

CS244

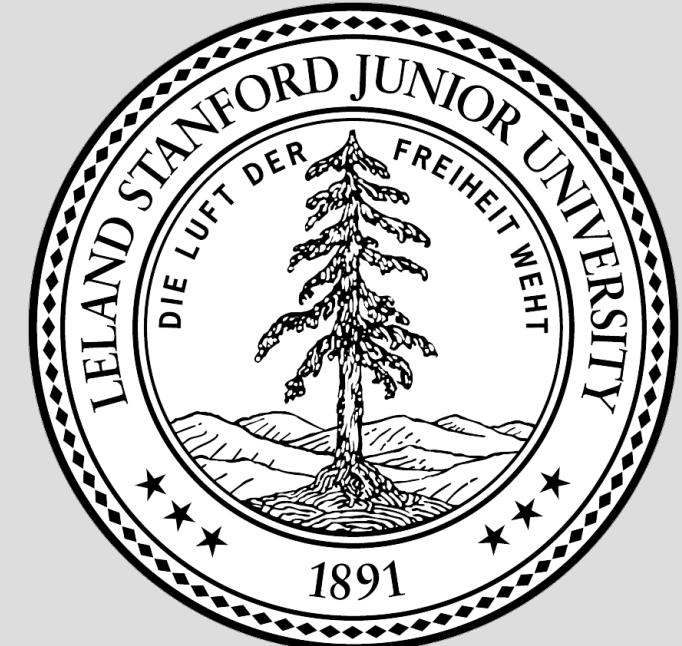
Advanced Topics in Networking

Switching

Nick McKeown

“High-speed switch scheduling for local-area networks”

[Tom Anderson, Susan Owicki, James Saxe, Chuck Thacker. 1993]



Spring 2025

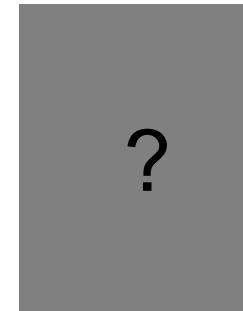
Context

Tom Anderson

At the time: DEC SRC (Palo Alto)
Professor of CS, University of Washington
Previously: UC Berkeley, EECS

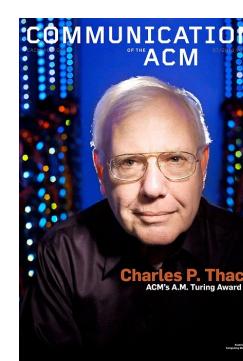
Susan Owicki

At the time: DEC SRC (Palo Alto)
Before that: Prof of EE & CS, Stanford
Today: Marriage and Family Therapist, Palo Alto



James B. Saxe

At the time: DEC SRC (Palo Alto)
After that: Compaq and HP Labs



Chuck Thacker (d. 2017)

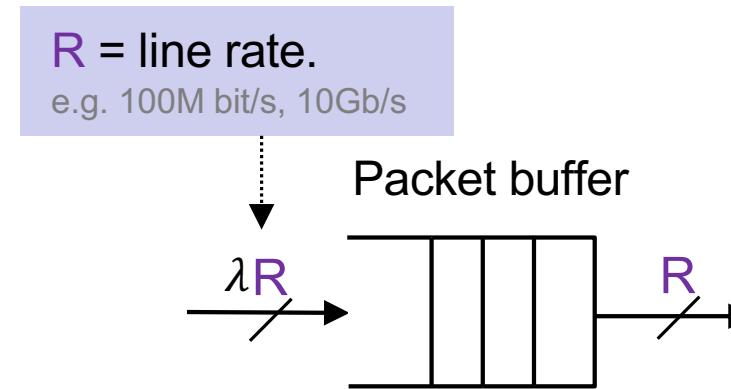
At the time: DEC SRC (Palo Alto)
Before that: Xerox PARC ("Alto")
After that: Microsoft
2010 Turing Award Winner

At the time the paper was written...

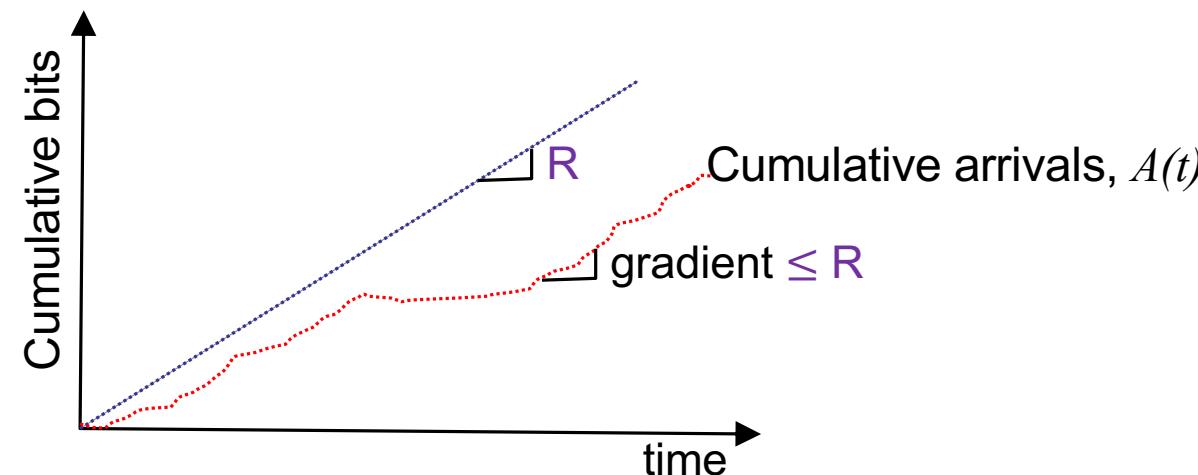
- WWW was new, and Internet traffic was growing fast
- Fastest Ethernet networks ran at 100Mb/s
- Lots of interest in building faster switches and routers
- Lively debate about an alternative to the Internet, called “ATM”

But first...

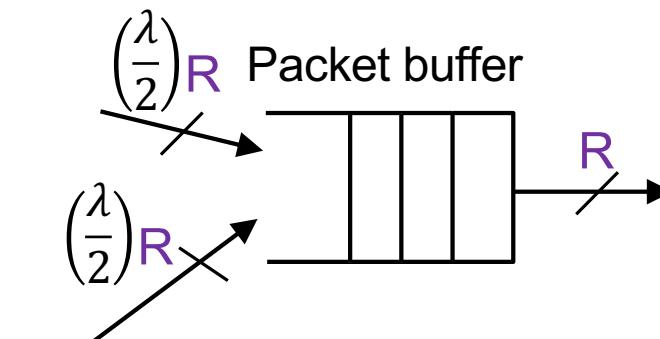
A few words about packet queues...



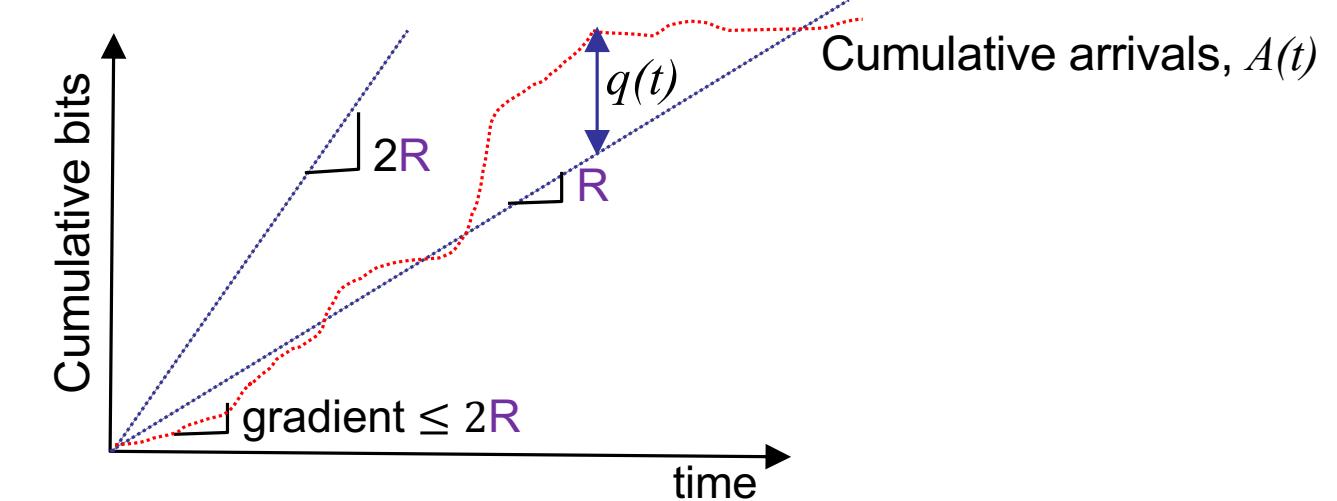
Q: For any “load” $\lambda \leq 1$, what arrival pattern leads to the most customers in the queue?



Observation: With one arrival “line” at the same rate, the queue is always empty (or at most one store-and-forward packet). The arrival process is deterministically “bounded” by R .

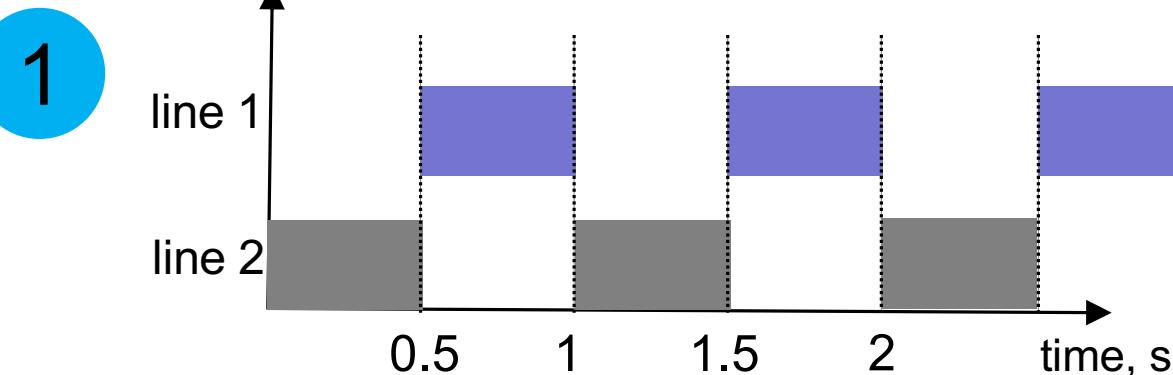


Q: For any “load” $\lambda \leq 1$, what arrival pattern leads to the most customers in the queue?

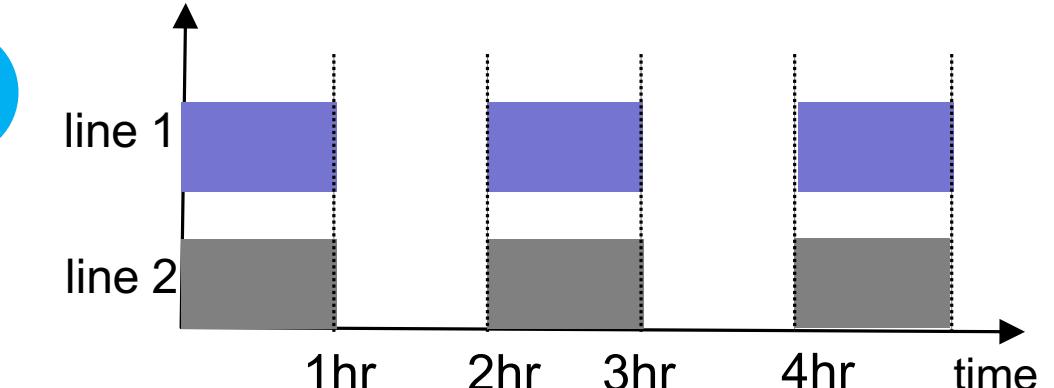


Observation: The arrival rate is “bounded” by R on average. Instantaneously, it can reach $2R$. The queue size is unbounded.

