestion
[Ger80]. The rapid growth, in both use and size, of
computer networks has sparked a renewed interest
in methods of congestion control [DEC87abcd,
Jac88a, Man89, Nag87]. These methods have two
points of implementation. The first is at the source,
where flow control algorithms vary the rate at
which the source sends packets, Of course, flow

control algorithms are designed primarily to ensure

the presence of free buffers at the destination host,
but we are more concerned with their role in limit-
ing the overall network traffic. The second point of
implementation is at the gateway. Congestion can
be controlled at gateways through routing and
queueing algorithms. Adaptive routing, if properly
implemented, lessens congestion by routing packets
away from network bottlenecks. Queueing algo-
rithms, which control the order in which packets
are sent and the usage of the gateway’s buffer
space, do not affect congestion directly, in that they
do not change the total traffic on the gateway’s out-
going line. Queueing algorithms do, however, deter-
mine the way in which packets from different
sources interact with each other which, in turn,
affects the collective behavior of flow control algo-
rithms. We shall argue that this effect, which is
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often ignored, makes queueing algorithms a crucial
component in effective congestion control.

Queueing algorithms can be thought of as allocat-
ing three nearly independent quantities: bandwidth
(which packets get transmitted), promptness (when
do those packets get transmitted), and buffer space
(which packets are discarded by the gateway).
Currently, the most common queueing algorithm is
first-come-first-serve (FCFS). FCFS queueing essen-
tially relegates all congestion control to the sources,
since the order of arrival completely determines the
bandwidth, promptness, and buffer space alloca-
tions. Thus, FCFS inextricably intertwines these
three allocation issues. There may indeed be flow
control algorithms that, when universally imple-
mented throughout a network with FCFS gateways,
can overcome these limitations and provide reason-
ably fair and efficient congestion control. This
point is discussed more fully in Sections 3 and 4,
where several flow control algorithms are com-
pared. However, with today’s diverse and decen-
tralized computing environments, it is unrealistic
to expect universal implementation of any given
flow control algorithm. This is not merely a ques-
tion of standards, but also one of compliance. Even
if a universal standard such as ISO [ISO86] were
adopted, malfunctioning hardware and software
could violate the standard, and there is always the
possibility that individuals would alter the algo-
rithms on their own machine to improve their per-
formance at the expense of others. Consequently,
congestion control algorithms should function well
even in the presence of ill-behaved sources. Unfor-
tunately, no matter what flow control algorithm is
used by the well-behaved sources, networks with
FCFS gateways do not have this property. A single
source, sending packets to a gateway at a
sufficiently high speed, can capture an arbitrarily
high fraction of the bandwidth of the outgoing line.
Thus, FCFS queueing is not adequate; more
discriminating queueing algorithms must be used
in conjunction with source flow control algorithms
to control congestion effectively in noncooperative
environments.

Following a similar line of reasoning, Nagle
[Nag87, Nag85] proposed a fair queueing (FQ) algo-
rithm in which gateways maintain separate queues
for packets from each individual source. The queues
are serviced in a round-robin manner. This
prevents a source from arbitrarily increasing its
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share of the bandwidth or the delay of other
sources. In fact, when a source sends packets too
quickly, it merely increases the length of its own
queue. Nagle’s algorithm, by changing the way
packets from different sources interact, does not
reward, nor leave others vulnerable to, anti-social
behavior. On the surface, this proposal appears to
have considerable merit, but we are not aware of
any published data on the performance of datagram
networks with such fair queueing gateways. In this
paper, we will first describe a modification of
Nagle’s algorithm, and then provide simulation
data comparing networks with FQ gateways and
those with FCFS gateways.

The three different components of congestion con-
trol algorithms introduced above, source flow con-
trol, gateway routing, and gateway queueing algo-
rithms, interact in interesting and complicated
ways. It is impossible to assess the effectiveness of
any algorithm without reference to the other com-
ponents of congestion control in operation. We will
evaluate our proposed queueing algorithm in the
context of static routing and several widely used
flow control algorithms. The aim is to find a queue-
ing algorithm that functions well in current com-
puting environments. The algorithm might, indeed
it should, enable new and improved routing and
flow control algorithms, but it must not require
them.

We had three goals in writing this paper. The first
was to describe a new fair queueing algorithm. In
Section 2.1, we discuss the design requirements for
an effective queueing algorithm and outline how
Nagle’s original proposal fails to meet them. In Sec-
tion 2.2, we propose a new fair queueing algorithm
which meets these design requirements. The
second goal was to provide some rigorous under-
standing of the performance of this algorithm; this
is done in Section 2.3, where we present a delay-
throughput curve given by our fair queueing algo-
rithm for a specific configuration of sources. The
third goal was to evaluate this new queueing propo-
sal in the context of real networks. To this end, we
discuss flow control algorithms in Section 3, and
then, in Section 4, we present simulation data com-
paring several combinations of flow control and
queueing algorithms on six benchmark networks.
Section 5 contains an overview of our results, a dis-
cussion of other proposed queueing algorithms, and
an analysis of some criticisms of fair queueing.

In circuit switched networks where there is explicit
buffer reservation and uniform packet sizes, it has
been established that round robin service discip-
lines allocate bandwidth fairly [Hah86, Kat87].
Recently Morgan [Mor89] has examined the role
such queueing algorithms play in controlling
congestion in circuit switched networks; while his
application context is quite different from ours, his
conclusions are qualitatively similar. In other
related work, the DATAKIT™ queueing algorithm

combines round robin service and FIFO priority
service, and has been analyzed extensively [Lo87,
Fra84). Also, Luan and Lucantoni present a
different form of bandwidth management policy for
circuit switched networks [Lua88].

