
Switching
Nick McKeown

CS244
Advanced Topics in Networking

Spring 2025

“High-speed switch scheduling for local-area networks”
[Tom Anderson, Susan Owicki, James Saxe, Chuck Thacker. 1993]

Context

2

Tom Anderson
At the time: DEC SRC (Palo Alto)
Professor of CS, University of Washington
Previously: UC Berkeley, EECS

Susan Owicki
At the time: DEC SRC (Palo Alto)
Before that: Prof of EE & CS, Stanford
Today: Marriage and Family Therapist, Palo Alto

James B. Saxe
At the time: DEC SRC (Palo Alto)
After that: Compaq and HP Labs ?

Chuck Thacker (d. 2017)
At the time: DEC SRC (Palo Alto)
Before that: Xerox PARC (“Alto”)
After that: Microsoft
2010 Turing Award Winner

At the time the paper was written…
• WWW was new, and Internet traffic was growing fast
• Fastest Ethernet networks ran at 100Mb/s
• Lots of interest in building faster switches and routers
• Lively debate about an alternative to the Internet, called “ATM”

But first…

A few words about packet queues…

4

𝜆

R = line rate.
e.g. 100M bit/s, 10Gb/s

Observation: With one arrival “line” at the same rate, the queue
is always empty (or at most one store-and-forward packet). The
arrival process is deterministically “bounded” by R.

Q: For any “load” 𝜆 ≤ 1, what arrival pattern
leads to the most customers in the queue?

Packet buffer

R R

time

Cumulative arrivals, A(t)R

gradient ≤ R

C
um

ul
at

iv
e

bi
ts

R
R

𝜆
2

R
𝜆
2

Q: For any “load” 𝜆 ≤ 1, what arrival pattern
leads to the most customers in the queue?

time

Cumulative arrivals, A(t)

R

gradient ≤ 2R

C
um

ul
at

iv
e

bi
ts

2R
q(t)

Observation: The arrival rate is “bounded” by R on average.
Instantaneously, it can reach 2R. The queue size is unbounded.

Packet buffer

Different cases for 𝜆 = 1

5

time, s0.5 1 1.5 2

1 line 1

line 2

Q: How big does the buffer need to be?

time, s0.5 1 1.5 2

2 line 1

line 2

Q: How big does the buffer need to be?

time1hr 2hr 3hr 4hr

3 line 1

line 2

Q: How big does the buffer need to be?

Observation: For a given arrival rate, in order to know the queueing
delay, we need to know the pattern (or “process”) of arrivals.

Background

6

2
3

4

1

N

…

…
…

A switch, or router, with N “ports”.
Each port runs at rate R b/s.

We say the “switching capacity” is N x R b/s.

R

R

R

RR1

RR

RR

RR

2

3

N

…

You said…
Onkar Deshpande
While the scheduling algorithms are novel and theoretically sound, certain
assumptions now seem outdated. The use of fixed-length cells, for instance,
appears less relevant in modern networks where packet sizes vary widely. Modern
datacenter traffic includes a mix of full-MTU packets (often 1500 bytes) and much
smaller control packets.

Hannah Dunn
The authors’ evaluation seemed unbiased and sound, though I did wonder about
the phrase, “this leads to latency bounds that seem acceptable for multimedia
applications,” because to whom do these bounds “seem” acceptable?

7

An output-queued (OQ) switch

8

RR1

RR

RR

RR

2

3

N

…

Properties of an OQ switch
• All buffering takes place at the output.
• Output queues must be able to write

packets at rate N x R.

Consequences
• “Work conserving”: Whenever there is a

packet in the system, its output is busy
sending a packet. No unnecessary idling.

• Average delay is minimized.
• But memory bandwidth limits the switching

capacity.