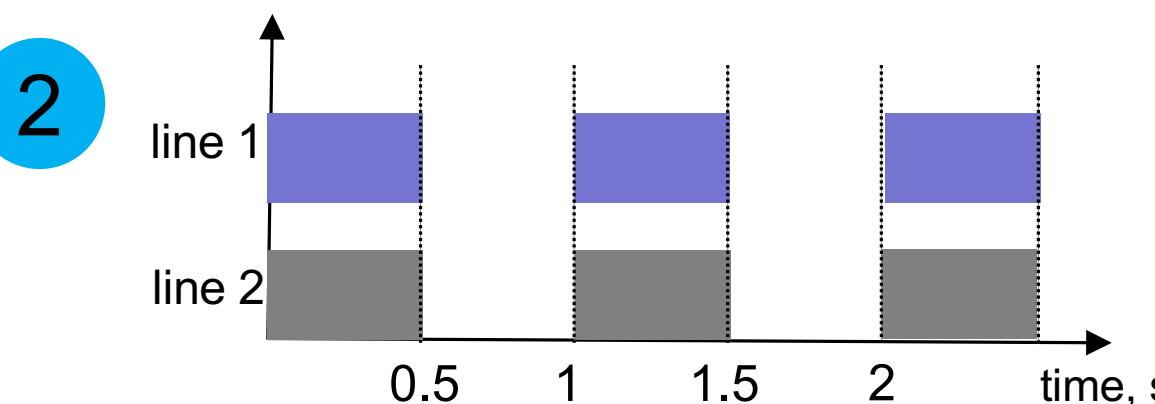
Different cases for $\lambda = 1$



Q: How big does the buffer need to be?



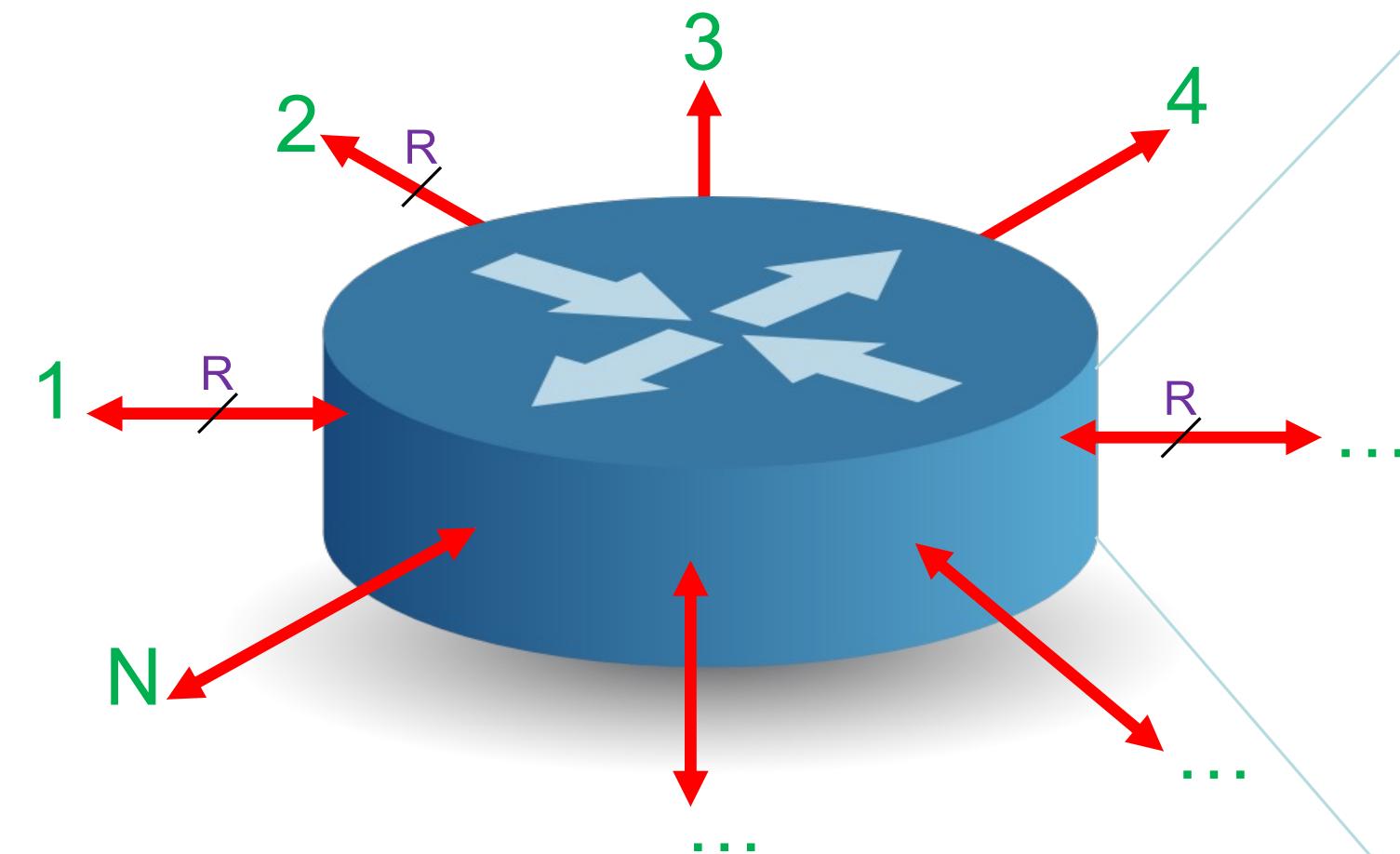
Q: How big does the buffer need to be?



Q: How big does the buffer need to be?

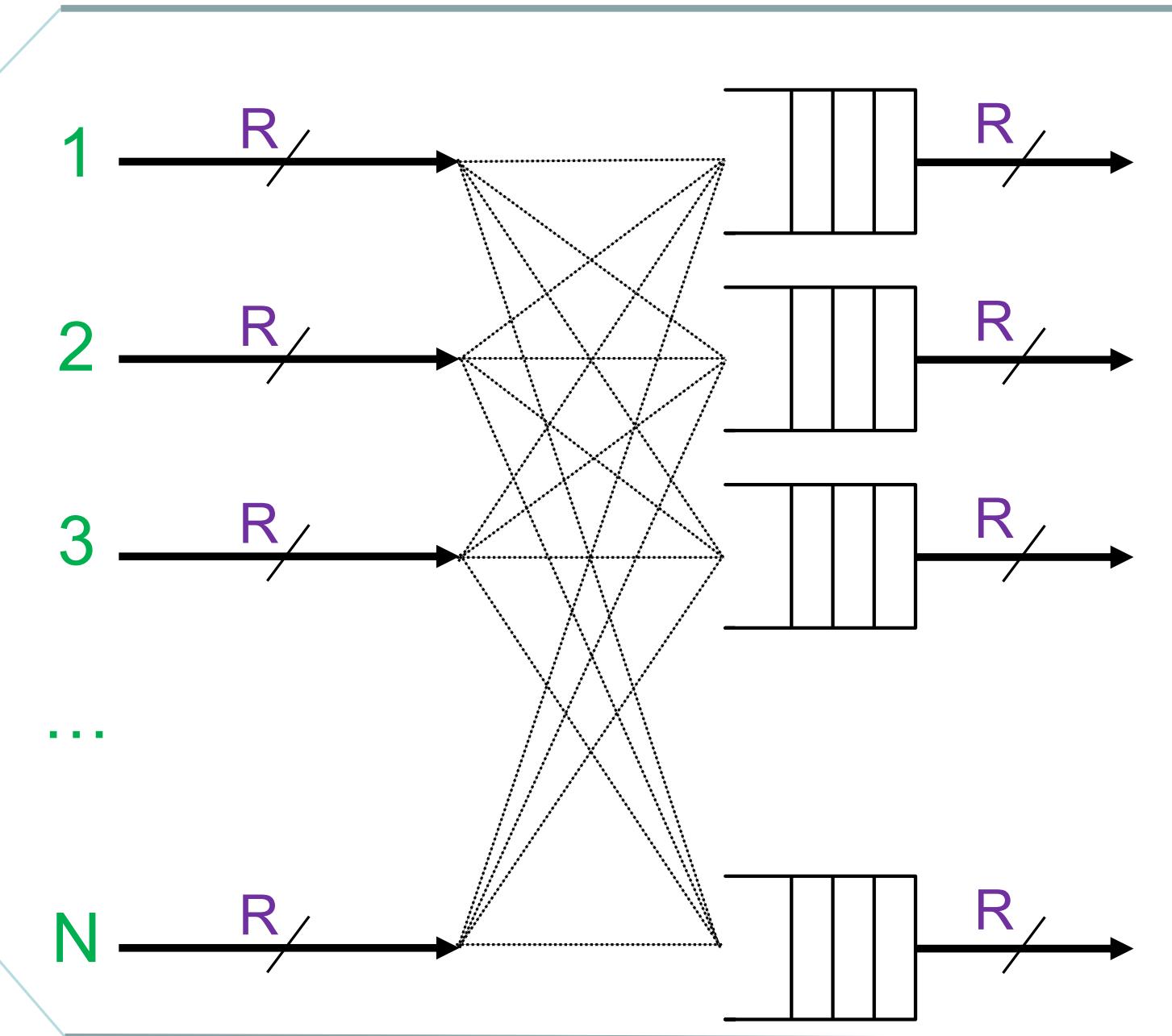
Observation: For a given arrival rate, in order to know the queueing delay, we need to know the pattern (or “process”) of arrivals.

Background



A switch, or router, with N “ports”.
Each port runs at rate R b/s.

We say the “switching capacity” is $N \times R$ b/s.



You said...

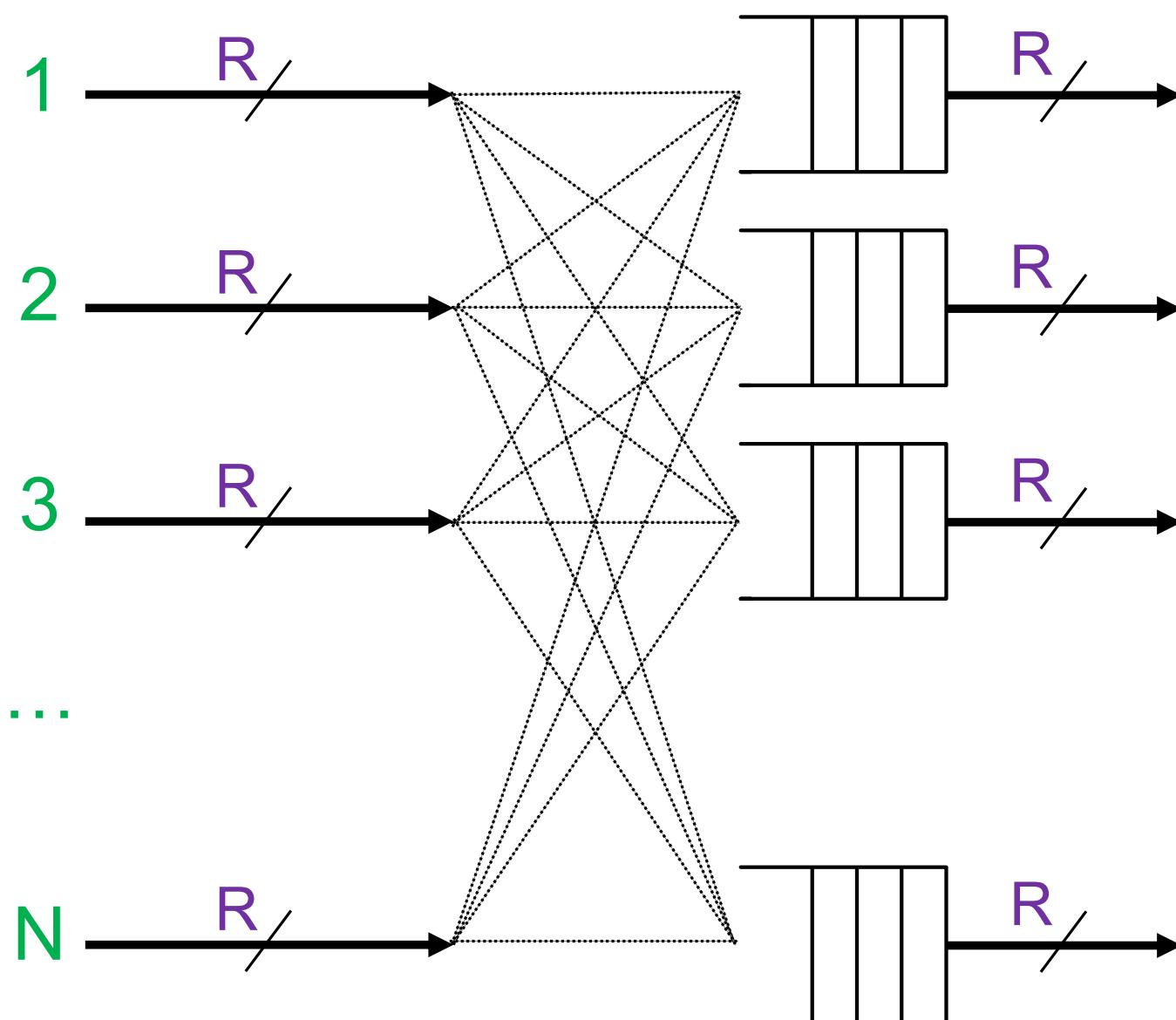
Onkar Deshpande

While the scheduling algorithms are novel and theoretically sound, **certain assumptions now seem outdated**. The **use of fixed-length cells**, for instance, appears less relevant in modern networks where packet sizes vary widely. Modern datacenter traffic includes a mix of full-MTU packets (often 1500 bytes) and much smaller control packets.