Since the completion of this work, we have learned
of a similar Virtual Clock algorithm for gateway
resource allocation proposed by Zhang [Zha89].
Furthermore, Heybey and Davin [Hey89] have
simulated a simplified version of our fair queueing
algorithm.

2. Fair Queueing

2.1. Motivation What are the requirements for a
queueing algorithm that will allow source flow con-
trol algorithms to provide adequate congestion con-
trol even in the presence of ill-behaved sources?
We start with Nagle’s observation that such queue-
ing algorithms must provide protection, so that ill-
behaved sources can only have a limited negative
impact on well behaved sources. Allocating
bandwidth and buffer space in a fair manner, to be
defined later, automatically ensures that ill-
behaved sources can get no more than their fair
share. This led us to adopt, as our central design
consideration, the requirement that the queueing
algorithm allocate bandwidth and buffer space
fairly. Ability to control the promptness, or delay,
allocation somewhat independently of the
bandwidth and buffer allocation is also desirable.
Finally, we require that the gateway should pro-
vide service that, at least on average, does not
depend discontinuously on a packet’s time of arrival
(this continuity condition will become clearer in
Section 2.2). This requirement attempts to prevent
the efficiency of source implementations from being
overly sensitive to timing details (timers are the
Bermuda Triangle of flow control algorithms).
Nagle’s proposal does not satisfy these require-
ments. The most obvious flaw is its lack of con-
sideration of packet lengths. A source using long
packets gets more bandwidth than one using short
packets, so bandwidth is not allocated fairly. Also,
the proposal has no explicit promptness allocation
other than that provided by the round-robin service
discipline. In addition, the static round robin ord-
ering violates the continuity requirement. In the
following section we attempt to correct these
defects.

In stating our requirements for queueing algo-
rithms, we have left the term fair undefined. The
term fair has a clear colloquial meaning, but it also
has a technical definition (actually several, but only
one is considered here). Consider, for example, the
allocation of a single resource among N users.
Assume there is an amount p,,, of this resource
and that each of the users requests an amount p,
and, under a particular allocation, receives an



amount p;. What is a fair allocation? The max-
min fairness criterion [Hah86, Gaf84, DEC87d]
states that an allocation is fair if (1) no user
receives more than its request, (2) no other alloca-
tion scheme satisfying condition 1 has a higher
minimum allocation, and (3) condition 2 remains
recursively true as we remove the minimal user
and reduce the total resource accordingly,
Heotat € Hiotal — Pmin- This condition reduces to
pi =MIN (pgyir,p;) in the simple example,Nwith P fairs

the fair share, being set so that p, = Y p,. This

=1
concept of fairness easily generalizes to the multi-
ple resource case [DEC87d]. Note that implicit in
the max-min definition of fairness is the assump-
tion that the users have equal rights to the
resource.

In our communication application, the bandwidth
and buffer demands are clearly represented by the
packets that arrive at the gateway. (Demands for
promptness are not explicitly communicated, and
we will return to this issue later.) However, it is
not clear what constitutes a user. The user associ-
ated with a packet could refer to the source of the
packet, the destination, the source-destination pair,
or even refer to an individual process running on a
source host. Each of these definitions has limita-
tions. Allocation per source unnaturally restricts
sources such as file servers which typically consume
considerable bandwidth. Ideally the gateways
could know that some sources deserve more
bandwidth than others, but there is no adequate
mechanism for establishing that knowledge in
today’s networks. Allocation per receiver allows a
receiver’s useful incoming bandwidth to be reduced
by a broken or malicious source sending unwanted
packets to it. Allocation per process on a host
encourages human users to start several processes
communicating simultaneously, thereby avoiding
the original intent of fair allocation. Allocation per
source-destination pair allows a malicious source to
consume an unlimited amount of bandwidth by
sending many packets all to different destinations.
While this does not allow the malicious source to do
useful work, it can prevent other sources from
obtaining sufficient bandwidth.

Overall, allocation on the basis of source-
destination pairs, or conversations, seems the best
tradeoff between security and efficiency and will be
used here. However, our treatment will apply to
any of these interpretations of user. With our
requirements for an adequate queueing algorithm,
coupled with our definitions of fairness and user, we
now turn to the description of our algorithm.

2.2. Definition of algorithm It is simple to allo-
cate buffer space fairly by dropping packets, when
necessary, from the conversation with the largest
queue. Allocating bandwidth fairly is less straight-
forward. Pure round-robin service provides a fair

allocation of packets-sent but fails to guarantee a
fair allocation of bandwidth because of variations in
packet sizes. To see how this unfairness can be
avoided, we first consider a hypothetical service dis-
cipline where transmission occurs in a bit-by-bit
round robin (BR) fashion (as in a head-of-queue
processor sharing discipline). This service discip-
line allocates bandwidth fairly since at every
instant in time each conversation is receiving its
fair share. Let R(¢) denote the number of rounds
made in the round-robin service discipline up to
time ¢ (R(¢) is a continuous function, with the frac-
tional part indicating partially completed rounds).
Let N, (¢t) denote the number of active conversa-
tions, i.e. those that have bits in their queue at
Then R __p_ where p is the
Tt Ny’
linespeed of the gateway’s outgoing line (we will,
for convenience, work in units such that p=1). A
packet of size P whose first bit gets serviced at time
to will have its last bit serviced P rounds later, at
time ¢ such that R(t)=R(ty)+P. Let t,* be the
time that packet i belonging to conversation «
arrives at the gateway, and define the numbers S;*
and F;" as the values of R(¢) when the packet
started and finished service. With P,” denoting the
size of the packet, the following relations hold:
F*=8,%+P,* and S,“=MAX(F,_,* R(%). Since
R(¢) is a strictly monotonically increasing function
whenever there are bits at the gateway, the order-
ing of the F;* values is the same as the ordering of
the finishing times of the various packets in the BR
discipline.

time ¢.

