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At the time the paper was written…
• WWW was new, and Internet traffic was growing fast
• Fastest Ethernet networks ran at 100Mb/s
• Lots of interest in building faster switches and routers
• Lively debate about an alternative to the Internet, called “ATM”



But first…



A few words about packet queues…
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𝜆

R = line rate. 
e.g. 100M bit/s, 10Gb/s

Observation: With one arrival “line” at the same rate, the queue 
is always empty (or at most one store-and-forward packet). The 
arrival process is deterministically “bounded” by R.

Q: For any “load” 𝜆 ≤ 1, what arrival pattern 
leads to the most customers in the queue?
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Q: For any “load” 𝜆 ≤ 1, what arrival pattern 
leads to the most customers in the queue?

time

Cumulative arrivals, A(t)

R

gradient ≤ 2R

C
um

ul
at

iv
e 

bi
ts

2R
q(t)

Observation: The arrival rate is “bounded” by R on average. 
Instantaneously, it can reach 2R. The queue size is unbounded.

Packet buffer



Different cases for 𝜆 = 1
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time, s0.5 1 1.5 2

1 line 1

line 2

Q: How big does the buffer need to be?

time, s0.5 1 1.5 2

2 line 1

line 2

Q: How big does the buffer need to be?

time1hr 2hr 3hr 4hr

3 line 1

line 2

Q: How big does the buffer need to be?

Observation: For a given arrival rate, in order to know the queueing 
delay, we need to know the pattern (or “process”) of arrivals. 



Background
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A switch, or router, with N “ports”.
Each port runs at rate R b/s. 

We say the “switching capacity” is N x R b/s.
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You said…
Onkar Deshpande
While the scheduling algorithms are novel and theoretically sound, certain 
assumptions now seem outdated. The use of fixed-length cells, for instance, 
appears less relevant in modern networks where packet sizes vary widely. Modern 
datacenter traffic includes a mix of full-MTU packets (often 1500 bytes) and much 
smaller control packets.

Hannah Dunn
The authors’ evaluation seemed unbiased and sound, though I did wonder about 
the phrase, “this leads to latency bounds that seem acceptable for multimedia 
applications,” because to whom do these bounds “seem” acceptable?
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An output-queued (OQ) switch
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Properties of an OQ switch
• All buffering takes place at the output.
• Output queues must be able to write 

packets at rate N x R.

Consequences
• “Work conserving”: Whenever there is a 

packet in the system, its output is busy 
sending a packet. No unnecessary idling.

• Average delay is minimized.
• But memory bandwidth limits the switching 

capacity.



Traffic Matrix
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Traffic matrix, Λ = 𝜆!,#
𝜆!,# is the fraction of traffic from input i to output j

0.1   0.2   0.2   0.4
0.2   0.3   0.1   0.1
1.0   0.0   0.0   0.0
0.1   0.4   0.3   0.1

For example:

Λ =

Note that the row (input) sum: ∑# 𝜆!,# ≤ 1 , ∀𝑖

Uniform Traffic Matrix:

Λ = 𝜆
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

𝑤ℎ𝑒𝑟𝑒: 	𝜆 ≤ 1/𝑁

#
!

𝜆!,# ≤ 1,∀𝑗

Total traffic rate to each 
output is ≤ 1 

𝑎𝑛𝑑	𝑠𝑡𝑖𝑙𝑙:*
!

𝜆",! ≤ 1 , ∀𝑖

Non-oversubscribed TM:



OQ Switches and “100% Throughput”

If we send traffic according to any non-over-subscribed 
traffic matrix to an OQ switch (with infinite buffers) then the 
output rates correspond to the column sums. 
i.e. The traffic rate at output 𝑗	 = 𝑅 ∑! 𝜆!,# ≤ 𝑅
Put another way, an OQ switch can “keep up” with any reasonable traffic matrix we throw at it.

We often say an OQ switch can “sustain 100% throughput”.

10

Q: What happens if the buffers are finite? 



An input-queued (IQ) switch
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Properties of an IQ switch
• All buffering takes place at the input.
• Input queues only need to be able to write 

packets at rate R (instead of N x R).

Consequences
• Can build a switch N times faster.
• But, a packet can be held up by packet 

ahead destined to a different output.
• Hence an IQ switch is not “work 

conserving”. It can unnecessarily idle.
• May not achieve “100% throughput”.
• Average delay is not minimized.



Head of Line Blocking
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Head of Line Blocking
IQ switch with uniform traffic matrix, 𝜆 ≤ 1

Load, 𝜆

Delay, d
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Poisson arrivals:
𝜆 ≤ 2 − 2 ≈ 58%	

Observation: HOL Blocking means we lose 
42% of the switching capacity
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Karol ‘87



What does the “58%” result mean?
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𝜆 𝜇R R

𝜆, 𝜇 ≤ 1

Arrival rate Departure rate

𝜆R R
Arrival rate Departure rate

OQ switch

𝜆 ≤ 0.58R R
Arrival rate Departure rate

IQ switch uniform TM, Poisson



Virtual Output Queues (VOQs)
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Basic idea

With a VOQ, a packet cannot be held up by a packet in 
front of it, destined to a different output.

