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Abstract

We demonstrate that Ethernet local area network (LAN) traffic
is statistically self-similar, that none of the commonly used
traffic models is able to capture this fractal behavior, and that
such behavior has serious implications for the design, control,
and analysis of high-speed, cell-based networks. Intuitively, the
critical characteristic of this self-similar traffic is that there is no
natural length of a "burst": at every time scale ranging from a
few milliseconds to minutes and hours, similar-looking traffic
bursts are evident; we find that aggregating streams of such
traffic typically intensifies the sclf-similarity ("burstiness")
instead of smoothing it.

Our conclusions are supported by a rigorous statistical analysis
of hundreds of millions of high quality Ethernet traffic
measurements collected between 1989 and 1992, coupled with a
discussion of the underlying mathematical and statistical
properties of self-similarity and their relationship with actual
network behavior. We also consider some implications for
congestion control in high-bandwidth networks and present
traffic models based on self-similar stochastic processes that are
simple, accurate, and realistic for aggregate traffic.

1. INTRODUCTION

The main objectives of this paper are (i) to establish in a
statistically rigorous manner the self-similarity characteristic or,
to use a more popular notion, the fracral nature of the high
time-resolution Ethernet traffic measurements of Leland and
Wilson (1991), (i) to illustrate some of the most striking
differences between self-similar models and the standard models
for packet traffic currently considered in the literature, and (iii)
to demonstrate some of the serious implications of self-similar
network traffic for the design, control, and performance analysis
of high-speed, cell-based communications systems.

Intuitively, self-similar phenomena display structural similarities
across all (or at least a very wide range of) time scales. In the
case of Ethernet LAN traffic, self-similarity is manifested in the
absence of a natural length of a "burst”; at every time scale
ranging from a few milliseconds to minutes and hours, bursts
consist of bursty subperiods separated by less bursty subperiods.
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We also show that the degree of self-similarity (defined via the
Hurst parameter) typically depends on the utilization level of
the Ethernet and can be used to measure "burstiness” of LAN
traffic. The term "self-similar" was formally defined by
Mandelbrot. For applications and references on the theory of
self-similar processes, see Mandelbrot (1983) and the extensive
bibliography by Taqqu (1985). For an early application of the
self-similarity concept to communications systems, see the
seminal paper by Mandelbrot (1965).

In this paper, we use very high quality, high time-resolution
LAN rraffic data collected between August 1989 and February
1992 on several Ethernet LANs at the Bellcore Morristown
Research and Engineering Center (MRE). Leland and Wilson
(1991) present a preliminary statistical analysis of this unique
high-quality data and comment in detail on the presence of
"burstiness" across an extremely wide range of time scales:
traffic "spikes" ride on longer-term "ripples”, that in turn ride on
still longer term "swells", etc. This self-similar or apparently
fractal-like behavior of aggregate Ethernet LAN traffic is very
different both from conventional telephone traffic and from
currently considered formal models for packet traffic (e.g., pure
Poisson or Poisson-related models such as Poisson-batch or
Markov-Modulated Poisson processes (Heffes and Lucantoni
(1986)), packet-train models (Jain and Routhier (1986)), and
fluid flow models (Anick et al. (1982)), etc.). These differences
require a new look at modeling the traffic and performance of
broadband networks. For example, our analysis of the Ethernet
data shows that the generally accepted argument for the
"Poisson-like" nature of aggregate traffic, namely, that aggregate
traffic becomes smoother (less bursty) as the number of traffic
sources increases, has very little to do with reality. In fact, the
burstiness (degree of self-similarity) of LAN traffic typically
intensifies as the number of active traffic sources increases,
contrary to commonly held views.

Because of the growing market for LAN interconnection
services, LAN traffic is rapidly becoming one of the major
potential traffic contributors for high speed networks of the
future such as B-ISDN. Another expected major contributor is
variable-bit-rate (VBR) video service. Since VBR video traffic
has recently been shown to display the same self-similarity
property as LAN traffic (see Beran et al. (1992)), self-similar
models provide simple, accurate, and realistic descriptions of
traffic scenarios to be encountered during high-bandwidth
network deployment.

In light of this new understanding of the nature of broadband
traffic, we also address some of the serious implications of self-
similar traffic for issues related to the design, control, and
performance analysis of high-speed, cell-based networks. As
one specific example, we consider the area of congestion
management and show that the nature of congestion produced
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by self-similar traffic differs drastically from that predicted by
traffic models currently considered in the literature and is far
more complex than has been typically assumed in the past. As a
result, proposed congestion control schemes that work well
assuming conventional traffic models typically perform less than
satisfactorily in a self-similar traffic environment. Finally, we
mention two approaches for modeling self-similar network
traffic.

The paper is organized as follows. In Section 2, we first briefly
describe the available Ethernet traffic measurements and
comment on the changes of the Ethernet environment during the
measurement period from August 1989 to February 1992. In
Section 3, we give the mathematical definition of self-similarity,
identify classes of stochastic models which are capable of
accurately describing the self-similar behavior of the traffic
measurements at hand, and present statistical techniques for
dealing with self-similar data. Section 4 describes our statistical
analysis of the Ethernet data, with emphasis on testing for self-
similarity. We illustrate our statistical methods with a variety of
different sets of Ethernet traffic data, taken at different times
during the measurement period, with quite different user
populations and gross traffic rates. We typically deal with time
series with hundreds of thousands of observations and are,
therefore, in the unique situation to rely on statistical results
known to hold asymptotically in the number of observations.
Finally, in Section 5 we discuss the significance of self-
similarity for traffic engineering, and for operation, design, and
control of B-ISDN environments. Among the implications
discussed are (i) infinite variance source models for individual
Ethernet users, (ii) inadequacies of commonly used notions of
"burstiness", and (iii) better understanding of the nature of
congestion for broadband network traffic. We conclude with a
brief discussion of two different approaches for modeling self-
similar network traffic.

2. TRAFFIC MEASUREMENTS

The monitoring system used to collect the data for the present
study is custom built, records all packets seen on the Ethernet
under study with accurate timestamps, and will do so for very
long runs without interruption. The monitoring system is
designed so that traffic analysts need make no a priori decisions
as to what they are searching for when the data is taken other
than how much of each packet is to be saved. The monitor was
custom-built in 1987/88 and has been in use to the present day
with one upgrade. The original version is described at length,
including extensive testing of its capacity and accuracy, in
Leland and Wilson (1991). There is only one major difference
between the two versions: the updated version records
timestamps accurate to 20 us versus the original version’s
accuracy of 100 ps.