Sending packets in a bit-by-bit round robin fashion,
while satisfying our requirements for an adequate
queueing algorithm, is obviously unrealistic. We
hope to emulate this impractical algorithm by a
practical packet-by-packet transmission scheme.
Note that the functions R(¢) and N,(¢) and the
quantities S;* and F;* depend only on the packet
arrival times ¢, and not on the actual packet
transmission times, as long as we define a conversa-
tion to be active whenever R(@)<F,* for
i=MAX(j]t*<t). We are thus free to use these
quantities in defining our packet-by-packet
transmission algorithm. A natural way to emulate
the bit-by-bit round-robin algorithm is to let the
quantities F;* define the sending order of the pack-
ets. Our packet-by-packet transmission algorithm
is simply defined by the rule that, whenever a
packet finishes transmission, the next packet sent
is the one with the smallest value of F,*. In a
preemptive version of this algorithm, newly arriv-
ing packets whose finishing number F;* is smaller
than that of the packet currently in transmission
preempt the transmitting packet. For practical rea-
sons, we have implemented the nonpreemptive ver-
sion, but the preemptive algorithm (with resump-
tive service) is more tractable analytically. Clearly
the preemptive and nonpreemptive packetized algo-
rithms do not give the same instantaneous



bandwidth allocation as the BR version. However,
for each conversation the total bits sent at a given
time by these three algorithms are always within
Pax of each other, where P_,, is the maximum
packet size (this emulation discrepancy bound was
proved by Greenberg and Madras [Gree39]). Thus,
over sufficiently long conversations, the packetized
algorithms asymptotically approach the fair
bandwidth allocation of the BR scheme.

Recall that the user’s request for promptness is not
made explicit. (The IP [Pos81] protocol does have a
field for type-of-service, but not enough applications
make intelligent use of this option to render it a
useful hint.) Consequently, promptness allocation
must be based solely on data already available at
the gateway. One such allocation strategy is to give
more promptness (less delay) to users who utilize
less than their fair share of bandwidth. Separating
the promptness allocation from the bandwidth allo-
cation can be accomplished by introducing a nonne-
gative parameter §, and defining a new quantity,
the bid B;*, via B*=P,*+MAX(F,_\*, R(t;*)— ).
The quantities R(¢), N (¢t), F;*, and S,* remain as
before, but now the sending order is determined by
the B’s, not the F’s. The asymptotic bandwidth
allocation is independent of §, since the F’s control
the bandwidth allocation, but the algorithm gives
slightly faster service to packets that arrive at an
inactive conversation. The parameter § controls
the extent of this additional promptness. Note that
the bid B;* is continuous in #%, so that the con-
tinuity requirement mentioned in Section 2.1 is
met.

The role of this term § can be seen more clearly by
considering the two extreme cases § =0 and =1,
If an arriving packet has R(,*)<F,_,“ then the
conversation a« is active (i.e. the corresponding
conversation in the BR algorithm would have bits
in the queue). In this case, the value of § is
irrelevant and the bid number depends only on the
finishing number of the previous packet. However,
if R(¢,*)>F,_ % so that the a conversation is inac-
tive, the two cases are quite different. With §=0,
the bid number is given by B;"=P,*+R(¢,%) and is
completely independent of the previous history of
user a«. With &8=wo, the bid number is
B,*=P*+F,_|* and depends only the previous
packet’s finishing number, no matter how many
rounds ago. For intermediate values of 8§, schedul-
ing decisions for packets arriving at inactive
conversations depends on the previous packet’s
finishing round as long as it wasn’t too long ago,
and § controls how far back this dependence goes.

Recall that when the queue is full and a new
packet arrives, the last packet from the source
currently using the most buffer space is dropped.
We have chosen to leave the quantities F;* and S;*
unchanged when we drop a packet. This provides a
small penalty for ill-behaved hosts, in that they
will be charged for throughput that, because of

their own poor flow control, they could not use.

2.3. Properties of Fair Queueing The desired
bandwidth and buffer allocations are completely
specified by the definition of fairness, and we have
demonstrated that our algorithm achieves those
goals. However, we have not been able to charac-
terize the promptness allocation for an arbitrary
arrival stream of packets. To obtain some quantita-
tive results on the promptness, or delay, perfor-
mance of a single FQ gateway, we consider a very
restricted class of arrival streams in which there
are only two types of sources. There are FTP-like
file transfer sources, which always have ready pack-
ets and transmit them whenever permitted by the
source flow control (which, for simplicity, is taken
to be sliding window flow control), and there are
Telnet-like interactive sources, which produce pack-
ets intermittently according to some unspecified
generation process. What are the quantities of
interest? An FTP source is typically transferring a
large file, so the quantity of interest is the transfer
time of the file, which for asymptotically large files
depends only on the bandwidth allocation. Given
the configuration of sources this bandwidth alloca-
tion can be computed a priori by using the fairness
property of FQ gateways. The interesting quantity
for Telnet sources is the average delay of each
packet, and it is for this quantity that we now pro-
vide a rather limited result.

