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Achieving 100% Throughput
In an Input-Queued Switch
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Abstract—It is well known that head-of-line blocking limits
the throughput of an input-queued switch with first-in—first-out
(FIFO) queues. Under certain conditions, the throughput can be
shown to be limited to approximately 58.6%. It is also known
that if non-FIFO queueing policies are used, the throughput can
be increased. However, it has not been previously shown that if a
suitable queueing policy and scheduling algorithm are used, then
it is possible to achieve 100% throughput for all independent
arrival processes. In this paper we prove this to be the case using
a simple linear programming argument and quadratic Lyapunov
function. In particular, we assume that each input maintains
a separate FIFO queue for each output and that the switch is
scheduled using a maximum weight bipartite matching algorithm.
We introduce two maximum weight matching algorithms: longest
queue first (LQF) and oldest cell first (OCF). Both algorithms
achieve 100% throughput for all independent arrival processes. Fig. 1. Components of an input-queued cell-switch.
LQF favors queues with larger occupancy, ensuring that larger
qgueues will eventually be served. However, we find that LQF can

lead to the permanent starvation of short queues. OCF overcomes  4) arriving packets are of fixed and equal length, called
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this limitation by favoring cells with large waiting times. cells:
Index Terms—Arbitration, ATM, input-queued switch, input- 5) N is large.
queueing, packet switch, queueing networks, scheduling algo-

When conditions 1) and 2) are true we shall say that arrivals
are independentand when condition 3) is true we shall say
that arrivals areuniform

. INTRODUCTION The throughput is limited because a cell can be held up by
NCE Karol et al’s paper was published in 1986 [11], itanother cell ahead of it in line that is destined for a different
as become well known that @y x NV port input-queued output. This phenomenon is known as head-of-line (HOL)
switch with first-input—first-output (FIFO) queues can have Rlocking.
throughput limited to just2 — v/2) ~ 58.6%. The conditions It is well documented that this result applies only to input-
for this to be true are that: gqueued switchewith FIFO queuesAnd so many techniques

1) arrivals at each input are independent and identical{#Ve been suggested for reducing HOL blocking using non-
distributed (i.i.d.); IFO queues, for example, by examining the fifst cells

2) arrival processes at each input are independent of -2 FIFO queue, wherd > 1 [3], [8], [10]. In fact, HOL |
rivals at other inputs; blocking can be eliminated entirely by using a simple buffering

3) all arrival processes have the same arrival rate afljategy at each input port. Rather than maintain a single FIFO