Hannah Dunn

The authors' evaluation seemed unbiased and sound, though I did wonder about the phrase, "this leads to latency bounds that seem acceptable for multimedia applications," because **to whom do these bounds "seem" acceptable?**

An output-queued (OQ) switch



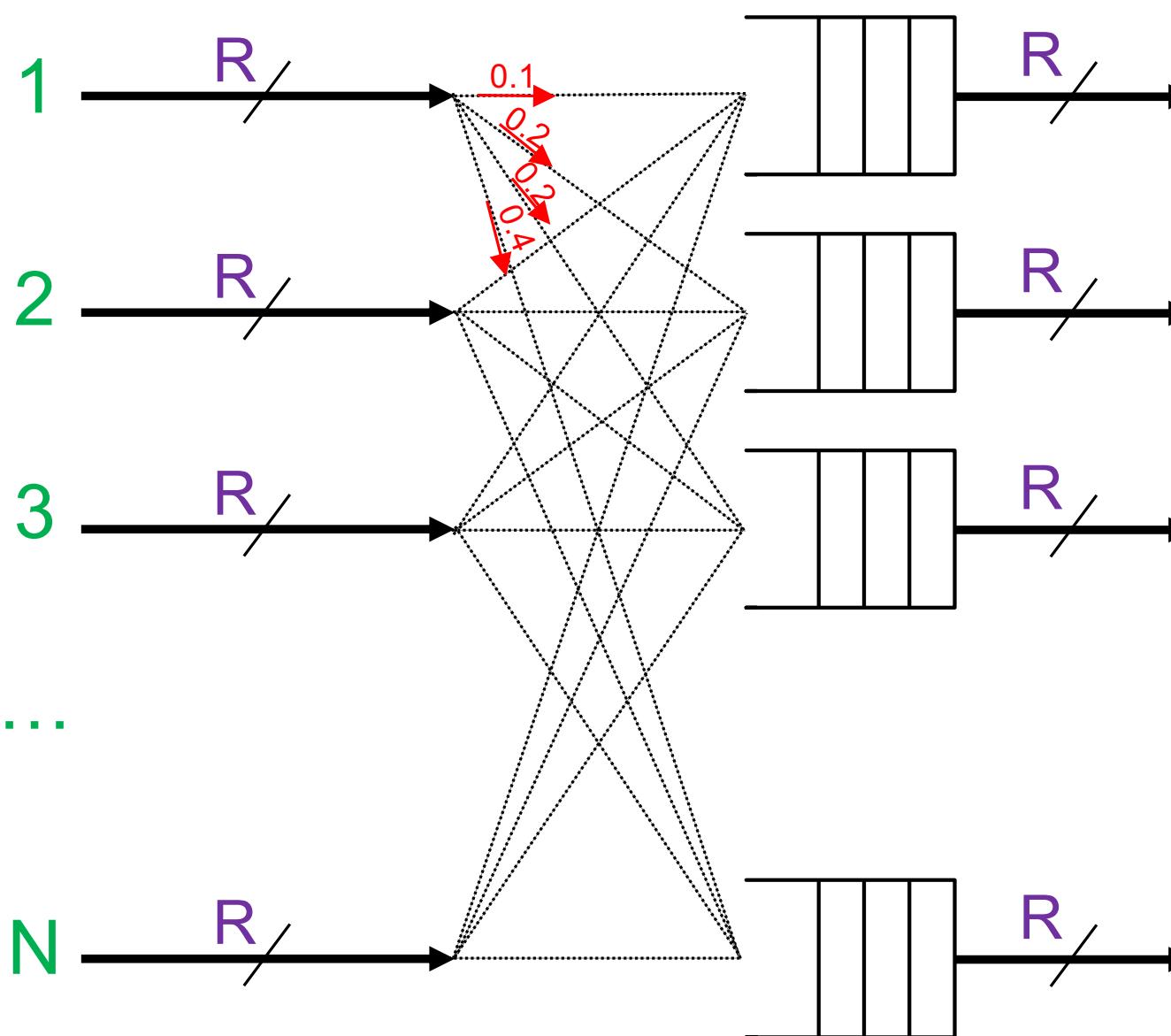
Properties of an OQ switch

- All buffering takes place at the output.
- Output queues must be able to write packets at rate $N \times R$.

Consequences

- “Work conserving”: Whenever there is a packet in the system, its output is busy sending a packet. No unnecessary idling.
- Average delay is minimized.
- But memory bandwidth limits the switching capacity.

Traffic Matrix



Traffic matrix, $\Lambda = [\lambda_{i,j}]$

$\lambda_{i,j}$ is the fraction of traffic from input i to output j

For example:

$$\Lambda = \begin{bmatrix} 0.1 & 0.2 & 0.2 & 0.4 \\ 0.2 & 0.3 & 0.1 & 0.1 \\ 1.0 & 0.0 & 0.0 & 0.0 \\ 0.1 & 0.4 & 0.3 & 0.1 \end{bmatrix}$$

Note that the row (input) sum: $\sum_j \lambda_{i,j} \leq 1, \forall i$

Non-oversubscribed TM:

Total traffic rate to each output is ≤ 1

$$\sum_i \lambda_{i,j} \leq 1, \forall j$$

$$\text{and still: } \sum_j \lambda_{i,j} \leq 1, \forall i$$

Uniform Traffic Matrix:

$$\Lambda = \lambda \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

where: $\lambda \leq 1/N$

OQ Switches and “100% Throughput”

If we send traffic according to any non-over-subscribed traffic matrix to an OQ switch (*with infinite buffers*) then the output rates correspond to the column sums.

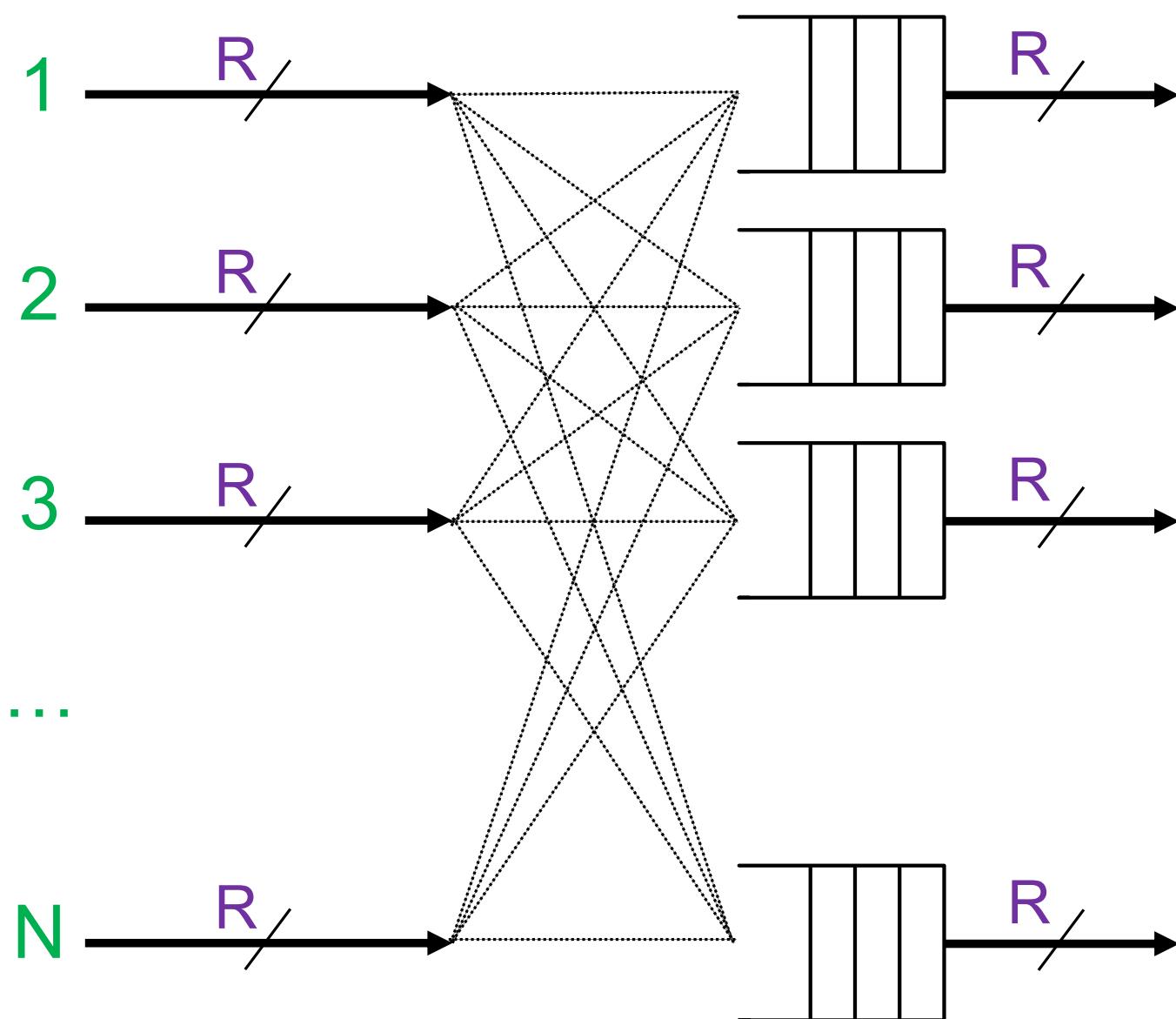
i.e. The traffic rate at output j = $R \sum_i \lambda_{i,j} \leq R$

Put another way, an OQ switch can “keep up” with any reasonable traffic matrix we throw at it.

We often say an OQ switch can “sustain 100% throughput”.

Q: What happens if the buffers are finite?

An input-queued (IQ) switch



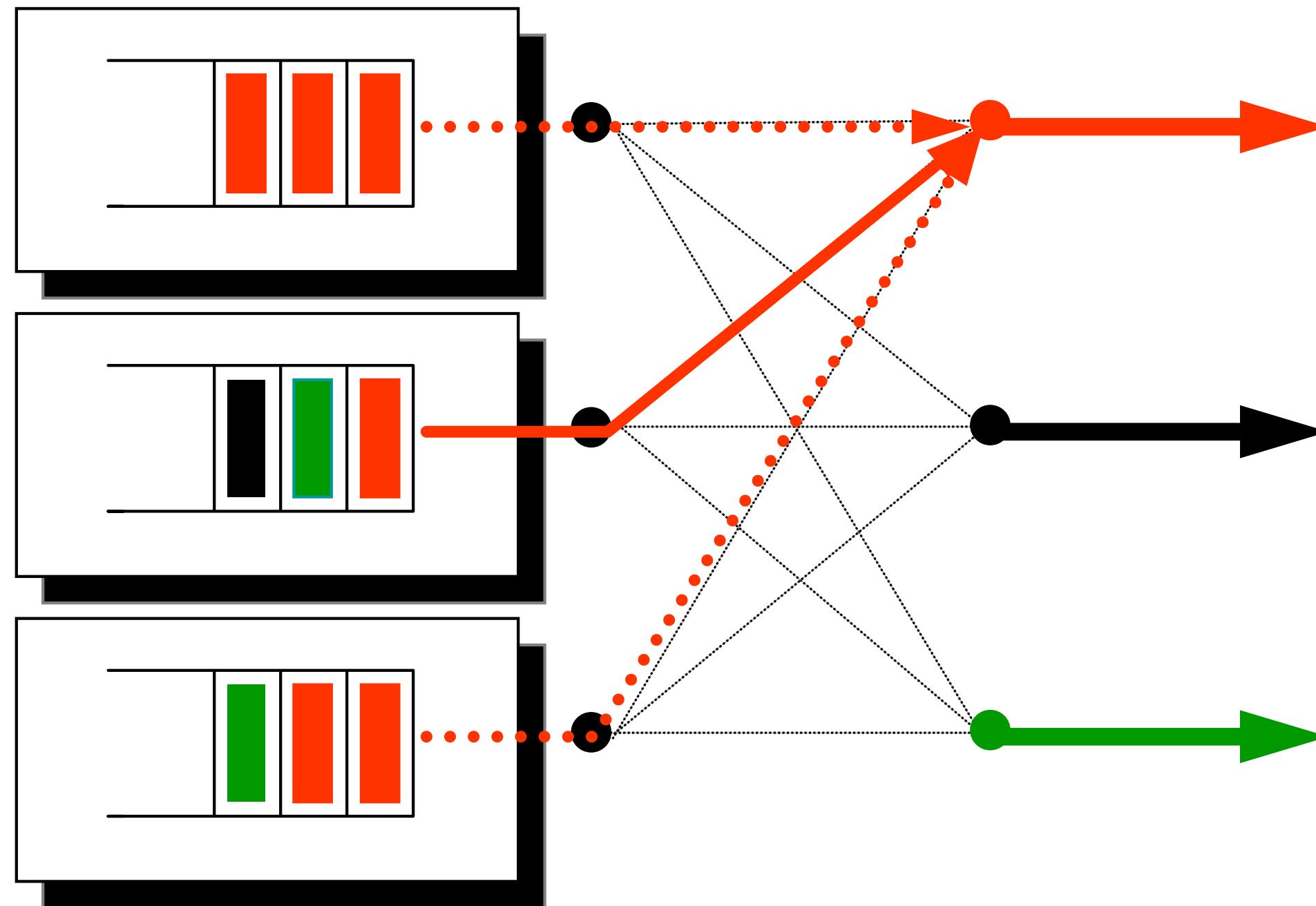
Properties of an IQ switch

- All buffering takes place at the input.
- Input queues only need to be able to write packets at rate R (instead of $N \times R$).