Consider a single FQ gateway with N FTP sources
sending packets of size Pp, and allow a single
packet of size Pr from a Telnet source to arrive at
the gateway at time ¢. It will be assigned a bid
number B =R(¢)+Pr—3§; thus, the dependence of
the queueing delay on the quantities Pr and § is
only through the combination P;—8. We will
denote the queueing delay of this packet by ¢(¢),
which is a periodic function with period NPp. We
are interested in the average queueing delay A

AVPF
1
A= t)dt
NP {(p()

The finishing numbers F,* for the N FTP’s can be
expressed, after perhaps renumbering the packets,
by F;*=(i +1*")Pr where the I's obey 0=/*<1. The
queueing delay of the Telnet packet depends on the
configuration of [’s whenever Pr<Pp. One can
show that the delay is bounded by the extremal
cases of [*=0 for all a and [*=a/N for
«=0,1,..,N—1. The delay values for these
extremal cases are straightforward to calculate; for
the sake of brevity we omit the derivation and
merely display the result below. The average
queueing delay is given by A=A(Py—§) where the
function A(P), the delay with 8=:0, is defined below
(with integer £ and small constant g, 0=e<l,
defined via Py =Pg(k+¢€)/N).
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Now consider a general Telnet packet generation
process (ignoring the effects of flow control) and
characterize this generation process by the function
Do(Pr) which denotes the queueing delay of the
Telnet source when it is the sole source at the gate-
way. In the BR algorithm, the queueing delay of
the Telnet source in the presence of N FTP sources
is merely D (N +1)Py). For the packetized preemp-
tive algorithm with §=0, we can express the
queueing delay in the presence of N FTP sources,
call it Dy(Pr), in terms of D, via the relation
(averaging over all relative synchronizations
between the FTP’s and the Telnet):

Dny(Pr)=Do((N+1Pr)+A(Py)

where the term A(Pr) reflects the extra delay
incurred when emulating the BR algorithm by the
preemptive packetized algorithm.

For nonzero values §, the generation process must
be further characterized by the quantity [Pyt
which, in a system where the Telnet is the sole
source, is the probability that a packet arrives to a
queue which has been idle for time ¢. The delay is
given by,

Dy(Pr)=Dy(N+1)P;)+A(Pr)—
[16(N + DPr A (Pr) ~ A(Pr— MIN (+-,8){dt
0

where the last term represents the reduction in
delay due the the nonzero §. These expressions for
Dy, which were derived for the preemptive case,
are also valid for the nonpreemptive algorithm
when PT ZP[.'.

What do these forbidding formulae mean? Con-
sider, for concreteness, a Poisson arrival process
with arrival rate A, packet sizes Pr=Pp=P, a
linespeed p=1, and an FTP synchronization

described by !*=a/N for a=0,1,...,N—1. Define p
to be the average bandwidth of the stream, meas-
ured relative to the fair share of the Telnet:
p=AP(N +1). Then, for the nonpreemptive algo-
rithm,

Dyv®) _p  Np -
7 _2(1—p)+ 5 +N(1-p)

__eN v d Ly L
WD N TN

1 WN+1)
—— X
[2 Np

Il—exp

This is the throughput/delay curve the FQ gateway
offers the Poisson Telnet source (the formulae for
different FTP synchronizations are substantially
more complicated, but have the same qualitative
behavior). This can be contrasted with that offered
by the FCFS gateway, although the FCFS results
depend in detail on the flow control used by the
FTP sources and on the surrounding network
environment. Assume that all other communica-
tions speeds are infinitely fast in relation to the
outgoing linespeed of the gateway, and that the
FTP’s all have window size W, so there are always
NW FTP packets in the queue or in transmission.
Figure 1 shows the throughput/delay curves for an
FCFS gateway, along with those for a FQ gateway
with 8 =0 and §=P. For p—0, FCFS gives a large
queueing delay of (NW — PP, whereas FQ gives a
queueing delay of NP/2 for §=0 and P/2 for § =P.
This ability to provide a lower delay to lower
throughput sources, completely independent of the
window sizes of the FTP’s, is one of the most impor-
tant features of fair queueing. Note also that the
FQ queueing delay diverges as p—1, reflecting FQ’s
insistence that no conversation gets more than its
fair share. In contrast, the FCFS curve remains
finite for all p <(N +1), showing that an ill-behaved
source can consume an arbitrarily large fraction of
the bandwidth.

What happens in a network of FQ gateways?
There are few results here, but Hahne [Hah86] has
shown that for strict round robin service gateways
and only FTP sources there is fair allocation of
bandwidth (in the multiple resource sense) when
the window sizes are sufficiently large. She also
provides examples where insufficient window sizes
(but much larger than the communication path)
result in unfair ailocations. We believe, but have
been unable to prove, that both of these properties
hold for our fair queueing scheme.

3. Flow Control Algorithms

Flow control algorithms are both the benchmarks
against which the congestion control properties of
fair queueing are measured, and also the environ-
ment in which FQ gateways will operate. We
already know that, when combined with FCFS
gateways, these flow control algorithms all suffer
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Figure 1: Delay vs. Throughput
This graph describes the queueing delay
of a single Telnet source with Poisson
generation process of strength A, sending
packets through a gateway with three
FTP conversations. The packet sizes are
Pr=Pr=P, the throughput is measured
relative to the Telnet's fair share,
p=4AP/u where p is the linespeed. The
delay is measured in units of P/u. The
FQ algorithm is nonpreemptive, and the
FCFS case always has 15 FTP packets in
the queue.

from the fundamental problem of vulnerability to
ill-behaving sources. Also, there is no mechanism
for separating the promptness allocation from the
bandwidth and buffer allocation. The remaining
question is then how fairly do these flow control
algorithms allocate bandwidth. Before proceeding,
note that there are really two distinct problems in
controlling congestion. Congestion recovery allows
a system to recover from a badly congested state,
whereas congestion avoidance attempts to prevent
the congestion from occurring. In this paper, we are
focusing on congestion avoidance and will not dis-
cuss congestion recovery mechanisms at length.

A generic version of source flow control, as imple-
mented in XNS’s SPP [Xer81] or in TCP [USC81],
has two parts. There is a timeout mechanism,
which provides for congestion recovery, whereby
packets that have not been acknowledged before
the timeout period are retransmitted (and a new
timeout period set). The timeout periods are given
by PBri#t where typically B~2 and rtt is the
exponentially averaged estimate of the round trip
time (the r¢t estimate for retransmitted packets is
the time from their first transmission to their ack-

nowledgement). The congestion avoidance part of
the algorithm is sliding window flow control, with
some set window size. This algorithm has a very
narrow range of validity, in that it avoids conges-
tion if the window sizes are small enough, and pro-
vides efficient service if the windows are large
enough, but cannot respond adequately if either of
these conditions is violated.