destinations are uniformly distributed over all outputs;dueéue for all cells, each input maintains a separate queue
for each output [1], [9], [16]-[19], as shown in Fig. 1. This
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rithms were designed to give high throughput while remainingf VOQ @; ; at time slotn. And we define the following
simple to implement in hardware. When traffic is uniformyector to represents the waiting time of the head-of-line cells
these algorithms perform weli-@0% throughput). The iSLIP at all VOQ'’s at slotn:
algorithm [14], [15], for example, has been demonstrated using T
simulation to achieve 100% throughput when the traffic is W(n) = (Wii(n), - Wi n(n),- -, Wa,n(n))" - (2)
independent and uniform. However, all of. these algorithms,, ., <kl define the arrival process ;(n) to be the process
perform less weI'I gnd are u_nable to sustain a throughput gf 5 a5 at input: for output; at rate); ;, and the set of
100% when traffic is nonuniform. all arrival processesi(n) = {A;(n); 1 < i < M}. A(n) is
It is worth asking the question: considerecadmissiblef no input or output is oversubscribed,
What is the highest throughput that can be achieved ¢ S A < 1,30 A\ < 1, otherwise it isinadmissible
by an input-queued switch which uses the queueing The FIFO queues are served as follows. A scheduling
discipline shown in Fig. 1? algorithm selects aatch or matching M, between the inputs
In this paper we prove that for independent arrivals (uniforand outputs, defined as a collection of edges from the set of
or nonuniform), a maximum throughput of 100% is achievablgonempty input queues to the set of outputs such that each
using two maximum weight matching algorithms. nonempty input is connected to at most one output, and each
In Section Il we describe our model for an input-queuedonempty output is connected to at most one input. At the
switch that uses virtual output queuing, as illustrated in Fig. &nd of the slot, if input is connected to outpyt, one cell is
We then consider three graph algorithms that can be usedrémoved from?; ; and sent to output. Clearly, the departure
schedule the transfer of cells through the switch. First, jsrocess from outpuf, D,(n), ratesu;, is also a discrete-time
Section Ill, we describe the “maximum size” algorithm. Alprocess with either zero or one cell departing from each output
though this algorithm achieves 100% throughput for uniformt the end of each slot. We shall define the departure process
traffic, we show that it can become unstable, even starve inguf ;(n), ratep;, ;, as the process of departures from output
queues, when arrivals are nonuniform. Next, in Section I\that were received from input Note that the departure rate
we describe two maximum weight scheduling algorithms thaday not be defined if the departure process is not stationary
overcome this limitation: LQF and OCF. In conjunction withand ergodic.
the Appendix, we prove that these two scheduling algorithmsTo find a matchingM, the scheduling algorithm solves a
are stable for all uniform and nonuniform independent abipartite graph matching problem. An example of a bipartite
rival processes up to a maximum throughput of 100%. dfraph is shown in Fig. 2.
is important to note that this is a theoretical result—the If the queueQ); ; is nonempty, therd; ;(n) > 0 and there
maximum weight matching algorithms that we propose afe an edge in the grapt¥ between input and outputj. We
not readily implemented in hardware. Furthermore, it shoultbsociate a weigh¥;_;(n) with each such edge. The meaning
be noted that the aim of this paper is to find algorithms thaf the weights depend on the algorithm, and we consider two
achieve 100% throughput for best-effort traffic. No attempllasses of algorithm here.
is made to achieve fairness between different flows, or toMaximum Size Matching AlgorithmsAlgorithms that find
provide guaranteed qualities of service. We expect fututiee match containing the maximum number of edges.
results will combine algorithms that achieve high throughput Maximum Weight Matching AlgorithmsAlgorithms  that
(such as those presented here) with additional mechanisms firaf the maximum weight matching where, in this paper, we
impose fairness or bandwidth guarantees (e.g., round-rokignsider only algorithms for which the weighd; ;(n) is
or weighted round-robin). Our result indicates that practicaiteger-valued, equaling the occupany;(n) of @; ; or the
techniques approximating the algorithms presented here egditing time W; ;(n) of the cell at the head of line &; ;.

be expected to achieve high throughput. Clearly, a maximum size matching is a special case of the
maximum weight matching with weight; ;(n) = 1 when
II. OUR MODEL Q. ; is nonempty.
Consider the input-queued cell switch in Fig. 1 connecting
M inputs to N outputs. The stationary and ergodic arrival . MAXIMUM SIZE MATCHINGS

processA;(n) atinputi, 1 < ¢ < M, is a discrete-time process The maximum size matching for a bipartite graph can
of fixed size packets, or cells. At the beginning of each sld§e found by solving an equivalent network flow problem
either zero or one cell arrives at each input. Each cell contaii?®]. There exist many algorithms for solving these problems,
an identifier that indicates which outpyit 1 < j < N, itis the most efficient algorithm currently known converges in
destined for. When a cell destined for outpurrives at input O(N3/2) time and is described in [7.

¢, it is placed in the FIFO queu@; ; which has occupancy |t can be demonstratédising simulation that the maximum
L;, j(n). We refer toQ; ; as a VOQ. Define the following size matching algorithm is stable for i.i.d. arrivals up to an
vector which represents the occupancy of all queues atslobffered load of 100% when the traffic is uniform [15]. It

is important to note that a maximum size matching is not
L(n) = (Ly,1(n), -, L, n(n), -+, L v ()T (1) P g
1This algorithm is equivalent to Dinic’s algorithm [6].

Similarly,.we define the'Waiting timé/vi,j(”) to be the 2Clearly, such a demonstration by simulation is not as strong as an
number of time slots spent in the queue by the cell at the headiytical proof.
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Fig. 2. DefineG = [V, E] as an undirected graph connecting the set of verticesith the set of edge#. The edge connecting vertices1 < i < M

andj, 1 < j < N has an associated weight denotegd ;. Graphg is bipartite if the set of input§ = {i: 1 < ¢ < M} and outputs/ = {j: 1 < j < N}

partition V' such that every edge has one end/irand one end inJ. Matching M on G is any subset off such that no two edges inM have a
common vertex. Amaximum matching algorithris one that finds the matchingt,.x with the maximum total size or total weight. (a) Example (f
for |I| = M and|I| = N. (b) Example of matching\t on G.