Consequences

- Can build a switch N times faster.
- But, a packet can be held up by packet ahead destined to a different output.
- Hence an IQ switch is not “work conserving”. It can unnecessarily idle.
- May not achieve “100% throughput”.
- Average delay is not minimized.

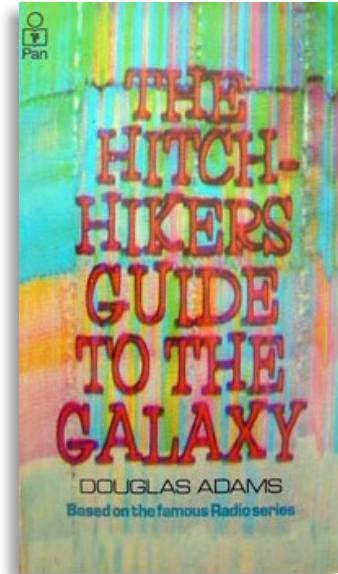
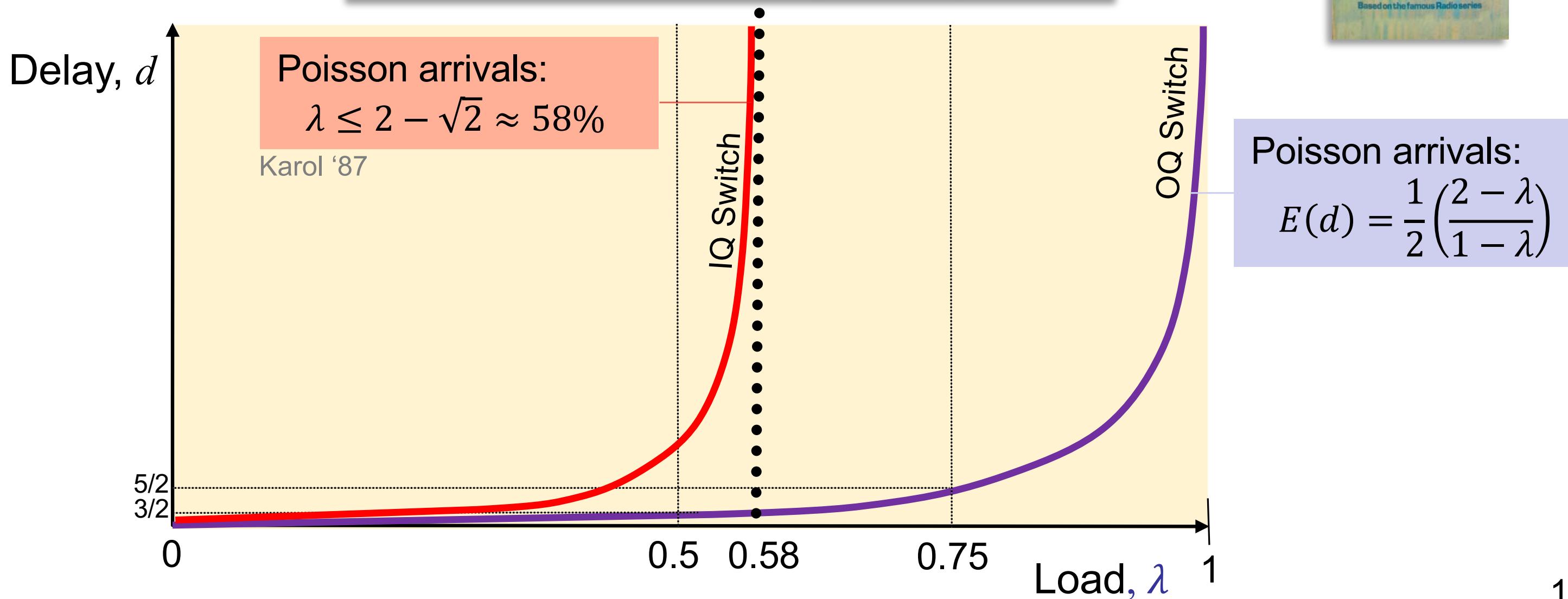
Head of Line Blocking



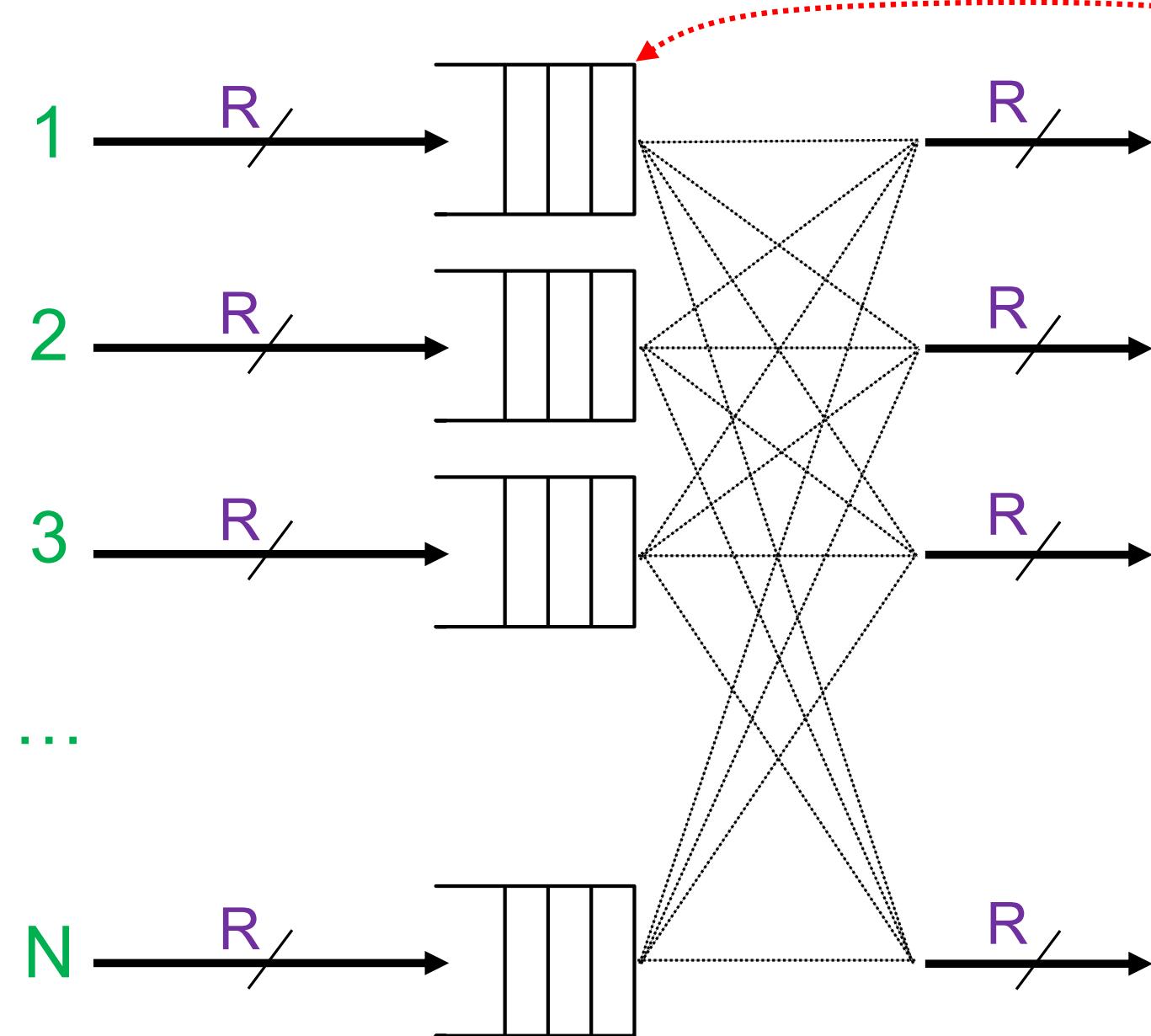
Head of Line Blocking

IQ switch with uniform traffic matrix, $\lambda \leq 1$

Observation: HOL Blocking means we lose 42% of the switching capacity



What does the “58%” result mean?