The second generation of flow control algorithms,
exemplified by Jacobson and Karels’ (JK) modified
TCP [Jac88a] and the original DECbit proposal
[DEC87a-c], are descendants of the above generic
algorithm with the added feature that the window
size is allowed to respond dynamically in response
to network congestion (JK also has, among other
changes, substantial modifications to the timeout
calculation [Jac88a,b, Kar87]). The algorithms use
different signals for congestion; JK uses timeouts
whereas DECbit uses a header bit which is set by
the gateway on all packets whenever the average
queue length is greater than one. These mechan-
isms allocate window sizes fairly, but the relation
Throughput =Window/RoundTrip implies that
conversations with different paths receive different
bandwidths.

The third generation of flow control algorithms are
similar to the second, except that now the conges-
tion signals are sent selectively. For instance, the
selective DECbit proposal [DEC87d] has the gate-
way measure the flows of the various conversations
and only send congestion signals to those users who
are using more than their fair share of bandwidth.
This corrects the previous unfairness for sources
using different paths (see [DEC87d] and section 4),
and appears to offer reasonably fair and efficient
congestion control in many networks. The DEC
algorithm controls the delay by attempting to keep
the average queue size close to one. However, it
does not allow individual users to make different
delay/throughput tradeoffs; the collective tradeoff is
set by the gateway.

4. Simulations

In this section we compare the various congestion
control mechanisms, and try to illustrate the inter-
play between the queueing and flow control algo-
rithms. We simulated these algorithms at the
packet level using a network simulator built on the
Nest network simulation tool [Nes88]. In order to
compare the FQ and FCFS gateway algorithms in a
variety of settings, we selected several different
flow control algorithms; the generic one described
above, JK flow control, and the selective DECbit
algorithm. To enable DECDbit flow control to
operate with FQ gateways, we developed a bit-
setting FQ algorithm in which the congestion bits
are set whenever the source’s queue length is
greater than % of its fair share of buffer space (note
that this is a much simpler bit-setting algorithm



than the DEC scheme, which involves complicated
averages; however, the choice of 1 is completely ad
hoc). The Jacobson/Karels flow control algorithm is
defined by the 4.3bsd TCP implementation. This
code deals with many issues unrelated to conges-
tion control. Rather than using that code directly in
our simulations, we have chosen to model the JK
algorithm by adding many of the congestion control
ideas found in that code, such as adjustable win-
dows, Dbetter timeout calculations, and fast
retransmit to our generic flow control algorithm.
The various cases of test algorithms are labeled in
table 1.

Label Flow Control | Queueing Algorithm
G/FCFS Generic FCFS
G/FQ Generic FQ
JK/FCFS JK FCFS
JK/FQ JK FQ
DEC/DEC DECbit Selective DECbit
DEC/FQbit DECbit FQ with bit setting

Table 1: Algorithm Combinations

Rather than test this set of algorithms on a single
representative network and load, we chose to define
a set of benchmark scenarios, each of which, while
somewhat unrealistic in itself, serves to illuminate
a different facet of congestion control. The load on
the network consists of a set of Telnet and FTP
conversations. The Telnet sources generate 40 byte
packets by a Poisson process with a mean inter-
packet interval of 5 seconds. The FTP’s have an
infinite supply of 1000 byte packets that are sent as
fast as flow control allows. Both FTP’s and Telnet’s
have their maximum window size set to 5, and the
acknowledgement (ACK) packets sent back from
the receiving sink are 40 bytes. (The small size of
Telnet packets relative to the FTP packets makes
the effect of 8 insignificant, so the FQ algorithm
was implemented with §=0). The gateways have
finite buffers which, for convenience, are measured
in packets rather than bytes. The system was
allowed to stabilize for the first 1500 seconds, and
then data was collected over the next 500 second
interval. For each scenario, there is a figure depict-
ing the corresponding network layout, and a table
containing the data. There are four performance
measures for each source: total throughput (number
of packets reaching destination), average round trip
time of the packets, the number of packet
retransmissions, and number of dropped packets.
We do not include confidence intervals for the data,
but repetitions of the simulations have consistently
produced results that lead to the same qualitative
conclusions.

We first considered several single-gateway net-
works. The first scenario has two FTP sources and
two Telnet sources sending to a sink through a sin-
gle bottleneck gateway. Note that, in this under-

Quantity Policy 1 2 3 4
G/FCFS 1746 | 1746 § 99 96

Throughput GIFQ 1746 | 1746 | 102 | 94
(packets) JK/FCFS | 1747 [ 1745 ] 102 | 104
P JK/FQ 1746 | 1746 | 105 | 103
DEC/DEC ] 1745 j 1746 | 131 | 105

DEC/FQbit | 1746 | 1746 ] 102 | 94
G/FCYFS 143 | 1.43 | 136 | 1.35

Average G/FQ 143 | 143 | o079 [ 091
. JK/FCFS | 143 [ 143 [ 135 ] 1.36
Roundtrip JK/FQ 143 | 1.43 | .084 | .089
Time DEC/DEC | 287 | .288 | 215 | 214
DEC/FQbit | 143 | 143 | 080 | 090

G/FCFS 0 0 [ 0

Retrans- G/FQ 0 0 2 i

: JK/FCFS 0 0 0 0
mitted JK/FQ 0 0 [ 0
Packets DEC/DEC | o 0 1 0

DEC/FQbit } o 0 2 1

G/FCFS 0 0 0 0

Dropped G/FQ 0 0 0 0
JK/FCFS 0 0 0 0

Packets JKFQ o 1 0o 1 o0 1 o

DEC/DEC 0 0 0 0

DEC/FQbit | o 0 [} 0

Scenario 1: Underloaded Gateway

loaded case, all of the algorithms provide fair
bandwidth allocation, but the cases with FQ pro-
vide much lower Telnet delay than those with
FCFS. The selective DECDbit gives an intermediate
value for the Telnet delay, since the flow control is
designed to keep the average queue length small.