necessarily desirable. First, undadmissibletraffic, it can N
lead to instability and unfairness, particularly for nonuniform L
traffic patterns. To demonstrate this behavior, Fig. 3 shows

an example of a potentially unstablex3 3 switch with just

four active flows® and scheduled using the maximum size
matching algorithm. It is assumed that ties are broken by
selecting among alternatives with equal probability. Arrivals

to the switch are i.i.d. Bernoulli arrivals and each flow has
arrivals at rate(1/2) — 6, whereé > 0. Even though the

traffic is admissible. it is Straightforward to show that th&i9- 3. An example ofnstability under admissible traffic using a maximum

. . . size matching algorithm for a & 3 switch with nonuniform traffic.
switch can be unstable for sufficiently sméll Consider the 9449

event that at sloh, both 4> 1(n) and A; »(n) have arrivals
with probability ((1/2) — §)*> and Ly, 1(n) > 0, L1 2(n) > 0, 2
in which case input 1 receives service with probability 2/3.
Therefore, the total rate at which input 1 receives service is
at most

2/1 2 1 2 1/1 2 a =1 =1
) T
3\2 2 3\2 Fig. 4. Under annadmissibleworkload, the maximum size matching will

always serve just two queuestarvingthe flow from input 1 to output 1.
But the arrival rate to input 1 ig — 26, so if

26 < 1<1 -6 output 2 and input 2 to output 1. It is worth noting that the

practical scheduling algorithms described previously attempt
) L to approximate a maximum size matching [1], [2], [4], [14],
(which holds foré < 0.0358), then the switch is unstable andy;,; '+ is therefore not surprising that these algorithms perform
the tr.afflc cannot be sustained by the maximum size matchi Il when the traffic is uniform, but perform less well when
algorithm. i . ! ) . the traffic is nonuniform.

Second, underinadmissible traffic, the maximum size
matching algorithm can lead tstarvation An example of
this behavior is shown in Fig. 4 for a & 2 switch. It is
clear that because all three queues are permanently occupiedhe maximum weight matchingvt for a bipartite graph

is one that maximizes) . ;-4 wi,; and can be found
31t can also be shown that a2 2 switch with nonuniform traffic can be by solving an equivalent network flow problem. The most

unstable when scheduled using a maximum size matching algorithm. Howe\_%ﬁ,'c'ent known algorlﬁhm _for solvmg this prObIem converges
our proof is more complex and is omitted here. in O(N?3 log N) running time [20].

2 the algorithm will always select the “cross” traffic: input 1 to
(3-0)

IV. MAXIMUM WEIGHT MATCHINGS
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The maximunsizematching algorithm knows only whetherwhenever the occupancy of the input queues is large enough,
an input queuey; ; is empty or nonempty. Therefore, if thethe expected drift is negative; should.(n)|| become very
traffic is nonuniform and the occupancy of some queues beglagge, the downward drift also becomes large.
to increase, this algorithm does not know to favor those queues
and reduce their backlog. .

On the other hand, a maximuwmeight matching algorithm B. The OCF Algorithm
can take into account the occupanky ;(n) of each VOQ or ~ Theorem 2:The OCF maximum weight matching algo-
the waiting time of the cell at head of line. Such algorithmgthm is stable for all admissible i.i.d. arrival processes.
can give preference to queues with greater occupancy or to Proof: The proof is given in Appendix B. The proof
older cells. In fact, as our results show, these algorithms ce@nsists of two steps. First, we prove the stability of the
lead to a maximum throughput of 100% for independent anhiting time. Then, we show that the stability of the waiting

either uniform or nonuniform arrivals. time implies the stability of queue occupancy, which proves
Theorem 2.
A. Our Algorithms Similar to the LQF proof, we show that for all x N

switch scheduled using the OCF algorithm, there is a negative
gxpected single-step drift in the value of a second-order Lya-
gunov function of the waiting time¥ (n) = W (n)TW (n)

In this paper we consider two maximum weight matchin
algorithms: the “longest queue first” (LQF) algorithm, and th
“oldest cell first” (OCF) algorithm. LQF considers the queu
occupancy by assigning a weight ;(n) = L; j(n). Queues
with larger occupancy will be assijg(ngd a Iajrg(;ez weight, and (W (n + )TW(n + 1) = W (n)TW (n)| W (n)]
are thus more likely to be servédAs we shall see, LQF < —e[|[Wn)|l+ K
results in 100% throughput. However, LQF can lead to the
permanent starvation of a nonempty queue. To understand hetwere K > 0, € > 0 andT is a positive-definite matrix.
this happens, consider a>22 switch with L; ;(0) = 1 for all This, in turn, implies the stability of the waiting time.