2.1 BELLCORE’S NETWORK ENVIRONMENT

The MRE environment is probably typical of a research or
software development environment where workstations are the
primary machines on people’s desks. Table 1 gives a summary
description of the traffic data analyzed later in the paper. We
consider 4 sets of traffic measurements, each one representing
between 20 and 40 consecutive hours of Ethernet traffic and
each one consisting of tens of millions of Ethernet packets. The
data were collected on different intracompany LAN networks at
different periods in time over the course of approximately 4
years (August *89, October ’89, January 90, and February ’'92).
The traffic was mostly from services that used the Internet
Protocol (IP) suite for such capabilities as remote login or
electronic mail, and the Network File System™ (NFS) protocol
for file service from servers to workstations. While it is not our
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intent to provide here a detailed description of the particular
MRE network segments under study, some words about the
network environment from which each data set was taken are
appropriate.

The first two data sets were collected from a typical workgroup
or laboratory network which was isolated from the rest of the
Bellcore network by a router. At the time of collection of the
first (August ’89) data set, the laboratory consisted of about 140
people, most of whom had diskless Sun-3™-class workstations
on their desks. The network in the laboratory consisted of two
cable segments separated by a bridge, implying that not all
traffic within the laboratory could be seen by the monitor. The
hosts on this network consisted of workstations, their file
servers, and a pair of DEC 8650™-class minicomputers. Only a
small number of hosts were reduced instruction set (RISC)
based. However, by the time the second data set (October '89)
was collected, a massive upgrade of the Sun-3 class machines to
RISC-based SPARCstation 1™ and DEC 3100-class machines
had taken place on this network, along with a small increase in
the number of hosts (from about 120 who spoke up during the
first collection to about 140 in the second set). This extensive
upgrade is the reason for the large increase in traffic volume
seen between the first two data sets. Note, for example, that the
"busy hour" from this October ’89 data set is indeed busy:
30.7% utilization as compared to 15.1% during the August ‘89
busy hour; similar increases can also be observed for the low
and normal hours. Less than 5% of the total traffic observed in
these two data sets was from conversations with hosts in the rest
of Bellcore or the outside world; during the busy periods this
figure was more typically 1-2% of the total traffic observed.

The third data set, taken in January 1990 (row 3 in Table 1),
came from an Ethernet cable that linked the two wings of the
MRE facility that were occupied by a second laboratory. At the
time the data set was collected, this second laboratory comprised
about 160 people engaged in work similar to the first laboratory.
This particular Ethernet segment was unique in that it was also
the segment serving Bellcore’s link to the outside Internet
world. Thus the traffic on this cable was from several sources:
(i) two very active file servers (Sun 4/490™’s) directly
connected to the segment; (i) traffic (file service and remote
login) between the two wings of this laboratory, (iii) traffic
between the laboratory and the rest of Bellcore, and (iv) traffic
between Bellcore as a whole and the larger Internet world. This
Ethernet segment was specifically monitored to capture this last
type of traffic, which we term external traffic. We studied both
the aggregate and external traffic from this and the last data set,
but as we shall see in Section 4 the external traffic was no
different from internal traffic as far as our analysis is concerned.
This segment was separated from both the Bellcore internet and
the two wings of the laboratory by bridges, and from the outside
world by a vendor-controlled router programmed to pass
anything with a Bellcore address as source or destination. In
contrast to the two earlier data sets, over 1200 hosts spoke up
during the 40 hour monitoring period on this segment.

The last data set, taken in February 1992 (row 4 in Table 1) was
taken from the Ethernet "backbone” in the MRE facility.
Because of rising concern about network security, Bellcore’s
connection to the Internet world was moved to a Bellcore-
controlled "firewall" security router directly connected to the
building backbone. Many major workgroups and laboratories
also inserted routers between their networks and the backbone;
previously they had been either directly connected or bridged.
The traffic on this backbone cable therefore consisted of (i)
traffic between workgroups and laboratories within the MRE
facility, including traffic between the two laboratories



Traces of Ethernet Traffic Measurements
Measurement Period data set total number total number Ethe st
of bytes of packets utilization
AUGUST 1989 total (27.45 hours) 11,448,753,134 27,901,984 9.3%
Start of trace: low hour AUGS89.LB 224,315,439 5.0%
Aug. 29, 11:25am (6:25am-7:25am) AUGS89.LP 652,909
End of trace: normal hour AUGS89.MB 380,889,404 8.5%
Aug. 30, 3:10pm (2:25pm-3:25pm) AUG89.MP 968,631
busy hour AUG89.HB 677,715,381 15.1%
(4:25pm-5:25pm) AUG89.HP 1,404.444
OCTOBER 1989 total (20.86 hours) 14,774,694,236 27,915,376 15.7%
Start of trace: low hour OCT89.LB 468,355,006 10.4%
Oct. 5, 11:00am (2:00am-3:00am) OCT89.LP 978,911
End of trace: normal hour OCT89.MB 827,287,174 18.4%
Oct. 6, 7:51am (5:00pm-6:00pm) OCT89.MP 1,359,656
busy hour OCT89.HB 1,382,483,551 30.7%
(11:00am-12:00am) OCT89.HP 2,141,245
JANUARY 1990 total (40.16 hours) 7,122,417,589 27,954,961 3.9%
Start of trace: low hour (Jan. 11, JAN9O.LB 87,299,639 1.9%
Jan. 10, 6:07am 8:32pm-9:32pm) JAN9O.LP 310,038
End of trace: normal hour (Jan. 10, || JAN90.MB 182,636,845 4.1%
Jan. 11, 10:17pm 9:32am-10:32am) JAN90.MP 643,451
busy hour (Jan. 11, JAN90.HB 711,529,370 15.8%
10:32am-11:32am) JAN9Q.HP 1,391,718
FEBRUARY 1992 | total (47.91 hours) 6,585,355,731 27,674,814 3.1%
Start of trace: low hour (Feb. 20, FEB92.LB 56,811,435 1.3%
Feb. 18, 5:22am 1:21am-2:21am) FEB92.LP 231,823
End of trace: normal hour (Feb. 18, || FEB92.MB 154,626,159 3.4%
Feb. 20, 5:16am 8:21pm-9:21pm) FEB92.MP 524,458
busy hour (Feb. 18, FEB92.HB 225,066,741 5.0%
11:21am-12:21am) FEB92.HP 947,662

Table 1. Qualitative description of the sets of Ethernet traffic measurements used in the analysis in Section 4.

previously discussed, (ii) traffic from some individual hosts still
directly connected to the backbone, (iii) traffic from MRE to
other Bellcore locations via a mesh of bridged interlocation
links, and finally (iv) external traffic from Bellcore to the
outside Internet world. Because there is very little workstation to
fileserver traffic on this cable, the overall load on this cable is
the lowest of any of the three data collection points considered.
The most radical difference between this data set and the others
is that the traffic is primarily router to router rather than host to
host. About 600 hosts spoke up during this measurement period
(down from about 1200 active hosts during the January ’90
measurement period), and the five most active hosts were
routers. The updated version of the monitor was used to collect
this data set. Overall, the 4 data sets cover a wide range of
network utilizations and host populations over a 4 year period.