Scenario 2 involves 6 FTP sources and 2 Telnet
sources again sending through a single gateway.
The gateway, with a buffer size of only 15, is sub-
stantially overloaded. This scenario probes the
behavior of the algorithms in the presence of severe
congestion.

When FCFS gateways are paired with generic flow
control, the sources segregate into winners, who
consume a large amount of bandwidth, and /osers,
who consume very little. This phenomenon
develops because the queue is almost always full.
The ACK packets received by the winners serve as
a signal that a buffer space has just been freed, so
their packets are rarely dropped. The losers are
usually retransmitting, at essentially random
times, and thus have most of their packets dropped.
This analysis is due to Jacobson [Jac88b], and the
segregation effect was first pointed out to us in this
context by Sturgis {Stu88]. The combination of JK



Buffer Size: 15

FTP Telnet
Quantity Policy 1 2 13] 4 5 6 | 7 8

G/FCFS 18 (1154 | use| 3 1149 | 15 31 3

Throughput GIFQ 178 | 838 | 591 | 600 | 615 | 621 | 96 | 98
(packets) JK/FCFS | 582 | s83 | 585 | 585 | 583 | s82 3 0
JK/FQ 574 | 579 | 546 | 594 | 599 | 601 87 96

DEC/DEC | s82 | 582 | 582 | 582 | 582 | s82 [ 99 90
DEC/FQbit | 582 | 582 | 582 | 582 | 582 | 582 | 105 | 97

G/FCFS 403 | 2.18 | 216

2.18 140 115

Average G/FQ 168 | 331 | 488 | 4.83 | 453 | 4.47 | 079 | 078
Roundtrip JK/FCFS [ 185 [ 193 {193 | 185 { 193 [ 185 - -

i JK/FQ 175 | 1.78 [ 119 { 186 | 2.20 | 2.16 | .091 | .085

Time DEC/DEC | 59 | 859 | 859 | .859 | .859 | .859 | .778 | 783

DEC/FQbit | 860 | .860 | 860 | 860 | .860 | 860 | .089 | .082

G/FCFS 43 10 7 [ 9 17 25 5

Retrans- G/FQ 73 | 224 | 176 | 188 | 243 | 159 2 2
mitted JK/FCFS 57 57 57 57 57 57 6 0
JK/FQ 83 80 60 64 61 61 0 0

Packets DEC/DEC | o 0 0 0 0 o 0 0
DEC/FQbit | o 0 [ 0 0 [} 2 3

G/FCFS 26 5 4 3 5 11 15 2

Dropped G/FQ 33 139 | 106 | 88 167 | 98 0 0
JK/FCFS 56 56 56 56 56 56 5 0

Packets JK/FQ 80 76 48 61 57 54 0 0
DEC/DEC 0 0 0 0 0 0 0 0

DEC/FQbit | o 0 0 0 0 0 0 0

Scenario 2: Overloaded Gateway

flow control with FCFS gateways produces fair
bandwidth allocation among the FTP sources, but
the Telnet sources are almost completely shut out.
This is because the JK algorithm ensures that the
gateway’s buffer is usually full, causing most of the
Telnet packets to be dropped.

When generic flow control is combined with FQ, the
strict segregation disappears. However, the
bandwidth allocation is still rather uneven, and the
useful bandwidth (rate of nonduplicate packets) is
12% below optimal. Both of these facts are due to
the inflexibility of the generic flow control, which is
unable to reduce its load enough to prevent dropped
packets. This not only necessitates retransmissions
but also, because of the crudeness of the timeout
congestion recovery mechanism, prevents FTP’s
from using thetir fair share of bandwidth. In con-
trast, JK flow control combined with FQ produced
reasonably fair and efficient allocation of the
bandwidth. The lesson here is that fair queueing
gateways by themselves do not provide adequate
congestion control; they must be combined with
intelligent flow control algorithms at the sources.

The selective DECbit algorithm manages to keep
the bandwidth allocation perfectly fair, and there

Py @ Iy

~«—— 800kbps

Buffer Size: 20 GW

-+—— 56kbps
®
FTP |Telnet| -
Behaved
Quantity Policy 1 2 3
G/FCFS 3 11 3497
Throughput GIFQ 3491 | 95 5
JK/FCFS [ 0 3500
(pa‘:kets’ JK/FQ 3489 110 [}
DEC/DEC 166 0 3334
DEC/FQbit | 3493 95 3
G/FCFS 1362 | 2.87 2.97
Average G/FQ 716 | 080 903
Roundtri JK/FCFS - - 2.83
u' derip JK/FQ 716 085 860
Time DEC/DEC | 3.00 - 2.99
DEC/FQbit | 641 080 877
G/FCFS 7 139 0
Retrans- G/FQ 0 2 o
: JK/FCFS 2 0 0
mi
tted JK/FQ 0 [ 0
Packets DEC/DEC 0 1 0
DEC/FQbit 0 2 [
G/FCFS 7 127 3504
Dropped GIFQ 0 0 6995
Pack JK/FCFS 2 0 3500
ckets JK/FQ [ 0 6994
DEC/DEC [ 1 3667
DEC/FQbit 0 0 6997

Scenario 3: Ill-Behaved Source

are no dropped packets or retransmissions. The
addition of FQ to the DECbit algorithm retains the
fair bandwidth allocation and, in addition, lowers
the Telnet delay by a factor of 9. Thus, for each of
the three flow control algorithms, replacing FCFS
gateways with FQ gateways generally improved the
FTP performance and dramatically improved the
Telnet performance of this extremely overloaded
network.