i, 4, and Ay 1 = 1. In the first timeslot, an arrival will occur  Once we have proved the stability of the waiting time, it is
at @,,1 and soQ+, » will remain unserved. In fact, becausestraightforward to prove the stability of the queue occupancy.
of the continuous arrivals t@; 1, Q1,2 will remain unserved Because there can be at most one arrival to any queue in
indefinitely. one slot, the total number of arrivals after an HOL cell, by

Our second algorithm, OCF, overcomes this problem lgefinition the current queue occupancy, is bounded above by
considering the waiting times of cells at the head of eathe number of slots an HOL cell has been waiting—the waiting
VOQ. OCF considers the waiting time by assigning a weighitme, i.e., W; ;(n) > L; j(n) foralli, j, n. Therefore, the
w; j(n) = W, ;(n). Cells that have been waiting the longesstability of the waiting time implies the stability of the queue
time will be assigned a larger weight and are thus more likebccupancy.
to be served. It is clear that no queues will be starved of
service indefinitely: if a cell is not served, its waiting time
will increase. Eventually, its weight will increase to a value Vi

o . CONCLUSION
that ensures that it is served.

We have shown that if an input-queued switch maintains
a separate FIFO queue for each output at each input, then a
throughput of 100% can be achieved for independent arrivals.
. If a maximum-sized matching algorithm is used to schedule
A. The LQF Algorithm cells, then we demonstrate that a throughput of 100% may

Theorem 1: The LQF maximum weight matching algorithmnot be possible when arrivals are nonuniform. However, if a
is stable for all admissible i.i.d. arrival processes. maximum weight matching algorithm is used, we have shown

Proof: The proof is given in Appendix A. In summary,that a throughput of 100% is achievable for both uniform
we show that for ani/ x NV switch scheduled using the LQFand nonuniform arrivals. In particular, we have described two
algorithm, there is a negative expected single-step drift in theaximum weight matching algorithms: LQF and OCF. LQF
sum of the squares of the occupancy. In other words considers the occupancy of the input queues, giving preference

to queues that contain more cells. When the occupancy is large
E[LT(H +1)L(n+1) —LT(H)L(H)IL(H)] < —e||L(n)|| + Kk enough at any queue, it is ensured of service. Furthermore,

when the occupancies of all the queues exceed a threshold,
wherek > 0, ¢ > 0. the total queue occupancy exhibits an overall downward drift,

V(n) = LT (n)L(n) is a second-order Lyapunov functionénsuring that the total queue occupancy will not become

and, using the result of Kumar and Meyn [13], we shonPounded. , o
that the system is stable. The terz||L(n)|| indicates that Unfortunately, the LQF algorithm can lead to the indefinite
B starvation of one or more inputs. We may overcome this

_4When the maximum weight matching algorithm encounters “ties” (i.efimjtation by modifying the weights used by the algorithm.
different patterns of connections that lead to different matchings of equal

weight), it may arbitrarily select any of the maximum weight matchings. Fjrn particular, OCF assigns thelweights to ?qual the Waitin.g
example, it could randomly choose one matching. time of the cell at the head-of-line of each input queue. This

V. MAIN RESULTS
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is sufficient to ensure that every cell will eventually be serve®, Proof of Theorem

and that the system will remain stable. Before proving the theorem, we first state the following fact

and prove the subsequent lemmas.

APPENDIX A Fact 1—Birkhoff’'s TheoremThe doubly substochastic
LQF PrOOF N x N square matrices form a convex €t with the set
of extreme points equal to permutation matri&s
A. Definitions This is proved in [3].

Lemma 1: The doubly substochastid/ x N nonsquare

In this appendix we use the following definitions for an matrices form a convex séf with the set of extreme points

M x N switch. ) _ _ equal to quasi-permutation matric8s
1) The rate matrix of the stationary arrival processes: Proof: Observe that we can ad¥ — M rows to any
M N nonsquare substochastic matrix and introduce new entries
A=l Wherez N <1, Z Aij<1,X,;>0 SO that the row sums of the new rows equal one and fur-
p— =1 ther that the column sums are also each one. We can use
Birkhoff's Theorem to write the augmented matrix as a convex
and associated rate vector combination of N x N permutation matrices. The first/

A= () \ A \ T (g TOWS of the permutation matrix are @ x [V matrix which
=M sAuns s A A )t @) oims a permutation matrix with somé of the N columns.