3. SELF-SIMILAR STOCHASTIC PROCESSES

The presentation below of the mathematical and statistical
properties of self-similar processes closely follows Cox (1984)
and Beran et al. (1992).
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3.1 SELF-SIMILARITY BY PICTURE

For 27 consecutive hours of monitored Ethernet traffic from the
August 1989 measurements (first row in Table 1), Figure 1
depicts a sequence of simple plots of the packet counts (i.e.,
number of packets per time unit) for 5 different choices of time
units. Starting with a time unit of 100 seconds (a), each
subsequent plot is obtained from the previous one by increasing
the time resolution by a factor of 10 and by concentrating on a
randomly chosen subinterval (as indicated by the darker shade).
Recall that the time unit corresponding to the finest time scale is
10 milliseconds (e). Observe that all plots look intuitively very
"similar" to one another (in a distributional sense) and are
distinctively different from white noise (i.e., an independent and
identically distributed sequence of random variables). Notice
also the scaling property (y-axis) and the absence of a natural
length of a "burst": at every time scale ranging from
milliseconds to minutes and hours, bursts consist of bursty
subperiods separated by less bursty subperiods. This scale-
invariant or ‘“self-similar" feature of Ethernet traffic is
drastically different from both conventional telephone traffic and
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Figure 1 (a)—(e). Pictorial "proof” of self-similarity:
Ethernet traffic (packets per time unit for the August
’89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

from stochastic models for packet traffic currently considered in
the literature. The latter typically produce plots of packet counts
which are indistinguishable from white noise after aggregating
over a few hundred milliseconds. This pictorial "proof” of the
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self-similar nature of Ethernet packet traffic suggests that
Ethernet traffic on one time scale is statistically identical (at
least with respect to its second-order statistical properties) to
Ethernet traffic on a different time scale and, thus, motivates the
use of self-similar stochastic processes for traffic modeling
purposes.

3.2 THE MATHEMATICS OF SELF-SIMILARITY

The notion of self-similarity is not merely an intuitive
description, but a precise concept captured by the following
rigorous mathematical definition. Let X =(X,:¢=0, 1, 2, ...) be
a covariance stationary (sometimes called wide-sense
stationary) stochastic process; that is, a process with constant
mean p=E[X,], finite variance o?=E[(X,~W)*], and an
autocorrelation function rk)=E[X, - WX, .t — W]
/E[(X,—u)z] (k=0,1,2,..) that depends only on % In
particular, we assume that X has an autocorrelation function of
the form

r(k)~ak™®, ask oo, (B.2.1)
where 0 <P <1 (here and below, a,, a, -+ denote finite
positive constants). For each m=1,2,3, ---, let

XM = (XM k=1,2,3,..) denote a new time series obtained
by averaging the original series X over non-overlapping blocks
of size m. That is, for each m=1,2,3, -+, X" is given by
XMW= UmXppy_pmer1+ = +Xun), (k21). Note that for
each m, the aggregated time series X defines a covariance
stationary process; let r®™ denote the corresponding
autocorrelation function.

The process X is called exactly (second-order) self-similar with
self-similarity parameter H =1-f/2 if the corresponding
aggregated processes X ™ have the same correlation structure as
X, ie,r™E =rk), forallm=1,2, -+ (k=1,2,3, **).
In other words, X is exactly self-similar if the aggregated
processes X are indistinguishable from X—at least with
respect to their second order statistical properties. An example
of an exactly self-similar process with self-similarity parameter
H is fractional Gaussian noise (FGN) with parameter
1/2 < H < 1, introduced by Mandelbrot and Van Ness (1968).

A covariance stationary process X is called asymptotically
(second-order) self-similar with self-similarity parameter
H =1—B/2if r'™ (k) agrees asymptotically (i.e., for large m and
large k) with the correlation structure r (k) of X given by (3.2.1).
The fractional autoregressive integrated moving-average
processes  (fractional ARIMA(p,d,q) processes) with
0 <d < 1/2 are examples of asymptotically second-order self-
similar processes with self-similarity parameter d + 1/2. (For
more details, see Granger and Joyeux (1980), and Hosking
(1981).)

Intuitively, the most striking feature of (exactly or
asymptotically) self-similar processes is that their aggregated
processes X ™ possess a nondegenerate correlation structure as
m — . This behavior is precisely the intuition illustrated with
the sequence of plots in Figure 1; if the original time series X
represents the number of Ethernet packets per 10 milliseconds
(plot (e)), then plots (a) to (d) depict segments of the aggregated
time serjes X 10000, x (1000 ¢ 00} "anq X9 respectively. All of
the plots look "similar", suggesting a nearly identical
autocorrelation function for all of the aggregated processes.

Mathematically, self-similarity manifests itself in a number of
equivalent ways (see Cox (1984)): (i) the variance of the sample
mean decreases more slowly than the reciprocal of the sample
size (slowly decaying variances), ie., var(X™)~a,m™®,
asm — oo, with 0<PB<1; (ii) the autocorrelations decay
hyperbolically rather than exponentially fast, implying a non-



summable autocorrelation function Zk r (k) =0 (long-range

dependence), i.e., r(k) satisfies relation (3.2.1); and (iii) the
spectral density f(-) obeys a power-law behavior near the
origin (1/f-noise), ie., f(A) ~a3A™ ,as A >0, with O < y< 1
andy=1-.