Arrival rate λR Departure rate μR

$$\lambda, \mu \leq 1$$

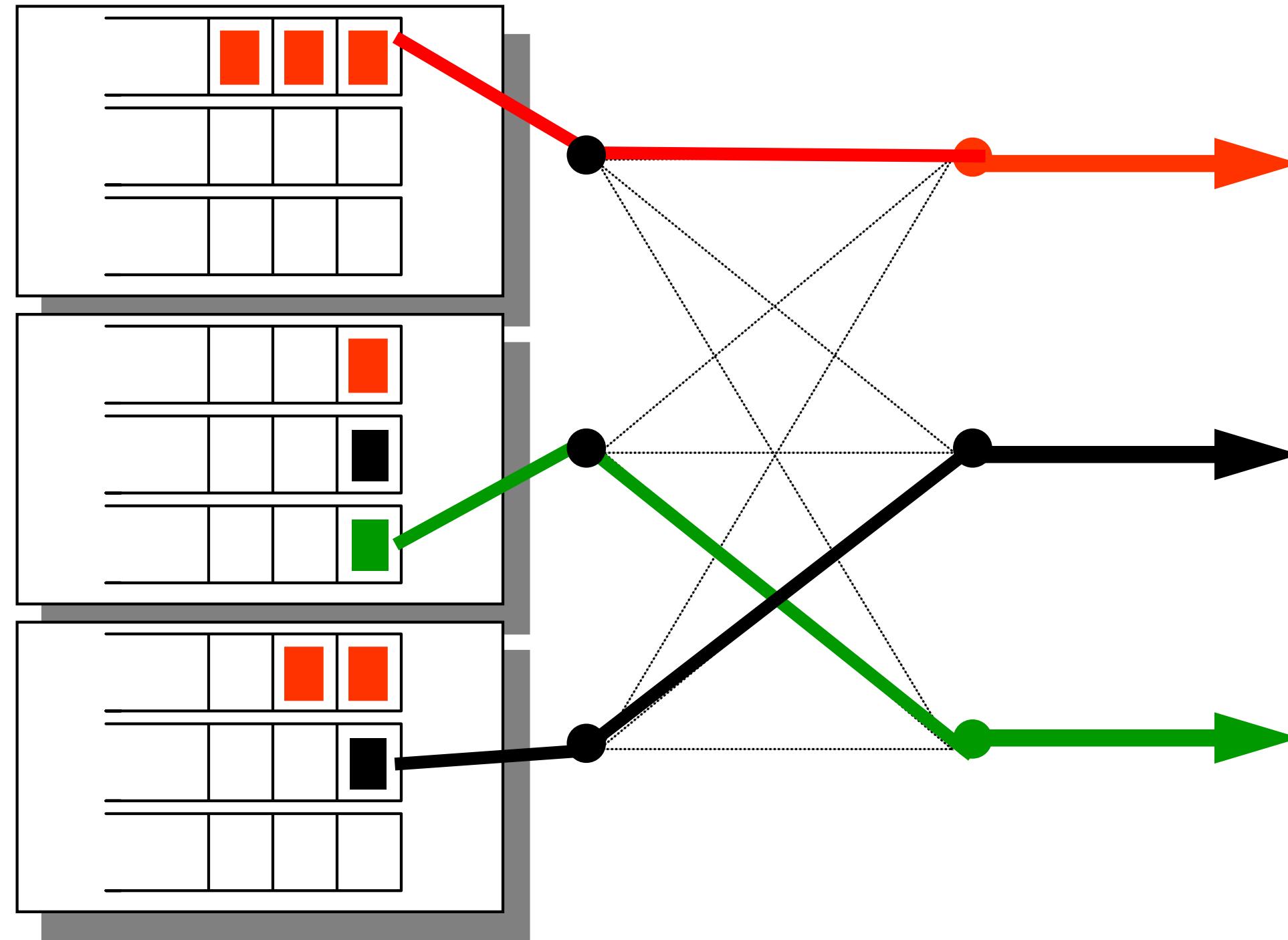
OQ switch

Arrival rate λR Departure rate R

IQ switch uniform TM, Poisson

Arrival rate λR Departure rate $\leq 0.58R$

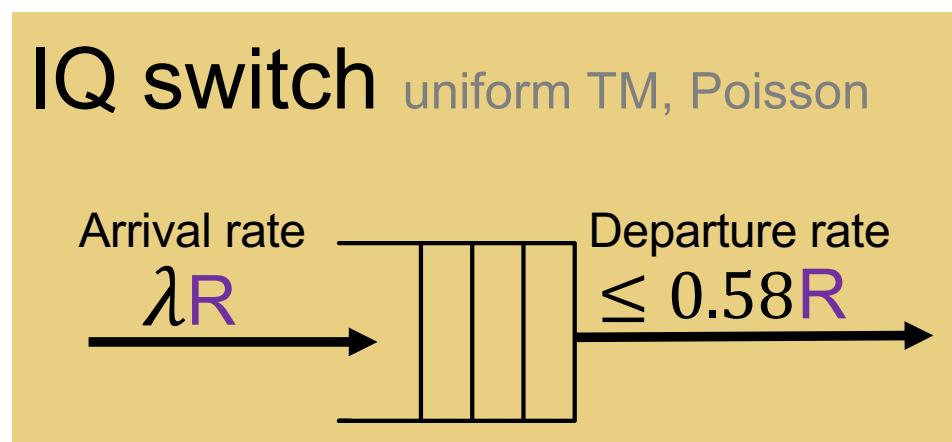
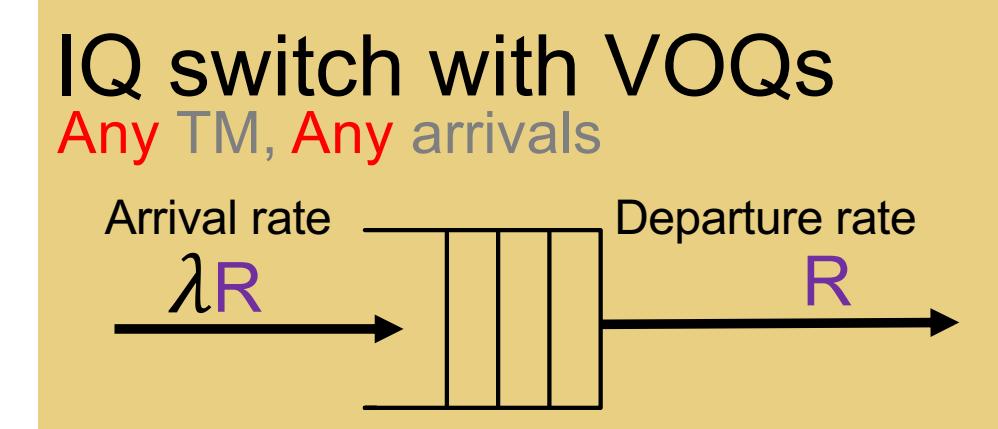
Virtual Output Queues (VOQs)



Basic idea

With a VOQ, a packet cannot be held up by a packet in front of it, destined to a different output.

Q: With VOQs, does/can 58% become 100% throughput?



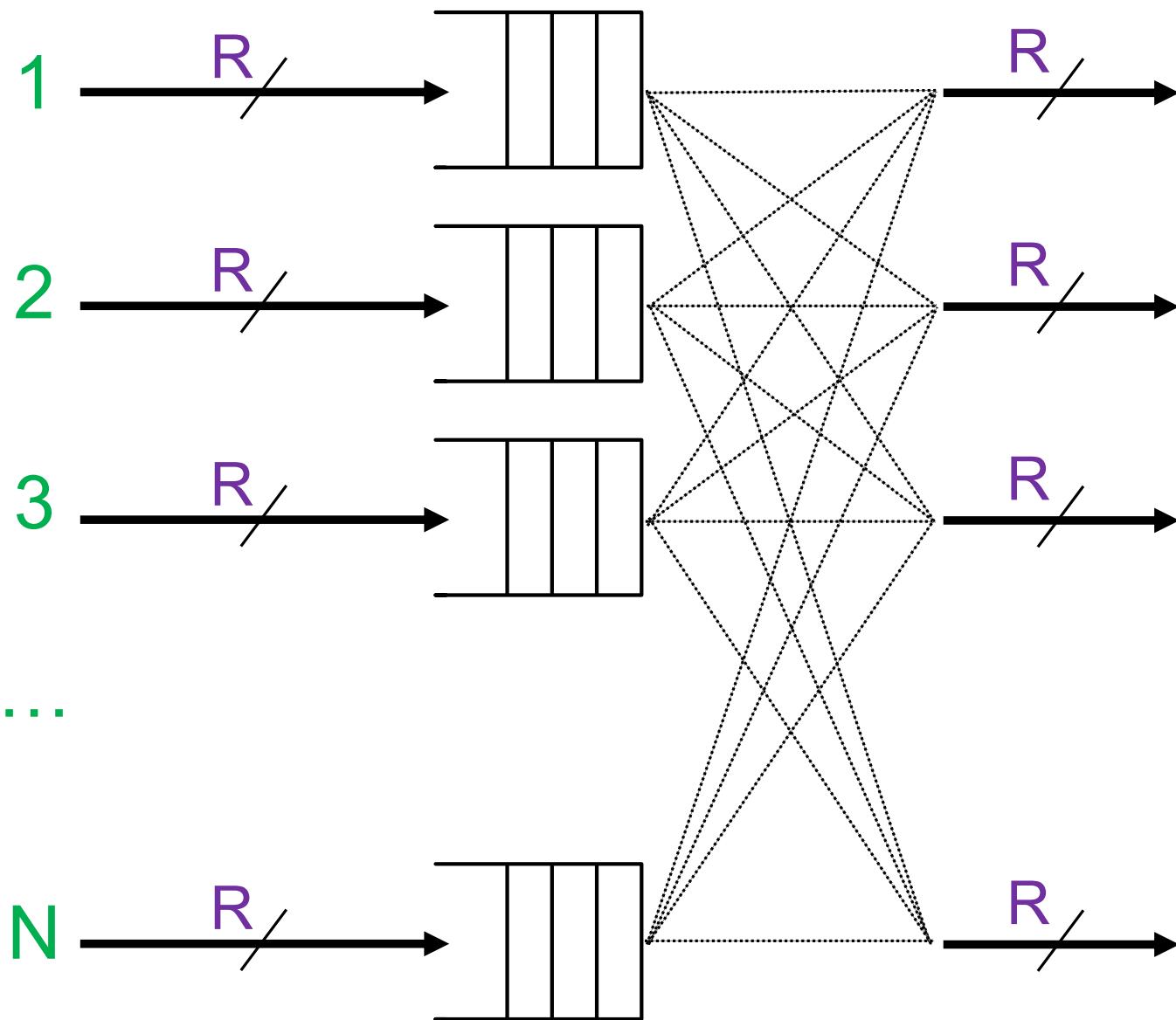
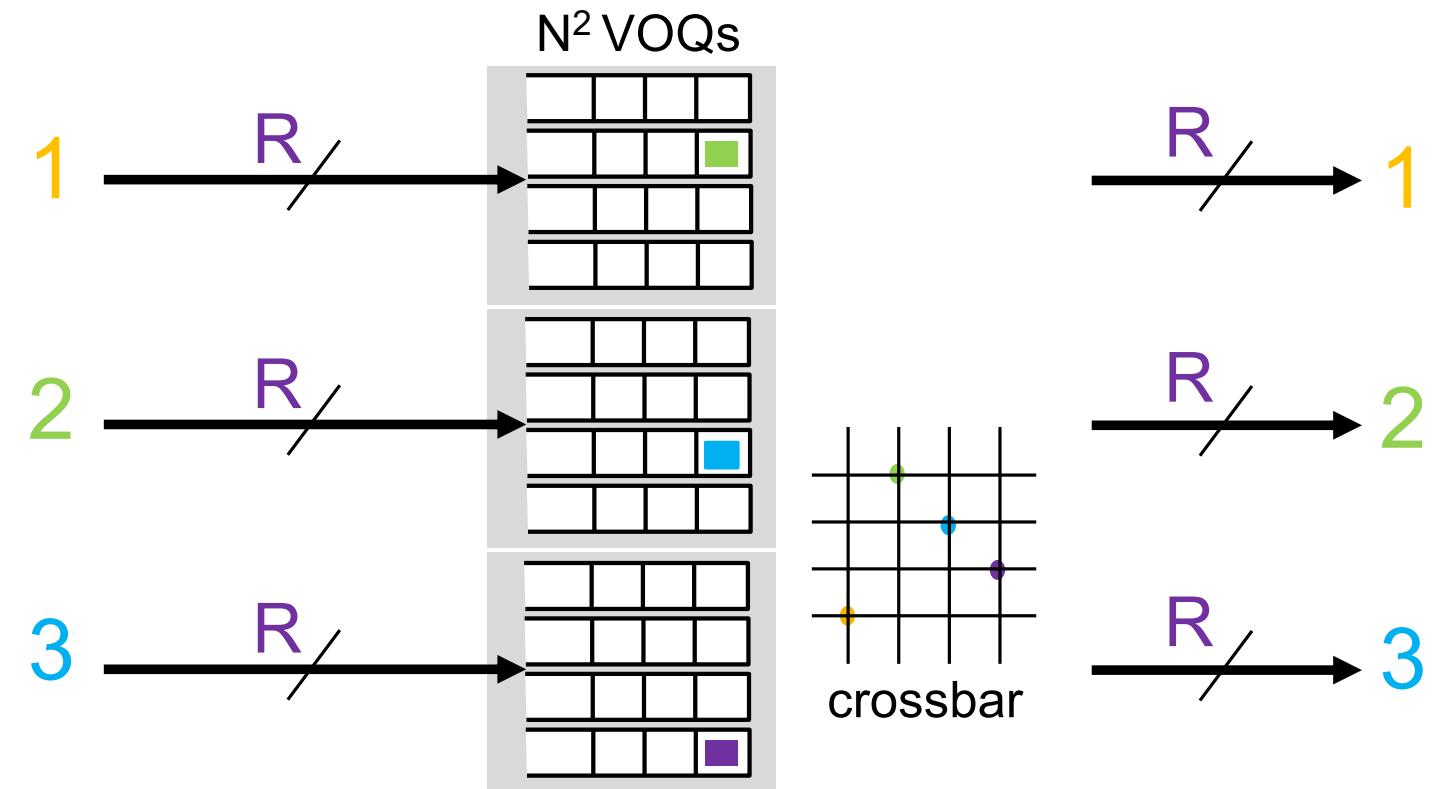
100% Throughput

Reminder: “100% throughput” is equivalent to
For a non over-subscribing traffic matrix, queues
don’t grow without bound.
i.e. $\mu \geq \lambda$ for every queue in the system.

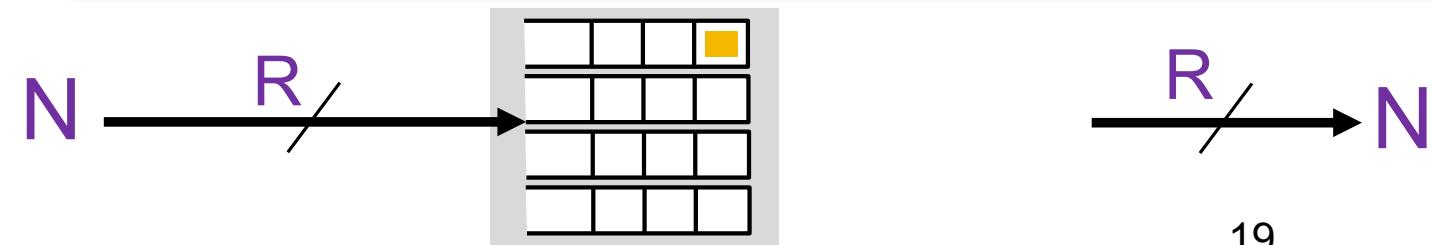
Observations:

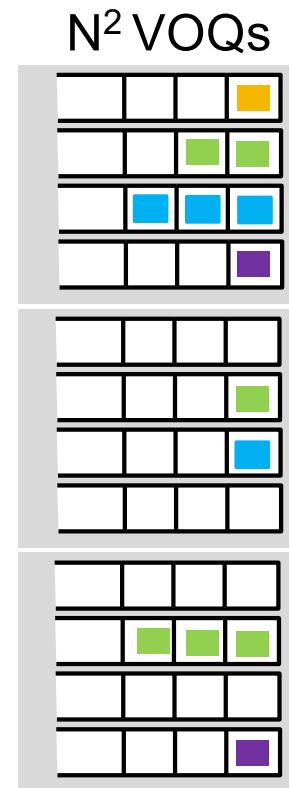
1. Burstiness of arrivals does not affect throughput
2. For a uniform Traffic Matrix, solution is trivial!