2) The arrival matrix, representing the sequence of arr|vaT§'e>S;me argument may be applied to additional columns if

|
t h
into each queue: Lemma 2: L (n)(A — S*(n)) < 0, VY(L(n), A), where

A(n) = [4; ;(n)] S*(n) = arg maxs(,) (L' (n)S(n)), the service matrix se-
lected by the maximum weight matching algorithm to maxi-
where mize LT (n)S(n).

A = { 1, if arrival occurs atQ(i, §) at timen Proof: Consider the linear programmlng problem:
T, — 0

else
max(L¥(n)A) stZA,,gl Z)\Ugl Aij >0
and associated arrival vector

_ T which has a solution equal to an extreme point of the convex
Aln) = (Aya(n), -5 Ar, v(n), - - Awg v () set C. Hence,

3) The service matrix, indicating which queues are served max(LT(n)A) < max(LT(n)ﬁ(n))

at slotn

and so
S(n) =[5:,;(n)] LT (n)A — max(LE (n)S(n)) < 0.
where O
S (n) = 1, if Q; ; is served at time: Lemma 3;
#iM) =10, else E[L (n+1)L(n+1) LT(n)L(n)|L(n)]
andS(n) € S, the set of servicematrices. <S2VNM VA

Note that:3";Z, Si,j(n) = Y01, Si,j(n) = 1, and Proof:
hence ifM = N, S(n) € S is apermutation matrix If - . -
M # N, we say thaiS(n) € S is aquasi-permutation L~ (2 +1)L(n+1) = L" (n)L(n)

matrix. We define the associated service vector: = (L(n) — S(n) + A(n)) ' (L(n) — S(n) + A(n))
S e S (e Sar (T ~ L7 () L(w)
S Z e S S ) = 2L (n)(A(n) = S(n)) + (5(n) — A(m))"
hence||S(n)||* = VNM. - (S(n) — A(n))
4) The approximatenext-state vector: _ 2LT(7,L)(A(7,L) —S(n)) + k
L(n+1) = L(n) — S(n) + A(n) where0 < k < 2v/N becauseS‘( )— A(n) is a real vector,

and [|S(n) — A(n)|I* < 2VN

which approximates the exact next-state of each queUeTaking the expected value

Li j(n+1) = [Li,j(n) = Si, j;(m)]T + 4i j(n).  (4) E [LT(n +1)L(n+1) - LT(n)L(n)IL(ﬂ)}
5Note that our definition of the “service” matrix is a permutation matrix < E[QLT(n)(A(n) — S(n))]
which includes the case where an empty queue is served. We adopt this - T_ _ -
definition here for ease of exposition—it does not affect the result. =2L"(n)(A—8"(n)) +2vNM.
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From Lemma 2 we know thatL” (n)(A—S5*(n)) < 0, proving
the lemma. O

Lemma4:VA < (1 — B)A,. 0 < 4 < 1, where ), is
any rate vector such tHgx,,||? = min(N, M), there exists
such that

B[L" (n+ DLn +1) ~ L7 (n)|L(n)|
< ~ellL(n)]| +2VNM.

LT (n)(A ~ S"(n))
< LT(TL){ATR - ﬁ* (71)} - LT(TL) (ﬁénl)
< 0= BILM)| - [ A cos 8
where 8 is the angle betweei(n) and },,,.

We now show thatos § > 6 for someé > 0 whenever
L(n) # 0. First, we show thatos § > 0. We do this by
contradiction: suppose thabs 8 = 0, i.e., L(n) and A, are
orthogonal. This can only occur &(n) = 0, or if for some

i, j, both\; ; =0andL; ;(n) > 0, which is not possible: for
arrivals to have occurred at que@k ;, A; ;, must be greater

than zero. Therefore;os # > 0 unlessL(n) = 0. Now we
show thatcos @ is bounded away from zero, i.e., thak 6 > ¢
for someé > 0. Because\; ; > 0 whereverL; ;(n) > 0, and
becausd|)||? < VNM

L*(n)A

Lma.x (n))\min

S 0= LN A = TV

(5)

where Ayin = min(X; ;,1 <4 < M,1 < j < N), and
Lyax(n) =max(L; j(n), 1 <i< M, 1<j<N).