In scenario 3 there is a single FTP and a single
Telnet competing with an ill-behaved source. This
ill-behaved source has no flow control and is send-
ing packets at twice the rate of the gateway’s out-
going line. With FCFS, the FTP and Telnet are
essentially shut out by the ill-behaved source.
With FQ, they obtain their fair share of bandwidth.
Moreover, the ill-behaved host gets much less than
its fair share, since when it has its packets dropped
it is still charged for that throughput. Thus. FQ
gateways are effective firewalls that can protect
users, and the rest of the network, from being dam-
aged by ill-behaved sources.

We have argued for the importance of considering a
heterogeneous set of flow control mechanisms.



-«— 800kbps

Buffer Size: 15
«<«— 56kbps
Generic FTP JK FTP
Quantity | Queueing Policy 1 2 3 4
Throughput FQ 1162 12 1163 1163
(packets)
FCFS 1182 1182 569 567
Average FQ 215 281 2.14 2.04
Roundtrip
Time FCFS 2.11 2.11 2,07 2.16
Retrans- FQ 1 5 2 2
mitted
Packets FCFS 0 0 47 47
Droiped FQ 1 1 2 2
Packets
FCFS 0 0 48 48

Scenario 4: Mixed Protocols

Scenario 4 has single gateway with two pairs of
FTP sources, employing generic and JK flow control
respectively. With a FCFS gateway, the generic
flow controlled pair has higher throughput than the
JK pair. However, with a FQ gateway, the situa-
tion is reversed (and the generic sources have
segregated). Note that the FQ gateway has pro-
vided incentive for sources to implement JK or
some other intelligent flow control, whereas the
FCFS gateway makes such a move sacrificial.

Certainly not all of the relevant behavior of these
algorithms can be gleaned from single gateway net-
works. Scenario 5 has a multinode network with
four FTP sources using different network paths.
Three of the sources have short nonoverlapping
conversations and the fourth source has a long path
that intersects each of the short paths. When FCFS
gateways are used with generic or JK flow control,
the conversation with the long path receives less
than 60% of its fair share. With FQ gateways, it
receives its full fair share. Furthermore, the selec-
tive DECbit algorithm, in keeping the average
queue size small, wastes roughly 10% of the
bandwidth (and the conversation with the long
path, which should be helped by any attempt at
fairness, ends up with less bandwidth than in the
generic/FCFS case).

Scenario 6 involves a more complicated network,
combining lines of several different bandwidths.
None of the gateways are overloaded so all combi-

Buffer Size: 20 56kbps g

GwW GW GwW GW GwW
FTP
Policy 1 2 3 4

G/FCFS | 2500 | 2500 | 2500 | 1000
Throughput G/FQ 1750 | 1750 | 1750 | 1750

GW

Quantity

JK/FCFS T 2500 | 2500 [ 2500 | 1000

(packets) JKIFQ 1750 | 1750 | 1750 § 1750
DEC/DEC | 2395 | 2406 | 2377 { 783

DEC/FQbit | 1750 [ 1750 | 1750 | 1750

G/FCFS 1.00 [ 100 { 100 | 2.5

Average G/FQ 143 | 143 | 143 | 143
Roundtrip JK/FCFS [ 1.00 [ 100 [ 100 | 25

. JK/FQ 143 1 143 } 143 | 143
Time DEC/DEC ] 617 | 626 | 618 | 1.55
DEC/FQbit { 143 | 143 [ 143 | 1.43

G/FCFS 0 0 0 [}

Retrans- G/FQ 0 0 0 0
: JK/FCFS [ 0 0 0
mitted JRFQ | o T o [ o [ o
Packets DEC/DEC | ¢ 0 0 0
DEC/FQbit | o 0 0 0

G/FCFS [ [ 0 0

Dropped G/FQ 0 o 0 0
JK/FCFS 0 ) 0 0

Packets JKFQ T o | o | o | o
DEC/DEC 0 0 0 0

DEC/FQbit 0 [ 0 0

Scenario 5: Multihop Path

nations of flow control and queueing algorithms
function smoothly. With FCFS, sources 4 and 8 are
not limited by the available bandwidth, but by the
delay their ACK packets incur waiting behind FTP
packets. The total throughput increases when the
FQ gateways are used because the small ACK
packets are given priority,

For the sake of clarity and brevity, we have
presented a fairly clean and uncomplicated view of
network dynamics. We want to emphasize that
there are many other scenarios, not presented here,
where the simulation results are confusing and
apparently involve complicated dynamic effects.
These results do not call into question the efficacy
and desirability of fair queueing, but they do chal-
lenge our understanding of the collective behavior
of flow control algorithms in networks.