An input-queued (IQ) switch with VOQs and a crossbar

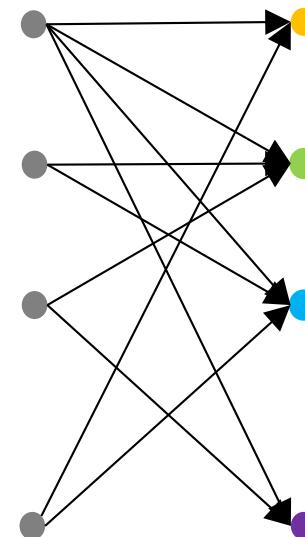


Observation: scheduling is equivalent to choosing a permutation.

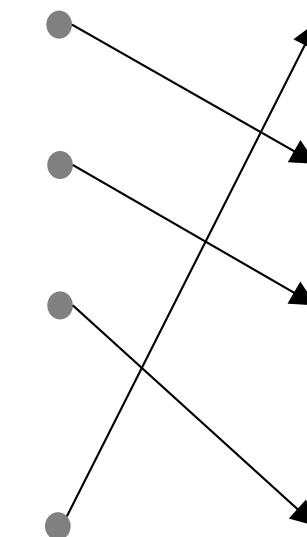
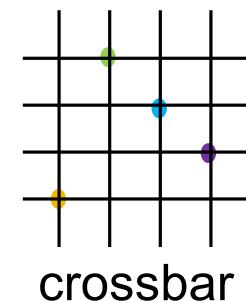
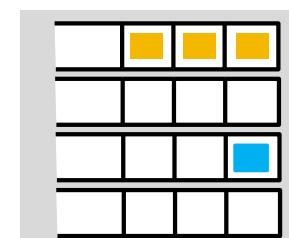




bipartite
request
graph



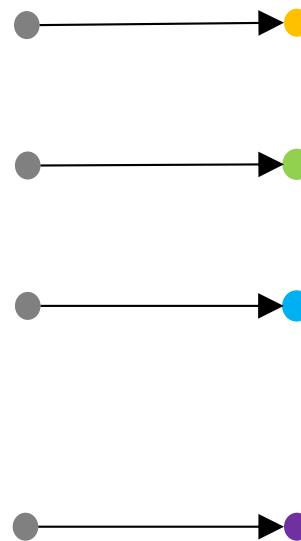
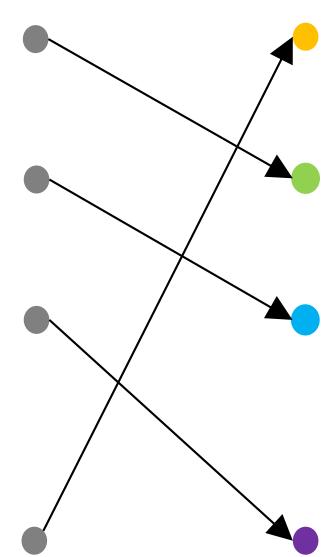
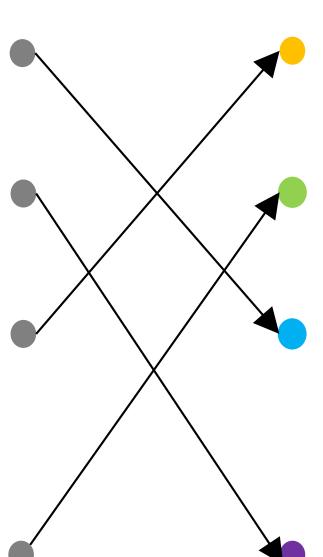
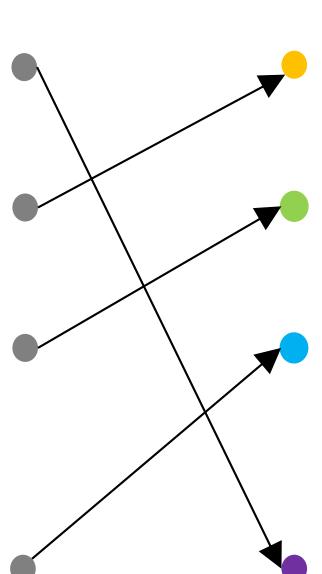
bipartite
match



e.g. “maximum size match”
aka “maximum cardinality match”

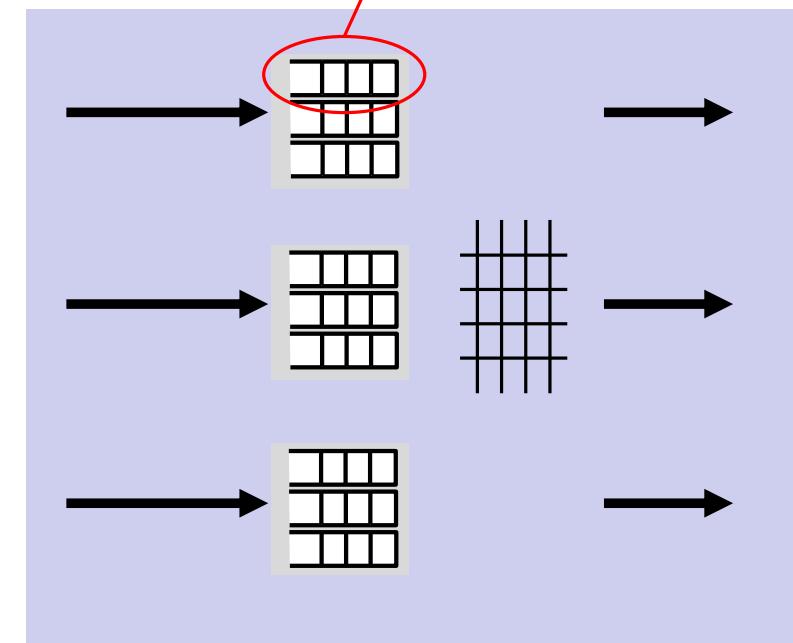
Crossbar schedule

Fixed cycle of permutations:



$\lambda \leq 1$, therefore
arrival rate \leq departure rate.
True for all VOQs, therefore
100% throughput for uniform TM

uniform TM $\leq \left(\frac{\lambda}{N}\right)R$ $\left(\frac{1}{N}\right)R$ schedule



crossbar

crossbar

crossbar

crossbar

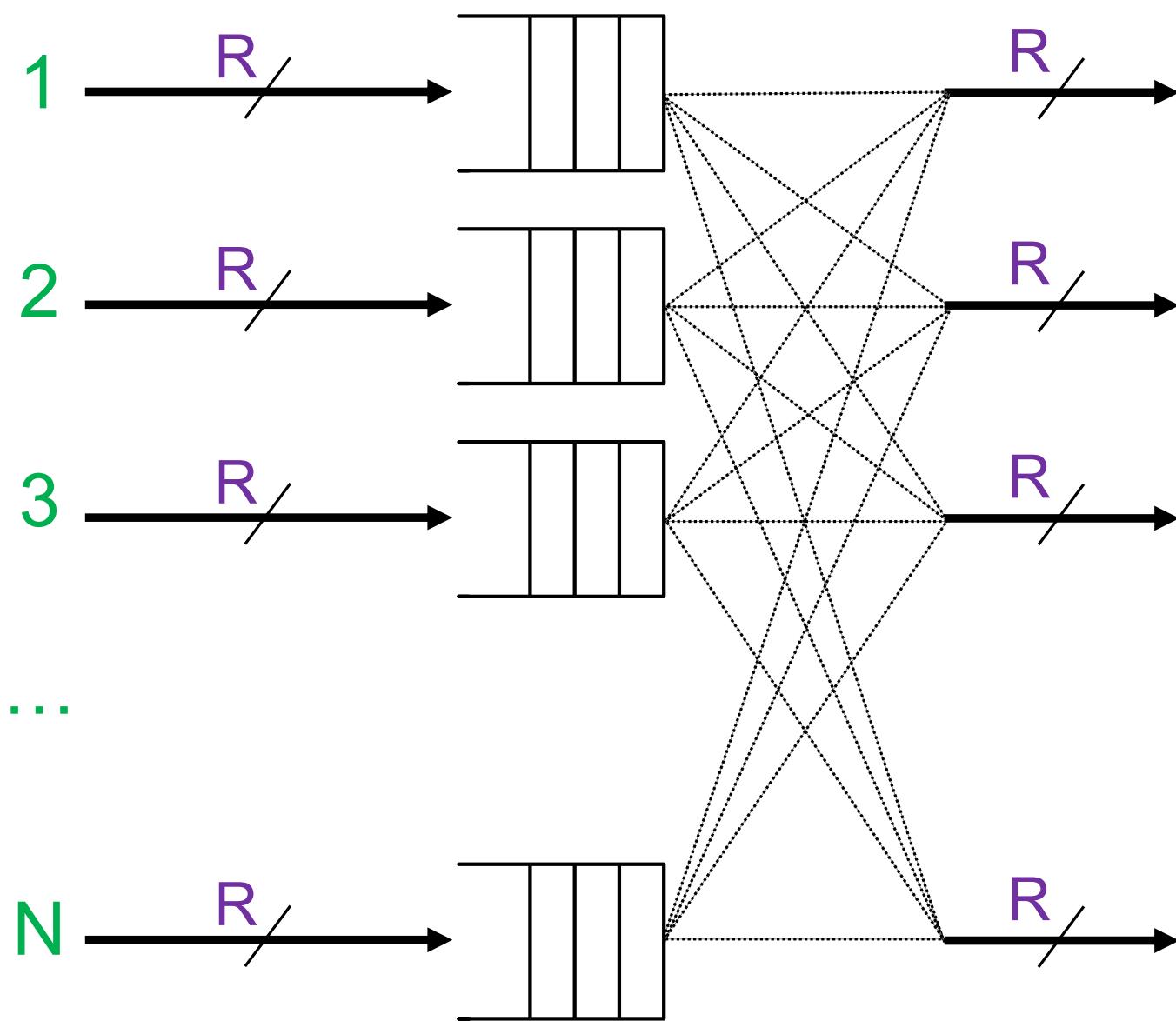
100% throughput for uniform traffic

Four (trivial) algorithms for a uniform traffic matrix:

1. Cycle through permutations in “round-robin” (i.e. previous slide).
2. Each time, randomly pick one of the permutations in (1).
3. Each time, pick a permutation uniformly and at random from all possible $N!$ permutations.
4. Wait until all VOQs are non-empty, then pick any algorithm above.

Quick recap so far

An input-queued (IQ) switch



Properties of an IQ switch

- All buffering takes place at the input.
- Input queues only need to be able to write packets at rate R (instead of $N \times R$).