Also, [|L(n)|| £ [NM L3, (m)]"/? = VNM Lnax(n), and
S0 cos # is bounded by

)‘min
>
cos 6 > (NM)3/4 (6)
Therefore
E [LT(n +1)L(n+1) - LT(H)L(H)IL(H)}
[3)‘min
< — +2vVNM.
- VNM
O

Lemma5:VA < (1 — BN, 0 < 8 < 1, there exists
0 < £ < 1 such that

E[LT(n +1)L(n +1) — L¥(n)L(n)|L(n)]
< —e||L(n)l| + NM + 2V N M.

Proof:

if LZ7J(7'L) = 0, SZJ(TL) =1

~ 17
Lw(n—i-l) = LZ7J(7’L+1)+{ else

0,

therefore

LT+ 1)Lin+1) = LT (n+1)Lin+1) < NM  (7)

1265

Ci,].“(n) C, (n+1D)

- W, (n) - '
“ “ n n+l tume
T O "=
C. . (n) C. .(n+l)

L iJ

Fig. 5. Arrivals and departures timeline for the VO®; ;. Arrivals are
shown below the line, departures are shown above the die;(n) is the
current HOL cell atl;, ; which may or may not depart in the current slot, and
C5, j(n+1) is the cell that will replace”; ;(n) as HOL cell after it departs.

and so

E[L(n +1)L(n +1) — L (n)L(n)| L(n)]
< B[L"(n+ DL(n +1) — L (m)L(n)|L(n)] + NM.

Using Lemma 4, this concludes the proof. O

Lemma 6: There exists & (L(n)) s.t. E[V(L(n + 1)) —
V(L(n)|L(n)] < —¢||L(n)|| + &k, wherek, £ > 0.

Proof: V(L(n)) = LY (n)L(n) andk = NM +2VNM

in Lemma 5. O

We are now ready to prove the main theoref(.L(n))
in the main theorem is a quadratic Lyapunov function and,
according to the argument of Kumar and Meyn [13], it follows
that the switch is stable.

APPENDIX B
OCF RROOF

A. Definitions

In addition to the definitions defined in Appendix A, the
following definitions are necessary in this Appendix. Consider
Fig. 5.

1) C; ;(n) denotes the HOL cell of); ; at slotn.

2) The interarrival time vector:

[}

(71) = (7_1, 1(”)7 T '77_1,N(n)7 s TM, 1(”)7 s TM, N(n))

(8)

wherer; ;(n) is the interarrival time betweefi; ;(n)
and the cell behind it in line.
3) The waiting time vector:

W(n) =
(Wi 1(n), - . Wi n(n), -+, War, 1(n), -+, W, v (n))
9)

whereW; ;(n) is the waiting time ofC; ;(») at slotn.
The positive-definite diagonal matrix whose diagonal
elements are{)\L 1,7, )\17 Ny "y )\]\47 1,777, )\]\47 N}-

[a - b c] denotes a vector in which each element is a
product of the corresponding elements of the vectors:
a, b, andg, i.e., ai, 5 bi,j * G-

6) The approximate waiting time next-state vector:

4)

5)

W(n+1)=W(n)+1-[S(n) -z(n)].  (10)

Authorized licensed use limited to: Stanford University Libraries. Downloaded on April 04,2025 at 21:23:00 UTC from IEEE Xplore. Restrictions apply.



1266 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 47, NO. 8, AUGUST 1999

B. Proof of Theorem From (12) and (13), we obtain

The pro.o.f con3|sts of two steps. First, we prove t'h.e stability [ET(TL + 1)T&(n +1) - ET(TL)TE(”NE(TL)}
of the waiting time. Then, we show that the stability of the
waiting time implies the stability of queue occupancy. But <2(WH(n)A — WH(n)S*(n)) + L+ N. (14)
before proving the theorem, we first state the following fac
and prove the subsequent lemmas.
Fact 2: An interarrival time; ;(n) is independent of a W¥(n)A — W¥(n)S*(n)
waiting time WZ‘J(H)\V{'L,.], n. . . < ET(TL)(]. i /j)Arn i ET(TL)E* (71) (15)
Fact 3: 7;_;(n) > 1. Since there is only at most one arrival
per slot, the arrival time of any two consecutive cells must bepplying Lemma 7
at least one slot apart. T T . T
Fact4: W; ;(n) > L, j(n)¥4, j, n because there is at ET(”)A_ET(”)Q (n) £ = BWZ(n)A,, (16)
most one arrival per slot. W (A =W (n)S"(n) < — BIW(n)]|| - |\l - cos 6 (17)
Fact 5: For any queue); ; whose arrival rate is zero,
Ai,j =0, L; j(n) =0, thusW; ;(n) = 0¥n. Considering
the fact that a zero waiting time does not contribute to the
sum valueW? (n)S(n), without loss of generality, we can Amin (18)