Traffic Matrix

9

RR1

RR

RR

RR

2

3

N

…

0.1
0.2

0.20.4

Traffic matrix, Λ = 𝜆!,#
𝜆!,# is the fraction of traffic from input i to output j

0.1 0.2 0.2 0.4
0.2 0.3 0.1 0.1
1.0 0.0 0.0 0.0
0.1 0.4 0.3 0.1

For example:

Λ =

Note that the row (input) sum: ∑# 𝜆!,# ≤ 1 , ∀𝑖

Uniform Traffic Matrix:

Λ = 𝜆
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

𝑤ℎ𝑒𝑟𝑒: 	𝜆 ≤ 1/𝑁

#
!

𝜆!,# ≤ 1,∀𝑗

Total traffic rate to each
output is ≤ 1

𝑎𝑛𝑑	𝑠𝑡𝑖𝑙𝑙:*
!

𝜆",! ≤ 1 , ∀𝑖

Non-oversubscribed TM:

OQ Switches and “100% Throughput”

If we send traffic according to any non-over-subscribed
traffic matrix to an OQ switch (with infinite buffers) then the
output rates correspond to the column sums.
i.e. The traffic rate at output 𝑗	 = 𝑅 ∑! 𝜆!,# ≤ 𝑅
Put another way, an OQ switch can “keep up” with any reasonable traffic matrix we throw at it.

We often say an OQ switch can “sustain 100% throughput”.

10

Q: What happens if the buffers are finite?

An input-queued (IQ) switch

11

RR1

RR

RR

RR

2

3

N

…

Properties of an IQ switch
• All buffering takes place at the input.
• Input queues only need to be able to write

packets at rate R (instead of N x R).

Consequences
• Can build a switch N times faster.
• But, a packet can be held up by packet

ahead destined to a different output.
• Hence an IQ switch is not “work

conserving”. It can unnecessarily idle.
• May not achieve “100% throughput”.
• Average delay is not minimized.

Head of Line Blocking

13

Head of Line Blocking
IQ switch with uniform traffic matrix, 𝜆 ≤ 1

Load, 𝜆

Delay, d

10 0.5
3/2

0.75

5/2

Poisson arrivals:

𝐸 𝑑 =
1
2
2 − 𝜆
1 − 𝜆

O
Q

 S
w

itc
h

0.58

Poisson arrivals:
𝜆 ≤ 2 − 2 ≈ 58%	

Observation: HOL Blocking means we lose
42% of the switching capacity

IQ
 S

w
itc

h

Karol ‘87

What does the “58%” result mean?

14

RR1

RR

RR

RR

2

3

N

…

𝜆 𝜇R R

𝜆, 𝜇 ≤ 1

Arrival rate Departure rate

𝜆R R
Arrival rate Departure rate

OQ switch

𝜆 ≤ 0.58R R
Arrival rate Departure rate

IQ switch uniform TM, Poisson

Virtual Output Queues (VOQs)

16

Basic idea

With a VOQ, a packet cannot be held up by a packet in
front of it, destined to a different output.

Q: With VOQs, does/can 58% become 100% throughput?

17

𝜆 ≤ 0.58R R
Arrival rate Departure rate

IQ switch uniform TM, Poisson

? 𝜆R R
Arrival rate Departure rate

IQ switch with VOQs
Any TM, Any arrivals

100% Throughput

Reminder: “100% throughput” is equivalent to
For a non over-subscribing traffic matrix, queues
don’t grow without bound.
i.e. 𝜇 ≥ 𝜆	for every queue in the system.

Observations:
1. Burstiness of arrivals does not affect throughput
2. For a uniform Traffic Matrix, solution is trivial!

18

An input-queued (IQ) switch
with VOQs and a crossbar

19

RR1

RR

RR

RR

2

3

N

…

N2 VOQs

crossbar

…

R

R

R

R

1

2

3

N

R1

R

R

R

2

3

N

… Observation: scheduling is
equivalent to choosing a permutation.

20

N2 VOQs

crossbar

bipartite
request
graph

bipartite
match

e.g. “maximum size match”
aka “maximum cardinality match”

Crossbar schedule

21

crossbar

Fixed cycle of permutations:

crossbarcrossbar crossbar

≤
𝜆
𝑁 R

1
𝑁 R

𝜆 ≤ 1, therefore
arrival rate ≤ departure rate.
True for all VOQs, therefore

100% throughput for uniform TM
uniform TM schedule

100% throughput for uniform traffic

Four (trivial) algorithms for a uniform traffic matrix:
1. Cycle through permutations in “round-robin” (i.e. previous slide).
2. Each time, randomly pick one of the permutations in (1).
3. Each time, pick a permutation uniformly and at random from all

possible N! permutations.
4. Wait until all VOQs are non-empty, then pick any algorithm above.