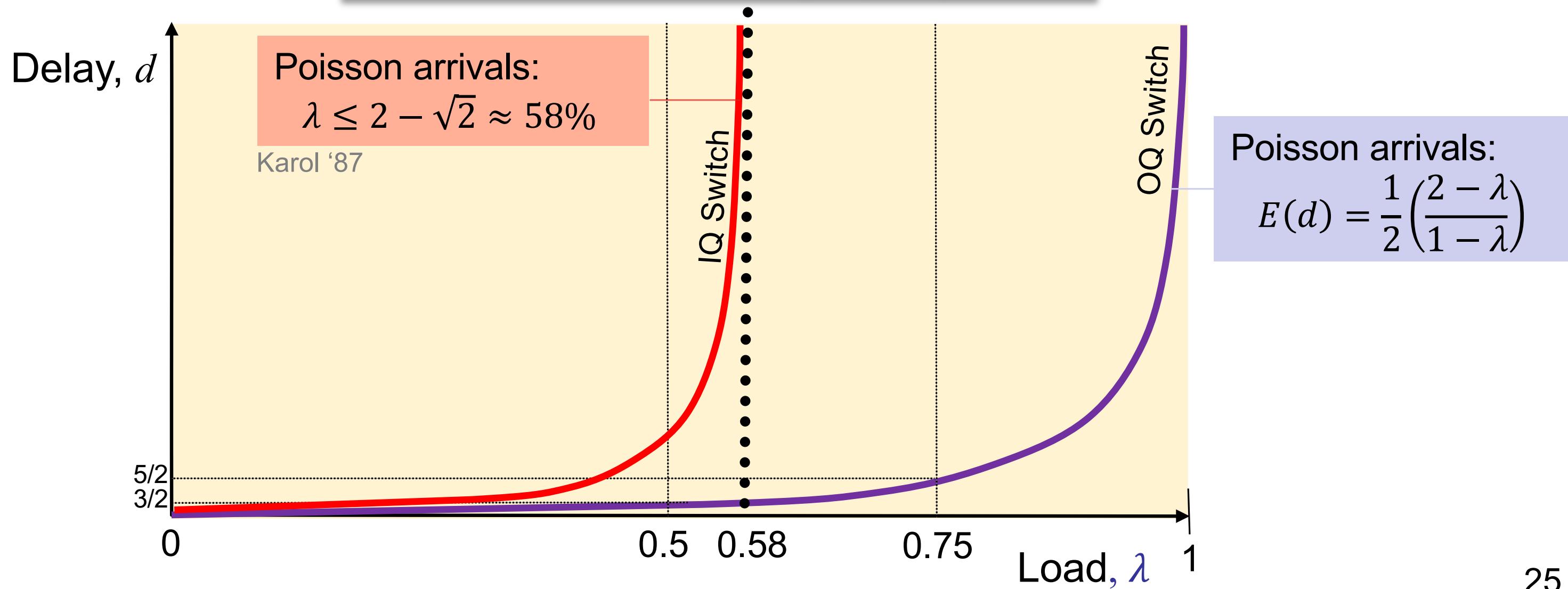
Consequences

- Can build a switch N times faster.
- HOL Blocking: a packet can be held up by a packet ahead destined to a different output.
- Hence an IQ switch is not “work conserving”. It can unnecessarily idle.
- May not achieve “100% throughput”.
- Average delay is not minimized.

Head of Line Blocking

IQ switch with uniform traffic matrix, $\lambda \leq 1$

Observation: HOL Blocking means we lose 42% of the switching capacity



100% throughput easy for uniform traffic

Four (trivial) algorithms for a uniform traffic matrix:

1. Cycle through permutations in “round-robin”.
2. Each time, randomly pick one of the permutations in (1).
3. Each time, pick a permutation uniformly and at random from all possible $N!$ permutations.
4. Wait until all VOQs are non-empty, then pick any algorithm above.

Q: So why did the authors need Parallel Iterative Matching (PIM)?

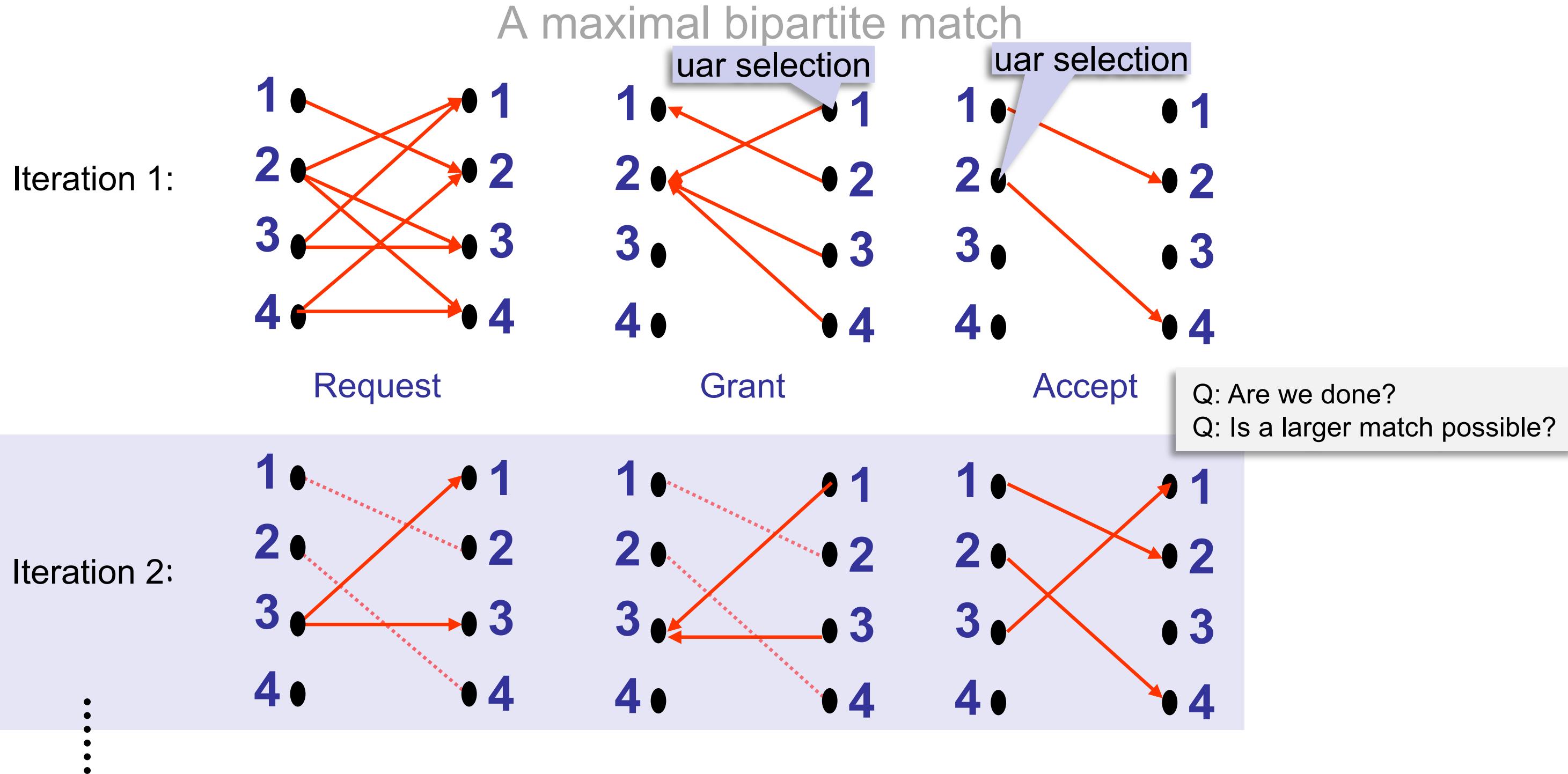
Because in practice, arrivals are not uniform.

(If we know the matrix, we can still create a cycle of permutations to serve every VOQ at the rate in the traffic matrix).

In practice we don't know the traffic matrix.

Hence, PIM....

Parallel Iterative Matching



PIM Properties

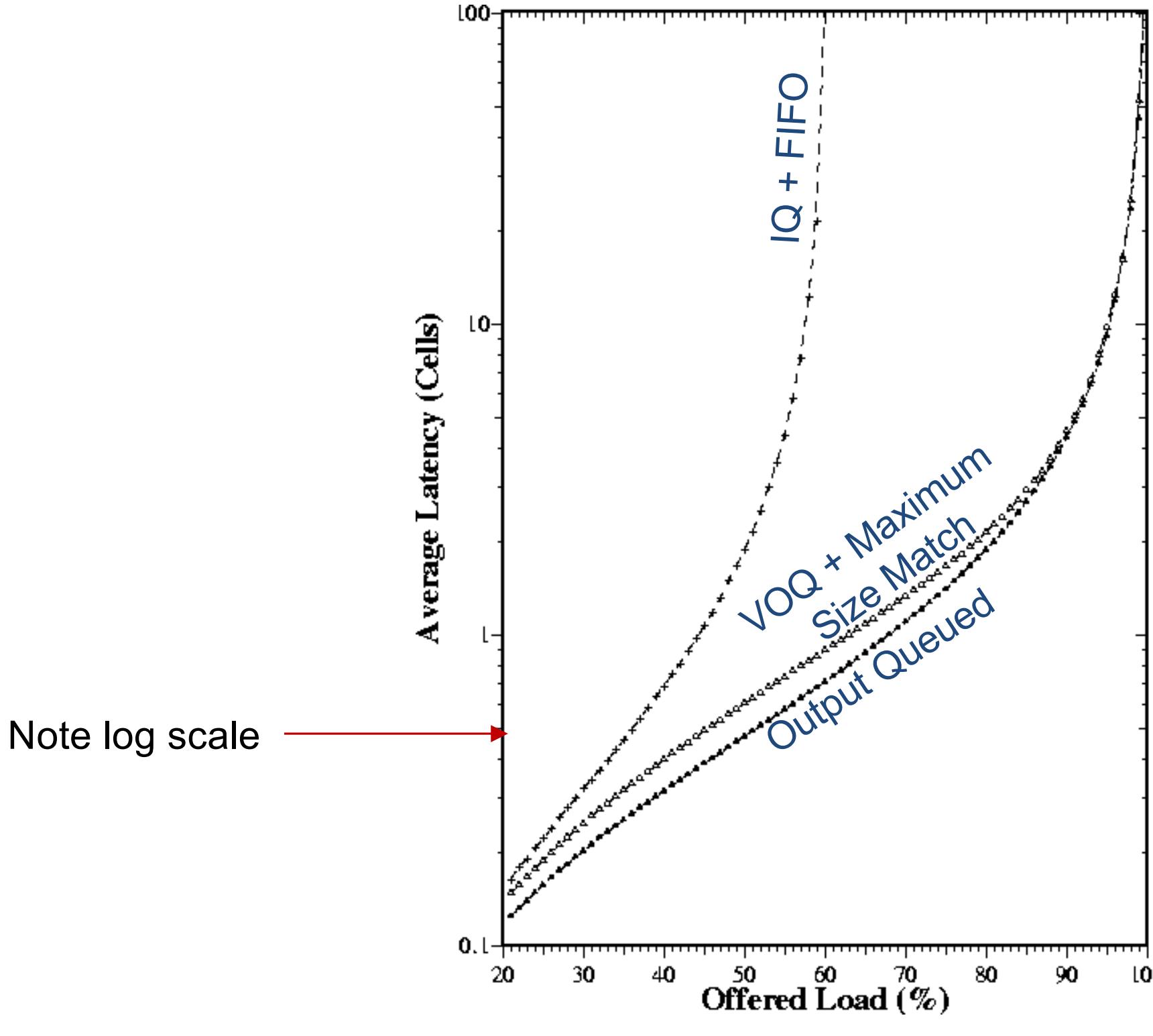
1. Inputs and outputs make decisions independently and in parallel.
2. Guaranteed to find a maximal match in at most N iterations.
3. Typically completes in much fewer than N iterations.

Q: How large is a maximal match compared to a maximum match?