0> ————.
set the corresponding service indicatfr;(n) to zero for all cosv= (NM)3/4

time 5 ;(n) = 0 foralln. Using (14), (17), and (18
Lemma 7: W (m)A— W (n)S"(n) < OV W(n), \, where o0 (14 (17): and (19)

Erom the relationship of the arrival vector

whereé is the angle betweel/ (n) and \,,,.
Using the same approach as in Lemma 4, it follows that

5°(n) is such that?’? (n)S*(n) = max(W7 (n)S(n)). B[W" (0 + )TW(n + 1) = W (0)TW (0)| W ()]
Proof: The proof is similar to the proof of Lemma 2 in -
Appendix A. O < —B——==||W(n)| + K(19)
Lemma 8: VA < (1-58)A,, 0< 8 <1, where) , is any VNM
rate vector such thaf),,||* = min(N, M) < VNM, there \yheree — BOmin/VNM). 0O
exists0 < e < 1 such that Lemma 9:VA < (1 —8)A,,.0< 3 <1, where),, is any
E[ET(n +D)TW(n+1) — ET(H)TE(HNE(H)} rate vector such that),, || = min(N, M) < VNM, there

exists0 < € < 1 such that
< —¢||W(n)|| + K. €

Proof: By expansion E[W*(n+1)TW(n+1) = W (n)TW (n)|W(n)]
W (n+ 1D)TW(n +1) < —l[Wn)|l + K.
=Wm)+1-[S*(n) - z(r)DTTW(n) +1 Proof: We can draw the following relationship between
—[8*(n) - 7(n)]) the two waiting times:
=WTR)TW(n) +2W T (n)A - 207 (n) Wi i(n+1) = { Wi (n+1), Wi(n+1)20 (20)
18" (n) - 7(n) - A 0, W; j(n+1)<0.
Y A =20 88(n) T () A SinceT is a positive definite matrix, (20) implies
J o W (n+ D)TW(n +1) < W (n+ D)TW(n + 1) foralln.
+ Z St n) -7 (n) - A (11) (21)
iy g Hence

SubtractingW® (n)TW (n) from both sides and taking theE
expected value

(W (n+ 1)TW(n+1) — W (n)TW (n)|W(n)]
BW(n+ )IW(n+1) = W () TW ()| W (n)] w

< EB[W (0 + )IW(n +1) - W (0)TW(n)|W (n)].

(22)
= 2(W (A - WH(n)S* () + 3 A .
“j This proves the Lemma. U
Lemma 10: There exists a quadratic Lyapunov function

=23 S5+ Y 5;7(]”) (12) V(W (n)) such that
i, i, e

After imposing the admissibility constraints and the schedulElV (W(n+1)=V(IW(n))W(n))] < —e[[W(n) ||+ K (23)
ing algorithm properties, we obtain the following inequalitieSyhere K is a constant and > 0.

. 7 ;(n) Proof: From Lemma 9/ (W (n)) = WH(n)TW(n),e =
DA <N, Y SH(m)20, ) s S B\ia/VNM) > 0, andK = L+ N > 0. O
7 *J J ’ Theorem 3:Under the OCF algorithm, the waiting times
(13)  are stable for all admissible and independent arrival processes,
where L is a nonnegative constant. e, E(IWmn)]]] < o).
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Theorem 4:Under the OCF algorithm, the queue occ
pancies are stable for all admissible and independent arri
processes, i.e E([||L(n)||]] < oc).

Thus,

(1]

(2]

(3]
(4]

(5]
(6]

(7]

(8]
(9]
[10]

[11]
[12]
[13]
[14]
[15]
[16]

(17]

(18]

[19]

[20]

[21]

[22]

Proof: Similar to the argument in the LQF proof. O

Proof: From Fact 4,W; ;(n) > L; ;(n) foralli, j, n.

Ef[L(n)[] < E[IW(m)]I] < 0. (24)
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