The existence of a nondegenerate correlation structure for the
aggregated processes X™ as m — oo is in stark contrast to
typical packet traffic models currently considered in the
literature, all of which have the property that their aggregated
processes X ™ tend to second order pure noise, i.e., r ™ (k) — 0,
as m e (k=1,2, : ). Equivalently (see Cox(1984)), they
can be characterized by (i) a variance of the sample mean that
decreases like the reciprocal of the sample mean, (ii) an
autocorrelation function that decreases exponentially fast,
implying a summable autocorrelation function Zk rk) < e

(short-range dependence), or (iii) a spectral density that is
bounded at the origin.

Historically, the importance of self-similar processes lies in the
fact that they provide an elegant explanation and interpretation
of an empirical law that is commonly referred to as Hurst’s law
or the Hurst effect. Briefly, for a given set of observations
X:k=1,2,..,n) with sample mean X(n) and sample
variance S%(n), the rescaled adjusted range or the R/S statistic is
given by R@®m)YSm)= 1/S(n) [max©, W, W,, ..., W,) —
m_in(O, Wl’ Wz, ooy Wn)], with Wk = (Xl +X2 + - +Xk) -
kX(n), k=1, 2, ..., n. Hurst (1955) found that many naturally
occurring time series appear to be well represented by the
relation E[R(n)S(n)] ~aun”, as n—e, with Hurst
parameter H "typically” about 0.73. On the other hand, if the
observations X, come from a short-range dependent model, then
Mandelbrot and Van Ness (1968) showed that
E[R(n)/S(n)] ~asn®®, as n —e.  This discrepancy is
generally referred to as the Hurst effect or Hurst phenomenon.

Finally, for an attempt to explain self-similarity in terms of
representing some underlying physical process, we refer to a
construction originally introduced by Mandelbrot (1969) (see
also Taqqu and Levy (1986)) of self-similar processes based on
aggregating many simple renewal reward processes exhibiting
inter-renewal times with infinite variances (i.e., "heavy-tails").
That is, the distribution of the inter-renewal times U satisfies
PIUZul~agu™, as u-—>o0, 1 <a<?2 (e.g., stable (Pareto)
distributions with parameter 1< a<2). Producing self-
similarity by aggregating more and more ii.d. copies of
elementary renewal reward processes relies crucially on this
"heavy-tail property” of the inter-renewal times and provides an
intuitive explanation for the occurrence of self-similarity in
high-speed network traffic (see Section 5).

3.3 THE STATISTICS OF SELF-SIMILARITY

Since slowly decaying variances, long-range dependence, and a
spectral density obeying a power-law behavior are different
manifestations of one and the same property of the underlying
covariance stationary process X, namely that X s
(asymptotically or exactly) self-similar, we can approach the
problem of testing for and estimating the degree of self-
similarity from three different angles: (1) time-domain analysis
based on the R/S-statistic, (2) analysis of the variances of the
aggregated processes X, and (3) periodogram-based analysis
in the frequency-domain. This subsection provides a brief
discussion of the graphical R/S analysis and briefly mentions
methods (2) and (3). We will illustrate the use of these methods
in our analysis of the Ethernet data in Section 4 below.

The objective of the R/S analysis of an empirical record is to
infer the degree of self-similarity A (Hurst parameter) in relation
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(3.1.6) for the self-similar process that presumably generated the
record under consideration. In practice, R/S analysis is based on
a heuristic graphical approach (originally described in detail in
Mandelbrot 'and Wallis (1969)) that tries to exploit as fully as
possible the information in a given record. The following
graphical method has been used extensively in the past. Given a
sample of N observations (X;:k=1,2,3, --- ,N), one
subdivides the whole sample into K non-overlapping blocks and
computes the rescaled adjusted range R (¢;, n)/S (¢;, n) for each
of the new ‘'starting points" ¢ =1, ,=N/K+1,
t3=2N/K +1, which satisfy (¢; — 1) +7n <N. Here, the
R/S-statistic R (t,, n)/S(t, n) is defined as above with W,
replaced by W, ., — W, and S (t;, n) is the sample variance of
X +1, X, 42, -, X, +,. Thus, for a given value ("lag") of n,
one obtains many samples of R/S, as many as K for small » and
as few as one when £ is close to the total sample size N. Next,
one takes logarithmically spaced values of n, starting with
n = 10. Plotting log (R (¢,, n)/S (t;, n)) versus log (n) results in
the rescaled adjusted range plot (also called the pox diagram of
R/S). When the parameter H is well defined, a typical rescaled
adjusted range plot starts with a transient zone representing the
nature of short-range dependence in the sample, but eventually
settles down and fluctuates in a straight "street” of a certain
slope. Graphical R/S analysis is used to determine whether such
asymptotic behavior appears supported by the data. In the
affirmative, an estimate H of the self-similarity parameter H is
given by the street’s asymptotic slope (typically obtained by a
simple least squares fit) which can take any value between 1/2
and 1. For practical purposes, the most useful and attractive
feature of the R/S analysis is its relative robustness against
changes of the marginal distribution. This feature allows for
practically separate investigations of the self-similarity property
of a given empirical record and of its distributional
characteristics.

We have observed that for self-similar processes, the variances
of the aggregated processes X™ (m=1,2,3, --- ) decrease
linearly (for large m) in log-log plots against m with slopes
arbitrarily flatter than —1. The so-called variance-time plots are
obtained by plotting log(var(X ")) against log(m) ("time") and
by fitting a simple least squares line through the resulting points
in the plane, ignoring the small values for m. Values of the
estimate B of the asymptotic slope between —1 and 0 suggest
self-similarity, and an estimate for the degree of self-similarity
isgivenby H =1 - f/2.

The absence of any limit law results for the statistics
corresponding to the R/S analysis or the variance-time plot
makes them inadequate for a more refined data analysis (e.g.,
requiring confidence intervals for the degree of self-similarity H,
model selection criteria, and goodness of fit tests). In contrast, a
more refined data analysis is possible for maximum likelihood
type estimates (MLE) and related methods based on the
periodogram and its distributional properties. In particular, for
Gaussian processes, Whittle’s approximate MLE has been
studied extensively and has been shown to have desirable
statistical properties (Fox and Taqqu (1986), and Dahlhaus
(1989)). Combined, Whittle’s approximate MLE approach and
the aggregation method discussed earlier give rise to the
following operational procedure for obtaining confidence
intervals for the self-similarity parameter H. For a given time
series, consider the corresponding aggregated processes X ™
with m =100, 200, 300, ---, where the largest m-value is
chosen such that the sample size of the corresponding serics
X is not less than about 100. For each of the aggregated
series, estimate the self-similarity parameter H yie}" the Whittle
estimate. This procedure results in estimates H = of H and



qognr)espondiqg, say, 9§‘Zz;-conﬁdence intervals of the form
H" " +1960y,, where 65 is given by a known central limit
theorem regt% (see Dahlhaus (1989)). Finally, we plot the
estimates H of H together with their 95%-confidence
intervals versus m. Such plots will typically vary widely for
small aggregation levels, but will stabilize after a while and
fluctuate around a constant value, our final estimate of the self-
similarity parameter H.