22

Quick recap so far

An input-queued (IQ) switch

24

RR1

RR

RR

RR

2

3

N

…

Properties of an IQ switch
• All buffering takes place at the input.
• Input queues only need to be able to write

packets at rate R (instead of N x R).

Consequences
• Can build a switch N times faster.
• HOL Blocking: a packet can be held up by

packet ahead destined to a different output.
• Hence an IQ switch is not “work

conserving”. It can unnecessarily idle.
• May not achieve “100% throughput”.
• Average delay is not minimized.

25

Head of Line Blocking
IQ switch with uniform traffic matrix, 𝜆 ≤ 1

Load, 𝜆

Delay, d

10 0.5
3/2

0.75

5/2

Poisson arrivals:

𝐸 𝑑 =
1
2
2 − 𝜆
1 − 𝜆

O
Q

 S
w

itc
h

0.58

Poisson arrivals:
𝜆 ≤ 2 − 2 ≈ 58%	

Observation: HOL Blocking means we lose
42% of the switching capacity

IQ
 S

w
itc

h

Karol ‘87

100% throughput easy for uniform traffic

Four (trivial) algorithms for a uniform traffic matrix:
1. Cycle through permutations in “round-robin”.
2. Each time, randomly pick one of the permutations in (1).
3. Each time, pick a permutation uniformly and at random from all

possible N! permutations.
4. Wait until all VOQs are non-empty, then pick any algorithm above.

26

Q: So why did the authors need Parallel
Iterative Matching (PIM)?

Because in practice, arrivals are not uniform.
(If we know the matrix, we can still create a cycle of permutations to

serve every VOQ at the rate in the traffic matrix).
In practice we don’t know the traffic matrix.

Hence, PIM….

Parallel Iterative Matching
A maximal bipartite match

1
2
3
4

1
2
3
4

Request

1
2
3
4

1
2
3
4

Grant

uar selection
1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

Accept

uar selection

Iteration 1:

1
2
3
4

1
2
3
4

Iteration 2:

1
2
3
4

1
2
3
4

Q: Are we done?
Q: Is a larger match possible?

PIM Properties

1. Inputs and outputs make decisions independently and in parallel.
2. Guaranteed to find a maximal match in at most N iterations.
3. Typically completes in much fewer than N iterations.

A maximal match is guaranteed to be at least half the cardinality
(size) of a maximum match.

Q: How large is a maximal match compared to a maximum match?

Q: Uh-oh, does that mean throughput is limited to 50%??

Parallel Iterative Matching

Simulation
16-port switch

Uniform traffic matrix

IQ
 +

 F
IF

O

VOQ + Maxim
um

Size
 Match

Output Q
ueued

Note log scale

Parallel Iterative Matching
PIM with

one iteration

Simulation
16-port switch

Uniform traffic matrix
IQ

 +
 F

IF
O

VOQ + Maxim
um

Size
 Match

Output Q
ueued

Parallel Iterative Matching

Simulation
16-port switch

Uniform traffic matrix

PIM with
four iterations

IQ
 +

 F
IF

O

VOQ + Maximum Size Match

Output Q
ueued

PIM with
one iteration

How many PIM iterations should be run?

Parallel Iterative Matching
Number of iterations

Consider the n requests to output j

Requesting
inputs receiving
no other grants

Requesting
inputs receiving

other grants

k

n-k
j

€

w.p.

k
n

, all requests to j are resolved

1− k
n

, at most k remain unresolved

$
%

&
%

E Num unresolved requests[] ≤ kn ⋅ 0 + 1- k
n

)

*
+

,

-
. ⋅ k

≤ n
4

, because 1− a()⋅ a ≤ 1
4

, when a <1

Therefore, 3/4 of all requests are resolved each iteration.