5. Discussion

In an FCFS gateway, the queueing delay of packets
is, on average, uniform across all sources and
directly proportional to the total queue size. Thus.
achieving ambitious performance goals, such as low
delay for Telnet-like sources, or even mundane
ones, such as avoiding dropped packets, requires
coordination among all sources to control the queue
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Quantity Policy 1 2 3 4 5 6 7 8
G/FCFS
G/FQ
JK/FCFS
JK/FQ
DEC/DEC
DEC/FQbit

G/FCFS
GIFqQ
[JKiFCFS
JK/FQ
DEC/DEC
DEC/FQbit

G/FCFS
G/FQ
JR/FCFS
JRKIFQ
DEC/DEC
DEC/FQbit

G/FCFS
G/FQ
JR/FCFS
JRIFQ
[ DEC/DEC
DEC/TQbit

196
193
195
193
175
193

202
192
202
193
200
192

196
192
195
193
212
192

187
577
190
577
288
571

1832
1560
1833
1558
2034
1558

1277
1560
1276
1558
827

1620

1950
1622
1951
1619
1337
1566

1945
3274
1946
3273
2684
3273

Throughput
(packets)

12.8
12.8
12.8
13.0
3.35
6.46

124
129
12.4
13.0
3.60
6.49

12.8
12.8
12.8
13.0
3.63
6.49

13.3
4.26
13.2
4.33
4.65
4.33

1.36
1.60
1.36
1.60
960
1.53

1.96
1.60
1.96
1.60
1.06

1.27
1.54
1.27
1.54
175
133

1.26
728
1.25
729
737
129
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Scenario 6: Complicated Network

size. Having to rely on source flow control algo-
rithms to solve this control problem, which is
extremely difficult in a maximally cooperative
environment and impossible in a noncooperative
one, merely reflects the inability of FCFS gateways
to distinguish between wusers and to allocate
bandwidth, promptness, and buffer space indepen-
dently.

In the design of the fair queueing algorithm, we
have attempted to address these issues. The algo-
rithm does allocate the three quantities separately.
Moreover, the promptness allocation is not uniform
across users and is somewhat tunable through the
parameter 4. Most importantly, fair queueing
creates a firewall that protects well-behaved
sources from their uncouth brethren. Not only does
this allow the current generation of flow control
algorithms to function more effectively, but it
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creates an environment where users are rewarded
for devising more sophisticated and responsive algo-
rithms. The game-theoretic issue first raised by
Nagle, that one must change the rules of the
gateway’s game so that good source behavior is
encouraged, is crucial in the design of gateway
algorithms. A formal game-theoretic analysis of a
simple gateway model (an exponential server with
N Poisson sources) suggests that fair queueing
algorithms make self-optimizing source behavior
result in fair, protective, nonmanipulable, and
stable networks; in fact, they may be the only rea-
sonable queueing algorithms to do so [She89al.

Our calculations show that the fair queueing algo-
rithm is able to deliver low delay to sources using
less than their fair share of bandwidth, and that
this delay is insensitive to the window sizes being
used by the FTP sources. Furthermore, simulations
indicate that, when combined with currently avail-
able flow control algorithms, FQ delivers satisfac-
tory congestion control in a wide variety of network
scenarios. The combination of FQ gateways and
DECbit flow control was particularly effective.
However, these limited tests are in no way con-
clusive. We hope, in the future, to investigate the
performance of FQ under more realistic load condi-
tions, on larger networks, and interacting with
routing algorithms. Also, we hope to explore new
source flow control algorithms that are more
attuned to the properties of FQ gateways.

In this paper we have compared our fair queueing
algorithm with only the standard first-come-first-
serve queueing algorithm. We know of three other
widely known queueing algorithm proposals. The
first two were not intended as a general purpose
congestion control algorithms. Prue and Postel
[Pru87] have proposed a type-of-service priority
queueing algorithm, but allocation is not made on a
user-by-user basis, so fairness issues are not
addressed. There is also the Fuzzball selective
preemption algorithm {Mill37,88] whereby the gate-
ways allocate buffers fairly (on a source basis, over
all of the gateway’s outgoing buffers). This is very
similar to our buffer allocation policy, and so can be
considered a subset of our FQ algorithm. The Fuzz-
balls also had a form of type-of-service priority
queueing but, as with the Prue and Postel algo-
rithm, allocations were not made on a user-by-user
basis. The third policy is the Random-Dropping
(RD) buffer management policy in which, when the
buffer is overloaded, the packet to be dropped is
chosen at random {Per89, Jac88ab]. This algorithm
greatly alleviates the problem of segregation. How-
ever, it is now generally agreed that the RD algo-
rithm does not provide fair bandwidth allocation, is
vulnerable to ill-behaved sources, and is unable to
provide reduced delay to conversations using less
than their fair share of bandwidth [She89b, Zha89,
Has89].



There are two objections that have been raised in
conjunction with fair queueing. The first is that
some source-destination pairs, such as file server or
mail server pairs, need more than their fair share
of bandwidth. There are several responses to this.
First, FQ is no worse than the status quo. FCFS
gateways already limit well-behaved hosts, using
the same path and having only one stream per
source destination pair, to their fair share of
bandwidth. Some current bandwidth hogs achieve
their desired level of service by opening up many
streams, since FCFS gateways implicitly define
streams as the unit of user. Note that that there
are no controls over this mechanism of gaining
more bandwidth, leaving the network vulnerable to
abuse. If desired, however, this same trick can be
introduced into fair queueing by merely changing
the notion of user. This would violate layering,
which is admittedly a serious drawback. A better
approach is to confront the issue of allocation
directly by generalizing the algorithm to allow for
arbitrary bandwidth priorities. Assign each pair a
number n, which represents how many queue slots
that conversation gets in the bit-by-bit round robin.
The new relationships are N, = )\n, with the sum
over all active conversations, and P,* is set to be
1/n, times the true packet length. Of course, the
truly vexing problem is the politics of assigning the
priorities n,. Note that while we have described an
extension that provides for different relative shares
of bandwidth, one could also define these shares as
absolute fractions of the bandwidth of the outgoing
line. This would guarantee a minimum level of
service for these sources, and is very similar to the
Virtual Clock algorithm of Zhang [Zha89].

The other objection is that fair queueing requires
the gateways to be smart and fast. There is techno-
logical question of whether or not one can build FQ
gateways that can match the bandwidth of fibers. If
so, are these gateways economically feasible? We
have no answers to these questions, and they do
indeed seem to hold the key to the future of fair
queueing.
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