4. THE SELF-SIMILAR NATURE OF ETHERNET
TRAFFIC

In this section, we establish in a statistically rigorous manner
(using the graphical and statistical tools described in the
previous section) the self-similar nature of (internal) Ethernet
traffic and of some of its major components (e.g., external traffic
and external TCP traffic). For each of the 4 measurement
periods described in Table I, we identified what are considered
"typical" low-, medium-, and high-activity hours. With the
resulting data sets, we are able to investigate features of the
observed traffic (e.g., self-similarity) that persist across the
network as well as across time, irrespective of the utilization
level of the Ethernet.

4.1 ETHERNET TRAFFIC OVER A 1-DAY PERIOD

We first consider the August ‘89 snapshot of Ethernet traffic
(row 1 in Table 1) and analyze the 3 subsets AUGS89.LB,
AUG89.MB, and AUG89.HB. Each sequence contains 360000
observations, and each observation represents the number of
bytes sent over the Ethernet every 10 milliseconds.

Figure 2 depicts the pox plot of R/S (a), the variance-time curve
(b), and the periodogram plot (c) corresponding to the sequence
AUGS89.MB. The pox plot of R/S (Figure 2 (a)) show an
asymptotic slope that is distinctly different from 0.5 (lower
dotted line) and 1.0 (upper dotted line) and is easily estimated
(using the points) to be about 0.79. The variance-time curve
(Figure 2 (b)), which has been normalized by the corresponding
sample variance, shows an asymptotic slope that is clearly
different from -1 (dotted line) and is easily estimated to be about
-0.40, resulting in a practically identical estimate of the Hurst
parameter H of about 0.80. Finally, looking at the periodogram
plot corresponding to the time series AUG89.MB, we observe
that although there are some pronounced peaks in the high-
frequency domain of the periodogram, the low-frequency part is
characteristic for a power-law behavior of the spectral density
around zero. In fact, by fitting a simple least-squares line using
only the lowest 10% of all frequencies, we obtain a slope
estimate v = 0.64 which results in a Hurst parameter estimate of
about 0.82. Thus, together the 3 graphical methods suggest that
the sequence AUG89.MB is self-similar with self-similarity
parameter H = 0.80. Moreover, Figure 2 (d) indicates that the
normal hour Ethernet traffic of the August '89 data is (exactly)
self-similar rather than asymptotically self-similar (see Section
3.2). Figure 2 (d) shows the estimates of the Hurst parameter H
for selected aggregated time series derived from the sequence
AUGB9.MB, as a function of the aggregation level m. For
aggregation levels m =1, 5, 10, 50, 100, 500, 1000, we plot
the Hurst parameter estimate H ™ (based on the pox plots of
R/S ("*"), the variance-time curves ("QO"), and the periodogram
plots ("0") for the aggregated time series X against the
logarithm of the aggregation level m. Notice that the estimates
are extremely stable and practically constant over the depicted
range of aggregation levels 1 <m < 1000. Thus, in terms of
their second-order statistical properties, the aggregated series
X™(@m >1) can be considered to be idemtical and produce,
therefore, realizations that have similar overall structure and
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Figure 2 (a)—(d). Graphical methods for checking
for self-similarity of the sequence AUG89.MB. ((a)
pox plot of R/S, (b) wvariance-time plot, (c)
periodogram plot, and (d) Hurst parameter estimates
as a function of the aggregation level m ( * is method
(a), O is method (b), and O is method (c).)

look very much alike.

In addition to the sequence AUG89.MB, we also analyzed the
sequences AUGB9.LB and AUGS89.HB. While both series
behave very much like the sequence AUG89.MB, the resulting
Hurst parameter e¢stimates H differ slightly; H =0.75 for
AUGS89.LB, and H =0.85 for AUG89.HB. This difference
suggests that although Ethernet traffic over approximately a 24-



hour period is self-similar, the degree of self-similarity depends
on the utilization level of the Ethernet and increases as the
utilization increases. Finally, we also analyzed the sequences
AUGS89.LP, AUG89.MP, and AUG89.HP, i.c., the time series
representing the total number of Ethernet packets rather than the
total number of bytes in every 10 millisecond interval, Not
surprisingly, the packet wraffic is also self-similar, but with
slightly larger H-values than the corresponding bytes/time unit
data. For a more detailed analysis of Ethernet traffic at the
packet level, see Section 4.2 below.

4.2 ETHERNET TRAFFIC OVER A 4-YEAR PERIOD

As discussed in Section 2, Ethernet LANs are generally known
to change significantly during the course of a few years. By
analyzing additional data sets (see Table 1), similar to the
August ’89 ones but taken at different points in time and at
different physical locations within the network, we show below
that Ethernet traffic is self-similar, irrespective of when and
where the data were collected in the Bellcore Morristown
network during the 4-year period August '89—February *92.

In contrast to Section 4.1, our analysis below results in point
estimates of the self-similarity parameter H together with their
respective 95%-confidence intervals. As discussed in Section
3.3, such a refined analysis resulting in confidence intervals for
H is possible if maximum likelihood type estimates (MLE) or
related estimates based on the periodogram are used instead of
the mostly heuristic graphical estimation methods illustrated in
the previous section. Plots (a)—(d) of Figure 3 show the result
of the MLE-based estimation method when combined with the
method of aggregation. For each of the 4 sets of taffic
measurements described in Table 1, we use the time series
representing the packet counts during normal traffic conditions
(i.e., AUG89.MP in (a), OCT89.MP in (b), JAN9O.MP in (c),
and FEB92.MP in (d)), and consider the corresponding
aggregated time series X with m = 100, 200, 300, ..., 1900,
2000 (representing the packet counts per 1, 2, ...,20, seconds,
respectively). We plot the Hurst parameter estimates H ™ of H
obtained from the aggregated series X, together with their
95%-confidence intervals, against the aggregation level m.
Figure 3 shows that for the packet counts during normal traffic
1939)3 (irrespective of the measurement period), the values of
H"" are quite stable and fluctuate only slightly in the 0.85 to
0.95 range throughout the aggregation levels considered. The
same holds for the 95%-confidence interval bands, indicating
strong statistical evidence for self-similarity of these 4 time
series with degrees of self-similarity ranging from about 0.85 to
about 0.95. The rgl(gnt)ively stable behavior of the Hurst
parameter estimates H~ for the different aggregation levels m
also confirms our earlier finding that Ethernet traffic during
normal traffic hours can be considered to be exactly self-similar
rather than asymptotically self-similar. Plots (a)—(d) of Figure
3 suggest that this property holds irrespective of when and
where the Ethernet was monitored. For exactly self-similar time
series, determining a single point estimate for H and the
corresponding 95%-confidence interval is straightforward and
can be done by visual inspection of plots such as the ones in
Figure 3 (see below). Notice that in each of the four plots in
Figure 3, we added two lines corresponding to the Hurst
parameter estimates obtained from the pox diagrams of R/S and
the variance-time plots, respectively. Typically, these lines fall
well within the 95%-confidence interval bands which shows that
for these long time series considered here, graphical estimation
methods based on R/S or variance-time plots can be expected to
be very accurate.