(It follows that the number of iterations ≤ log2N +
4
3

)

€

w.p.

k
n

, all requests to j are resolved

1− k
n

, at most k remain unresolved

$
%

&
%

E Num unresolved requests[] ≤ kn ⋅ 0 + 1- k
n

)

*
+

,

-
. ⋅ k

≤ n
4

, because 1− a()⋅ a ≤ 1
4

, when a <1

Therefore, 3/4 of all requests are resolved each iteration.

(It follows that the number of iterations ≤ log2N +
4
3

)

Known methods for non-uniform traffic

1. 100% throughput is now known to be theoretically possible with:
- IQ switch, with VOQs, and
- An arbiter to pick a permutation to maximize

the total matching weight (e.g. weight is VOQ occupancy)

35M, Walrand and Anantharam, 1996

36

N2 VOQs

bipartite
request
graph

bipartite
match

“maximum WEIGHT match”

crossbar

Observation: give preference to longer VOQs
Leads to 100% throughput for any traffic matrix.

𝐿!,# = 3

Choose matching 𝑀
that maximizes ∑!,#∈% 𝐿!,#

1
2

31

3

1

3

1

1
3

Known methods for non-uniform traffic

2. It is practically possible with:
- IQ switch, VOQs, all running twice as fast (i.e. choose and

transfer two cells per cell time)
- An arbiter running a maximal match (e.g. PIM)

37

Intuition: Because maximal match is at least half the size of a
maximum match, running twice as fast compensates for it.

Dai and Prabhakar, 2000

Known methods for non-uniform traffic

3. 2 switch stages with a fixed schedule of permutations!

38C-S Chang, 2001

A 2-stage “Valiant” Load-balancing switch

39

N2 VOQs

crossbar

…

R

R

R

R

1

2

3

N

R1

R

R

R

2

3

N

… Intuition: If uniform traffic is so easy, can I make
non-uniform traffic “sufficiently uniform”?

Fixed cycle of permutations

R1

R

R

R

2

3

N

…

Fixed cycle of permutations

A 2-stage “Valiant” Load-balancing switch

40

N2 VOQs

…

R

R

R

R

1

2

3

N

R1

R

R

R

2

3

N

…

R/N
R/N

R/N
R/N

Deceptively simple but works for non-uniform traffic!
Q: Where is the switching taking place?
Q: Can packets be mis-sequenced?

<End>

Refs:
1. 58% result. Karol, M. J., Hluchyj, M. G., & Morgan, S. P. (1987). Input Versus Output Queueing on a Space-Division Packet Switch. IEEE

Transactions on Communications, 35(12), 1347-1356. https://doi.org/10.1109/TCOM.1987.1096719
2. iSLIP: A simpler version of PIM. McKeown, N. (1999). The iSLIP scheduling algorithm for input-queued switches. IEEE ACM Transactions on

Networking, 7(2), 188–201. https://doi.org/10.1109/90.769767
3. 100% throughput with a maximal match. Dai, Jim & Prabhakar, Balaji. (2000). The Throughput of Data Switches With and Without Speedup.
4. 2-stage Valiant load balancing switch. Cheng-Shang Chang, Duan-Shin Lee, and Ching-Ming Lien. 2001. Load balanced Birkhoff-von Neumann

switches with resequencing. SIGMETRICS ‘01. https://doi.org/10.1145/507553.507563
5. More on VLB switches. Isaac Keslassy, Shang-Tse Chuang, Kyoungsik Yu, David Miller, Mark Horowitz, Olav Solgaard, and Nick McKeown.

2003. Scaling internet routers using optics. SIGCOMM '03. https://doi.org/10.1145/863955.863978
6. Early CS244 project! Shang-Tse Chuang, A. Goel, N. McKeown and B. Prabhakar, "Matching output queueing with a combined input output

queued switch," IEEE INFOCOM '99. pp. 1169-1178 vol.3, https://doi.org/10.1109/INFCOM.1999.751673.

https://doi.org/10.1109/90.769767
https://doi.org/10.1145/863955.863978