Q: With VOQs, does/can 58% become 100% throughput?
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𝜆 ≤ 0.58R R
Arrival rate Departure rate

IQ switch uniform TM, Poisson

? 𝜆R R
Arrival rate Departure rate

IQ switch with VOQs
Any TM, Any arrivals



100% Throughput

Reminder: “100% throughput” is equivalent to 
For a non over-subscribing traffic matrix, queues 
don’t grow without bound. 
i.e. 𝜇 ≥ 𝜆	for every queue in the system.

Observations: 
1. Burstiness of arrivals does not affect throughput
2. For a uniform Traffic Matrix, solution is trivial!

18



An input-queued (IQ) switch
with VOQs and a crossbar
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equivalent to choosing a permutation. 
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N2 VOQs 

crossbar

bipartite
request
graph

bipartite
match

e.g. “maximum size match”
aka “maximum cardinality match”



Crossbar schedule
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crossbar

Fixed cycle of permutations: 

crossbarcrossbar crossbar

≤
𝜆
𝑁 R

1
𝑁 R

𝜆 ≤ 1, therefore 
arrival rate ≤ departure rate.
True for all VOQs, therefore

100% throughput for uniform TM
uniform TM schedule



100% throughput for uniform traffic

Four (trivial) algorithms for a uniform traffic matrix:
1. Cycle through permutations in “round-robin” (i.e. previous slide).
2. Each time, randomly pick one of the permutations in (1).
3. Each time, pick a permutation uniformly and at random from all 

possible N! permutations.
4. Wait until all VOQs are non-empty, then pick any algorithm above.
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Quick recap so far



An input-queued (IQ) switch
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Properties of an IQ switch
• All buffering takes place at the input.
• Input queues only need to be able to write 

packets at rate R (instead of N x R).

Consequences
• Can build a switch N times faster.
• HOL Blocking: a packet can be held up by 

packet ahead destined to a different output.
• Hence an IQ switch is not “work 

conserving”. It can unnecessarily idle.
• May not achieve “100% throughput”.
• Average delay is not minimized.
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Head of Line Blocking
IQ switch with uniform traffic matrix, 𝜆 ≤ 1

Load, 𝜆

Delay, d

10 0.5
3/2

0.75

5/2

Poisson arrivals:

𝐸 𝑑 =
1
2
2 − 𝜆
1 − 𝜆

O
Q

 S
w

itc
h

0.58

Poisson arrivals:
𝜆 ≤ 2 − 2 ≈ 58%	

Observation: HOL Blocking means we lose 
42% of the switching capacity

IQ
 S

w
itc

h

Karol ‘87



100% throughput easy for uniform traffic

Four (trivial) algorithms for a uniform traffic matrix:
1. Cycle through permutations in “round-robin”.
2. Each time, randomly pick one of the permutations in (1).
3. Each time, pick a permutation uniformly and at random from all 

possible N! permutations.
4. Wait until all VOQs are non-empty, then pick any algorithm above.
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Q: So why did the authors need Parallel 
Iterative Matching (PIM)?

Because in practice, arrivals are not uniform.
(If we know the matrix, we can still create a cycle of permutations to 

serve every VOQ at the rate in the traffic matrix).
In practice we don’t know the traffic matrix.

Hence, PIM….



Parallel Iterative Matching
A maximal bipartite match
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Q: Are we done?
Q: Is a larger match possible?



PIM Properties

1. Inputs and outputs make decisions independently and in parallel.
2. Guaranteed to find a maximal match in at most N iterations.
3. Typically completes in much fewer than N iterations.

A maximal match is guaranteed to be at least half the cardinality 
(size) of a maximum match.

Q: How large is a maximal match compared to a maximum match?

Q: Uh-oh, does that mean throughput is limited to 50%??



Parallel Iterative Matching
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Uniform traffic matrix
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Parallel Iterative Matching
PIM with 

one iteration
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Parallel Iterative Matching

Simulation
16-port switch

Uniform traffic matrix

PIM with 
four iterations
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one iteration



How many PIM iterations should be run?



Parallel Iterative Matching
Number of iterations

Consider the n requests to output j
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Known methods for non-uniform traffic

1. 100% throughput is now known to be theoretically possible with:
- IQ switch, with VOQs, and
- An arbiter to pick a permutation to maximize 

the total matching weight (e.g. weight is VOQ  occupancy)

35M, Walrand and Anantharam, 1996
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“maximum WEIGHT match”

crossbar

Observation: give preference to longer VOQs
Leads to 100% throughput for any traffic matrix.

𝐿!,# = 3

Choose matching 𝑀
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Known methods for non-uniform traffic

2. It is practically possible with:
- IQ switch, VOQs, all running twice as fast (i.e. choose and 

transfer two cells per cell time)
- An arbiter running a maximal match (e.g. PIM)
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Intuition: Because maximal match is at least half the size of a 
maximum match, running twice as fast compensates for it.

Dai and Prabhakar, 2000



Known methods for non-uniform traffic

3.  2 switch stages with a fixed schedule of permutations! 

38C-S Chang, 2001



A 2-stage “Valiant” Load-balancing switch
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A 2-stage “Valiant” Load-balancing switch
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Deceptively simple but works for non-uniform traffic!
Q: Where is the switching taking place?
Q: Can packets be mis-sequenced?
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