In addition to the 4 normal hour packet data time series, we also
applied the combined MLE/aggregation method to the other
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Eiggre 3 (a)—{(d). Periodogram-based MLE estimate
H"' of H (solid line) and 95%-confidence intervals
(dotted lines), as a function of the aggregation level m,
for sequences AUGS89.MP (a), OCT89.MP (b),
JAN90.MP (c), and FEB92.MP (d). For example, plot
(a) shows that m =300 is an appropriate aggregation
level for sequencs AUG89.MP, yielding a point
estimate H=H =090 and a 95%-confidence
interval [0.85,0.95]. For comparison, we also added to
each plot the estimate of H based on the variance-time
plot (——-— ) and the R/S-based estimate of H
(=—-).

traffic data sets described in Table 1. Figure 4 (a) depicts all
Hurst parameter estimates (together with the 95%-confidence
interval corresponding to the choice of m discussed earlier) for
each of the 12 packet data time series, while Figure 4 (b)
summarizes the same information for the time series
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Figure 4 (a)—(b). Summary plot of estimates of the
Hurst parameter H for all data sets (representing the
number of packets (a) and the number of bytes (b)) in
Table 1. (e denotes the periodogram-based MLE
estimate and corresponding 95%-confidence interval,
O the point estimate of H based on the asymptotic
slope of the variance-time plot, and * the point
estimate of H based on the asymptotic slope of the pox
plot of R/S.)

representing the number of bytes per 10 milliseconds during a
typical low, normal, and busy hour for each of the four
measurement periods. We also included in these summary plots
the Hurst parameter estimates obtained via the R/S analysis
("=") and variance-time plots ("O") in order to indicate the
accuracy of these "graphical” estimators when compared to the
statistically more rigorous  Whittle estimator  ("e').
Concentrating first on the packet data, i.e., Figure 4 (a), we see
that despite the transition from mostly host-to-host workgroup
traffic during the August '89 and October 89 measurement
periods, to a mixture of host-to-host and router-to-router traffic
during the January ’90 measurement period, to the
predominantly router-to-router traffic of the February '92 data
set, the Hurst parameter corresponding to the typical normal and
busy hours, respectively, are comparable, with slightly higher
H-values for the busy hours than for the normal traffic hours.
This latter observation might be surprising in light of
conventional traffic modeling where it is commonly assumed
that as the number of sources (Ethernet users) increases, the
resulting aggregate traffic becomes smoother. In contrast to this
generally accepted argument for the "Poisson-like” nature of

190

aggregate traffic, our analysis of the Ethernet data shows that, in
fact, the aggregate traffic tends to become less smooth (or, more
bursty) as the number of active sources increases (see also our
discussion in Section 5). In fact, while there were about 120
hosts that spoke up during the August "89 or October ’89 busy
hour, we heard from about 1200 hosts during the January "90
high traffic hour; the comparable number of active hosts during
the February 92 busy howr was around 600. The major
difference between the early (pre-1990) measurements and the
the later ones (post-1990, i.e., January 90 and February ’92) can
be seen during the low traffic hours. Intuitively, low period
router-to-router traffic consists mostly of machine-generated
packets which tend to form a much smoother arrival process
than low period host-to-host traffic, which is typically produced
by a smaller than average number of actual Ethernet users, i.e.,
researchers working late hours.

Next, turning our attention to Figure 4 (b), ic., the Hurst
parameter estimates for the bit rates, we observe that as in the
case of the packet data, the degree of self-similarity H increases
as we move from low to normal to high traffic hours. Moreover,
while there is practically no difference between the two post-
1990 data sets, the two pre-1990 sets clearly differ from one
another but follow a similar pattern as the post-1990 ones. The
difference between the August 89 and October ’89
measurements can be explained by the transition from diskless
to "dataless” workstations (workstations with the operating
system on a local disk but all user files on a remote fileserver)
that occurred during the latter part of 1989 (see Section 2).
Except during the low hours, the increased computing power of
many of the Ethernet hosts causes the Hurst parameter to
increase and gives rise to a bit rate that nearly matches the self-
similar feature of the corresponding packet process. Also note
that the 95%-confidence intervals corresponding to the Hurst
parameter estimates for the low traffic hours are typically wider
than those corresponding to the estimates of H for the normal
and high traffic hours. This widening indicates that Ethernet
traffic during low traffic periods is asymptotically self-similar
rather than exactly self-similar.

The Ethernet traffic analyzed in Section 4.2 is called internal
traffic and consists of all packets on a LAN. In addition to this
internal traffic, we also analyzed external or remote Ethemet
traffic, and external TCP traffic, the portion of external traffic
using the Transmission Control Protocol (TCP) and IP.
Repeating the same laborious statistical analysis for these
important components of internal Ethernet traffic, we find that in
terms of its self-similar nature, external traffic and external TCP
traffic do not differ from the internal traffic studied earlier, and
that our findings for the internal traffic apply directly.

5. SIGNIFICANCE OF SELF-SIMILARITY FOR
TRAFFIC ENGINEERING

Our measured data show dramatically different statistical
properties than those predicted by the stochastic models
currently considered in the literature. Almost all these models
are characterized by an exponentially decaying autocorrelation
function. As a result, they give rise to a Hurst parameter
estimate of H = .50, producing variance-time curves, R/S plots,
and frequency domain behavior strongly disagreeing with the
self-similar behavior of actual traffic (see Section 4). In terms
of the aggregation procedure described above, the theoretical
models have the property that typically, after aggregating over
non-overlapping blocks of about 10-100 observations, the
aggregated series become indistinguishable from second-order
pure noise. The fact that one can distinguish clearly—with
respect to second-order statistical properties—between the



existing models for Ethernet traffic and our measured data is
surprising and clearly questions some of the modeling
assumptions that have been made in the past. Potential traffic
engineering implications of this distinction are currently under
intense scrutiny. In this section, we emphasize three direct
implications of the self-similar nature of packet traffic for traffic
engineering purposes: modeling individual Ethernet sources,
inadequacy of conventional notions of "burstiness”, and effects
on congestion management for packet networks. We conclude
with some guidelines toward modeling self-similar traffic and
suggest some open problems.

5.1 ON THE NATURE OF TRAFFIC GENERATED BY
AN INDIVIDUAL ETHERNET USER

In Section 4, we showed that irrespective of when and where the
Ethernet measurements were collected, the traffic is self-similar,
with different degrees of self-similarity depending on the load
on the network. We did so without first studying and modeling
the behavior of individual Ethernet users (sources). Although
historically, accurate source modeling has been considered an
absolute necessity for successful modeling of aggregate traffic,
we show here that in the case of self-similar packet traffic,
knowledge of fundamental characteristics of the aggregate
traffic can provide new insight into the nature of traffic
generated by an individual user. To this end, we recall
Mandelbrot’s construction of self-similar processes (see
Mandelbrot (1969)) by aggregating many simple renewal reward
processes, which provides a physical explanation for the visually
obvious (see Figure 1) and statistically significant (see Figure 4)
self-similarity property of Ethernet LAN traffic in terms of the
behavior of individual Ethernet users. In fact, the renewal
rewards for one such process represent the amount of traffic (in
bytes or packets) generated by a single user during successive
time intervals whose lengths obey the "heavy-tail" property
discussed in Section 3.2. If bytes arc the preferred units, the
renewal reward process source model resembles the popular
class of fluid models (see Anick et al. (1982)). On the other
hand, if we think of packets as the underlying unit of
information, the renewal reward process is basically a packet
train model in the sense of Jain and Routhier (1986). For
simplicity, one can restrict the "rewards” to the values 0 and I,
where 0 means that the corresponding source is inactive and 1
means that it is active (and generating traffic at a fixed rate).
Note that the crucial property that distinguishes this model from
fluid models and packet train models is that the lengths of the
inactive/active periods are heavy-tailed in the sense of Section
3.2. [Intuitively, this property means that there is no
characteristic length of a busy period or packet train: individual
inactive/active periods can be arbitrarily long with significant
probability (for evidence in support of this "heavy-tail behavior"
in related traffic studies, see the recent work by Meier-Hellstern
et al. (1991)). Mandelbrot (1969) and Taqqu and Levy (1986)
showed that aggregating the traffic of many such source models
produces a self-similar superposition process with self-similarity
parameter H =3 - 0)/2, where « is the parameter that
characterizes the "thickness” of the tail of the distribution.

5.2 SELF-SIMILARITY AND SOME COMMONLY USED
NOTIONS OF BURSTINESS

Section 4 has shown that data sets with higher self-similarity H
satisfy intuitive notions of higher "burstiness”. Similarly, the
greater the variability (smaller o) of the inactive/active periods
in our individual source model, the higher the A and the burstier
the aggregate traffic. The fact that the self-similarity parameter
H captures the intuitive notion of burstiness in a mathematically
rigorous manner can be contrasted with the behavior of many
commonly used measures of "burstiness”, including the index of
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dispersion, the peak-to-mean ratio, and the coefficient of
variation. The index of dispersion (for counts) has recently
attracted considerable attention (e.g., Heffes and Lucantoni
(1986)) as a measure for capturing the variability of traffic over
different time scales. For a given time interval of length L, the
index of dispersion for counts (IDC) is given by the variance of
the number of arrivals during the interval of length L divided by
the expected value of that same quantity.

500

0.10 1.00 10.0
L {in Seconds)

(a)

0.10 1.00 10.0

L (in Seconds)

(b)
Figure 5 (a)—(b). Index of dispersion for counts
(IDC) as a function of the length L of the time interval
over which IDC is calculated, for the January 90 busy
hour (a) and the February 92 busy hour (b). The solid
lines are the IDC curves for the sequences JAN9O.HP
and FEB92.HP (internal traffic) and the dashed lines
depict the IDC curves for the corresponding hours of
external traffic. The dotted lines are the IDC curves
predicted by a self-similar model fitted to the time
series JAN9O.HP and FEB92.HP, respectively. Note
that the asymptotic slopes of the solid lines agree with
the slopes of the dotted lines.

the IDC increases monotonically throughout a time span that
covers nearly 5 orders of magnitude (Figure 5), in stark contrast
to conventional traffic models where the IDC is either constant
or converges to a fixed value rapidly. Simple self-similar traffic
models with parameter H are easily shown to produce a
monotonically increasing IDC proportional to L', exactly
matching the straight-line appearance of the log-log plot of the
actual data. For self-similar traffic, both the peak-to-mean ratio
and the coefficient of variation are unsatisfactory measures:
essentially any peak-to-mean ratio is possible, depending on the
length of the interval over which the peak is determined, and
essentially any ratio of the standard deviation of interarrival
times to the expected value is possible, depending on the sample
S1Z¢.

5.3 CONGESTION MANAGEMENT IN THE PRESENCE
OF SELF-SIMILAR TRAFFIC

In order to illustrate the effect of self-similar traffic on basic
architectural issues concerning high-speed, high-bandwidth
communications systems of the future, we revisit some aspects
of congestion management first explored using simulation by
Fowler and Leland (1991) and Leland and Wilson (1991).



Because of the statistical groundwork established in Section 4,
their conclusions about the nature of congestion and the task of
congestion management for B-ISDN provide convincing
evidence for the significance of self-similar network traffic for
engineering future integrated high-speed networks. In light of
the same self-similar behavior of VBR video traffic (see Beran
et al. (1992)), their conclusions are likely to also apply to more
heterogeneous B-ISDN traffic.

Leland and Wilson (1991) consider the access control scheme
proposed for Switched Multimegabit Data Service (SMDS) on
public B-ISDN. SMDS is a connectionless data service where
packets arriving from a LAN are buffered at the interface and
delivered to the cell-based network at some maximum rate,
subject to traffic shaping intended to reduce the burstiness of the
submitted LAN traffic. Simple conventional models based on
the observed external LAN traffic suggest that proposed SMDS
quality of service requirements can readily be met. However,
packet loss and delay behaviors differ radically between trace-
driven simulations based on the actual traffic measurements and
those based on these formal traffic models. In particular, overall
packet loss decreases very slowly with increasing buffer
capacity, in sharp contrast to Poisson-based models where losses
decrease exponentially fast with increasing buffer size.
Moreover, packet delay always increases with buffer capacity,
again in contrast to the formal models where delay does not
exceed a fixed limit regardless of buffer size. This distinctive
loss and delay behavior can be precisely explained in terms of
the frequency domain manifestation of self-similarity (see
Section 3.2). Because both low and high frequencies are
significant, heavy losses and long delays occur during long
time-frame bursts (due to the presence of low frequencies) and
can, therefore, not be dealt with effectively by larger buffers.
This observation is also backed by a recent analytic study by
Norros (1992) who studies a model for connectionless traffic
based on fractional Brownian motion. The mathematical
properties of self-similarity also explain the results of Fowler
and Leland (1991), who also observed the ineffectiveness of
buffering to manage congestion and went on to observe that
when congestion occurs, losses are severely concentrated and
are far greater than the background loss rate. While many
formal standard network traffic models provably show that
congestion control "works" (e.g., large buffers provide
protection against congestion and average loss rates are a
sensible quality of service measure) self-similar traffic models
reveal a far more challenging picture for broadband congestion
management.

5.4 PARSIMONIOUS MODELS FOR SELF-SIMILAR
TRAFFIC

Self-similarity is often explained as being equivalent to the
existence of a multilevel hierarchy of underlying mechanisms.
For packet traffic, it is practically impossible to demonstrate
why such mechanisms should result, for example, in an
asymptotic power law for the autocorrelations of the form
(3.2.1). Even if their physical reality could be established, the
resulting models for packet traffic are likely to have a large
number of parameters. Similarly, conventional modeling
approaches that stress the importance of source modeling
produce highly overparameterized models for aggregate traffic.
Two alternative approaches are far more parsimonious for self-
similar traffic, yielding models with a small number of
parameters where every parameter can be given a physically
meaningful interpretation.

As we have noted in Section 4, self-similar stochastic models fit
Ethernet traffic very well using very few parameters. For
example, FGN is characterized by just 3 parameters (mean L,
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variance 62, and H), each with a natural physical interpretation.
Parameter estimation techniques are known for FGN and
fractional ARIMA models, but often turn out to be
computationally too intensive for large data sets. However,
Section 4 illustrates how to estimate the parameter H for large
data sets, and methods to adapt the existing parameter
estimation techniques to long time series are currently being
studied. Another promising approach to modeling packet traffic
uses deterministic chaotic maps (Erramilli and Singh (1990)).
Generating a packet stream using this approach is appealingly
easy; however, the problem of deriving an appropriate nonlinear
chaotic map based on a set of actual traffic measurements
currently requires considerable experimenting. Developing more
rigorous statistical estimation methods for dynamical systems
has recently attracted considerable attention in the statistics
literature (e.g. Berliner (1992) and references therein). Both
approaches offer a simple description of the complex packet
traffic generation process, and each yield a single parameter that
describes the fractal-like nature of traffic (4 and the fractal
dimension, respectively). While traditional performance
modeling favors the use of stochastic input models, studying
arrival streams to queues that are generated by non-linear
chaotic maps may well provide new insight into the performance
of queueing systems where the arrival processes exhibit fractal-
like properties.

6. CONCLUSIONS

Understanding the nature of traffic in high-speed, high-
bandwidth communications systems such as B-ISDN is essential
for engineering, operations, and performance evaluation of these
networks. In a first step toward this goal, it is important to know
the traffic behavior of some of the expected major contributors
to future high-speed network traffic. In this paper, we analyze
LAN traffic offered to a high-speed public network supporting
LAN interconnection, an important and rapidly growing B-
ISDN service. The main findings of our statistical analysis of a
few hundred million high quality, high time-resolution Ethernet
LAN traffic measurements are that (i) Ethernet LAN traffic is
statistically self-similar, irrespective of when during the 4-year
data collection period 1989-1992 the data were collected and
where they were collected in the network, (ii) the degree of
self-similarity measured in terms of the Hurst parameter H is
typically a function of the overall utilization of the Ethernet and
can be used for measuring the "burstiness" of the traffic
(namely, the burstier the traffic the higher H), and (iii) major
components of Ethemet LAN waffic such as external LAN
traffic or external TCP traffic share the same self-similar
characteristics as the overall LAN traffic.

An important implication of the self-similarity of LAN traffic is
that aggregating streams of such traffic typically does not
produce a smooth ("Poisson-like") superposition process but
instead, intensifies the burstiness (i.e., the degree of self-
similarity) of the aggregation process. Thus, self-similarity is
both ubiquitous in our data and unavoidable in future, more
highly aggregated, traffic. However, none of the currently
common formal models for LAN traffic is able to capture the
self-similar nature of real traffic. We briefly mention two novel
methods for modeling self-similar LAN maffic, based on
stochastic self-similar processes and deterministic nonlinear
chaotic maps, that provide accurate and parsimonious models.

Implications of the self-similar nature of packet traffic for
engineering, operations, and performance evaluation of high-
speed networks are ample: (i) source models for individual
Ethernet users are expected to show extreme variability in terms
of interarrival times of packets (the infinite variance syndrome),



(ii) the Hurst parameter provides a more satisfactory measure of
"burstiness” for self-similar traffic than such commonly used
measures as the index of dispersion, the peak-to-mean-ratio, or
the coefficient of variation (which become ill-defined for self-
similar traffic), and (iii) the nature of congestion produced by
self-similar network traffic models differs drastically from that
predicted by standard formal models and displays a far more
complicated picture than has been typically assumed in the past.
Finally, in light of the same self-similar behavior recently
observed in VBR video traffic—another major contributor to
future high-speed network traffic—the more complicated nature
of congestion due to the self-similar traffic behavior can be
expected to persist even when we move toward a more
heterogeneous B-ISDN environment. Thus, we believe based on
our measured traffic data that the success or failure of, for
example, a proposed congestion control scheme for B-ISDN will
depend on how well it performs under a self-similar rather than
under one of the standard formal traffic scenarios.
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