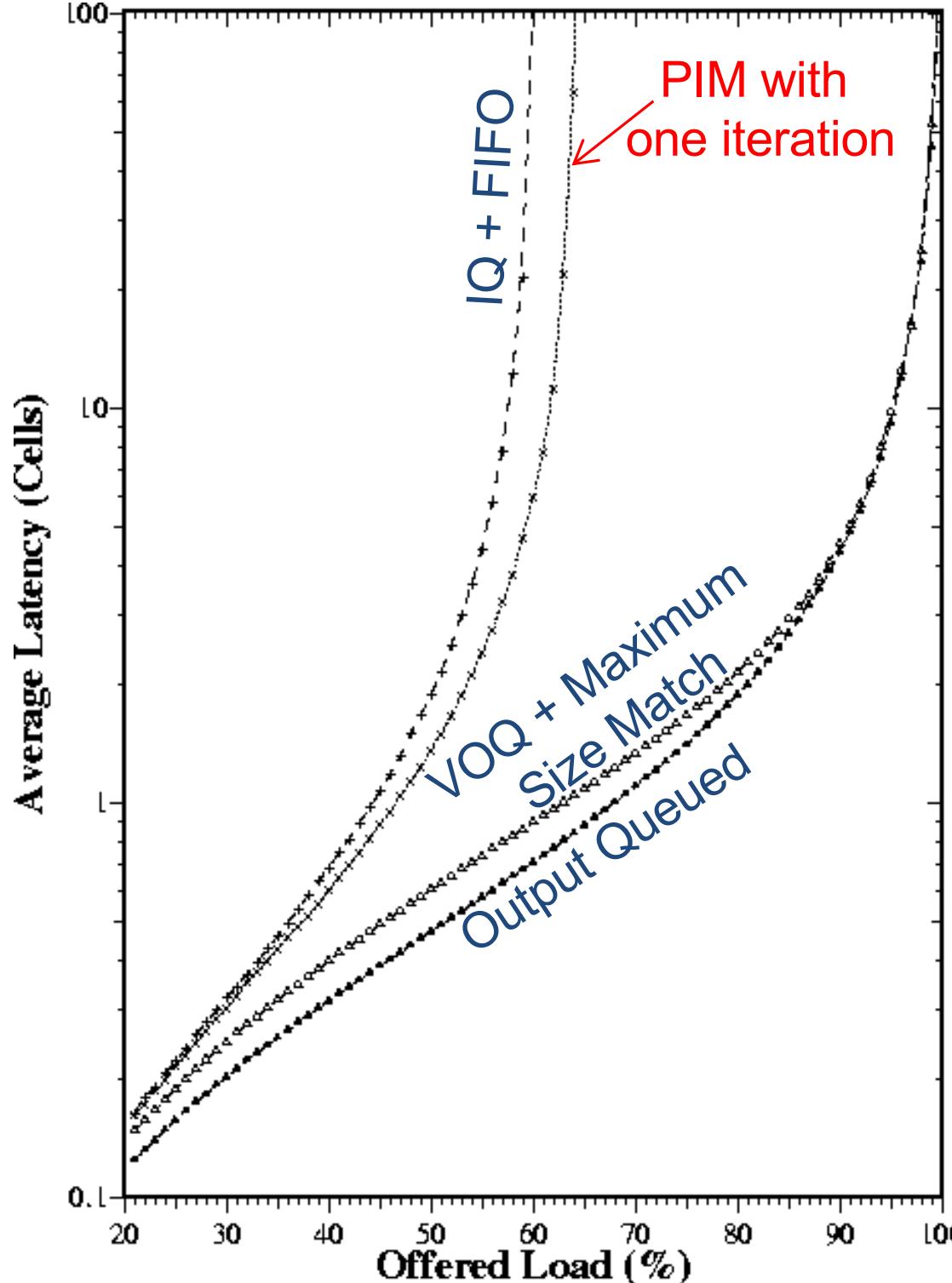
A maximal match is guaranteed to be at least half the cardinality (size) of a maximum match.

Q: Uh-oh, does that mean throughput is limited to 50%??

Parallel Iterative Matching

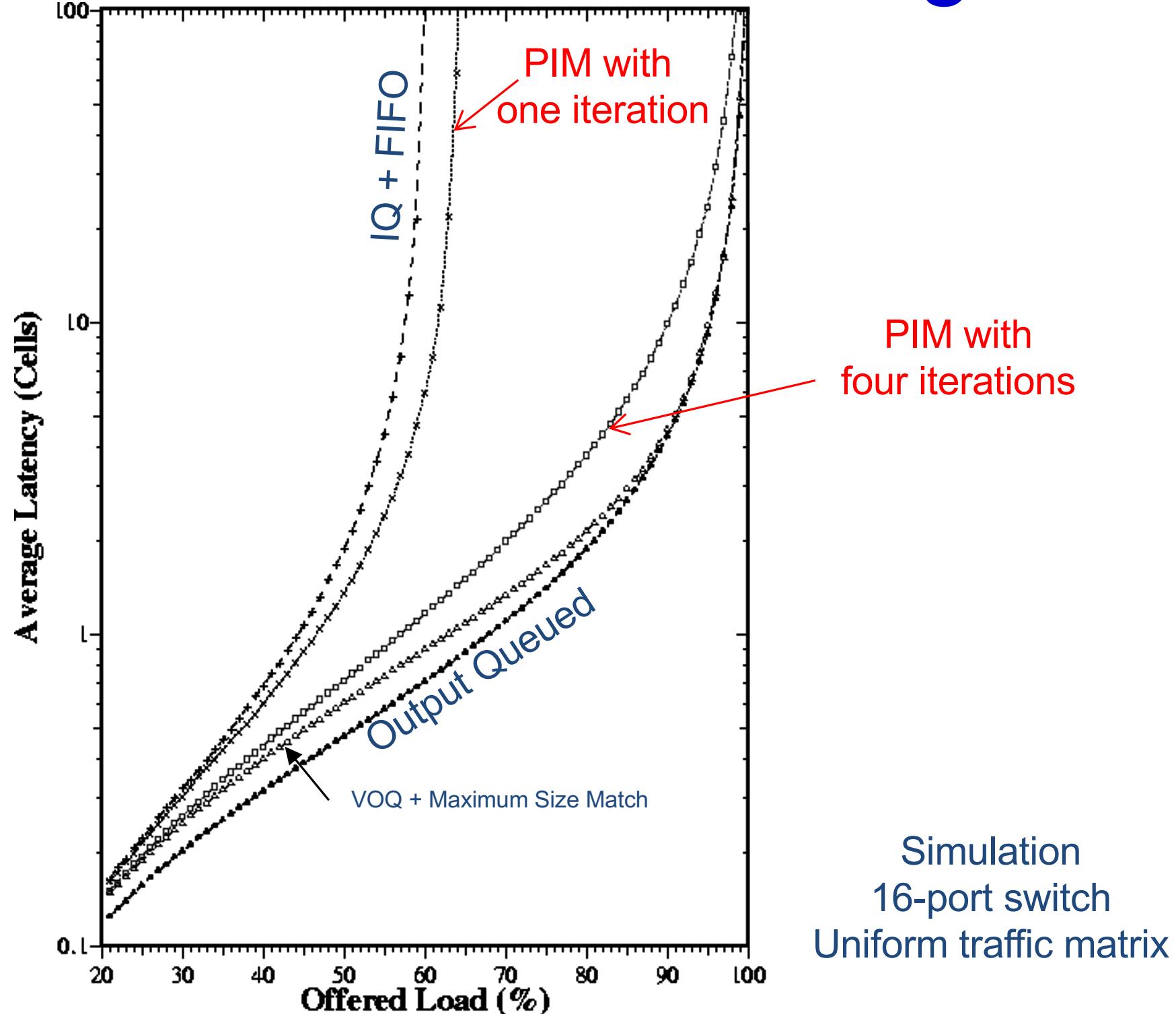


Parallel Iterative Matching



Simulation
16-port switch
Uniform traffic matrix

Parallel Iterative Matching

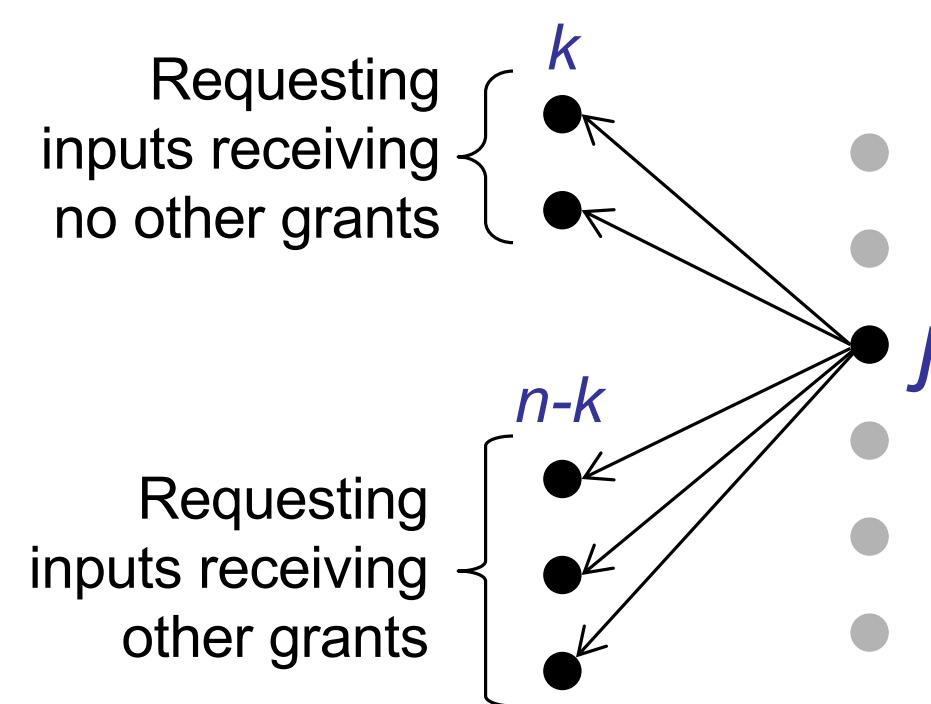


How many PIM iterations should be run?

Parallel Iterative Matching

Number of iterations

Consider the n requests to output j



w.p. $\begin{cases} \frac{k}{n}, \text{ all requests to } j \text{ are resolved} \\ 1 - \frac{k}{n}, \text{ at most } k \text{ remain unresolved} \end{cases}$

$$E[\text{Num unresolved requests}] \leq \frac{k}{n} \cdot 0 + \left(1 - \frac{k}{n}\right) \cdot k$$

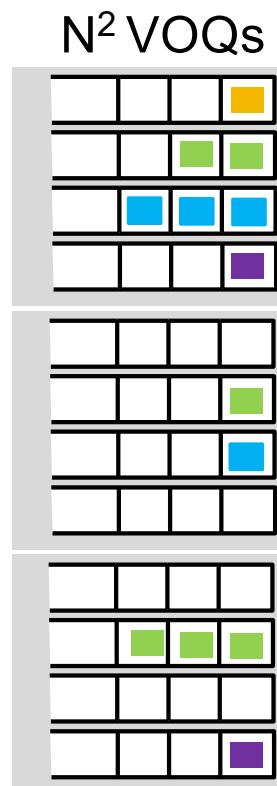
$$\leq \frac{n}{4}, \text{ because } (1 - a) \cdot a \leq \frac{1}{4}, \text{ when } a < 1$$

Therefore, $3/4$ of all requests are resolved each iteration.

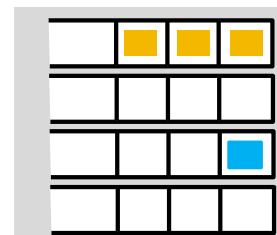
(It follows that the number of iterations $\leq \log_2 N + \frac{4}{3}$)

Known methods for non-uniform traffic

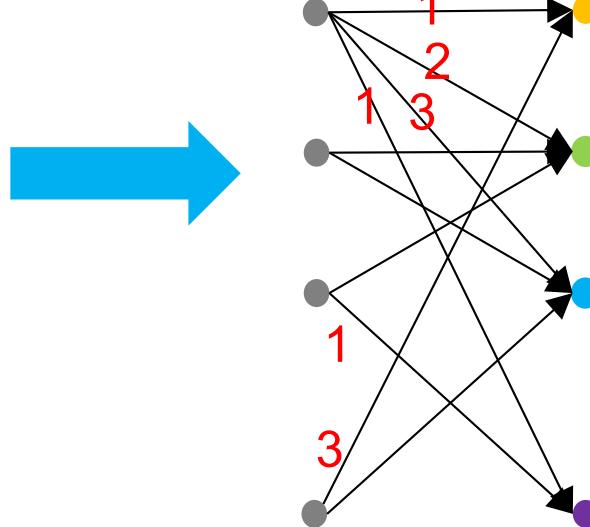
1. 100% throughput is now known to be theoretically possible with:
 - IQ switch, with VOQs, and
 - An arbiter to pick a permutation to maximize the total matching weight (e.g. weight is VOQ occupancy)



$$L_{i,j} = 3$$

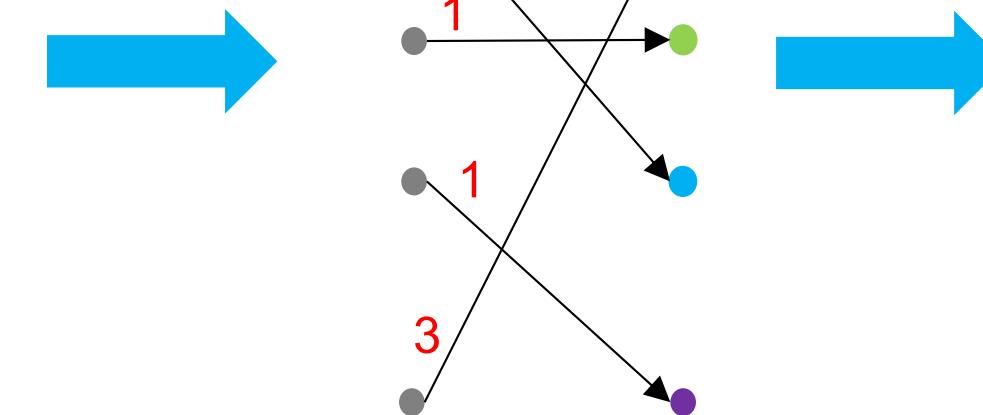


bipartite
request
graph

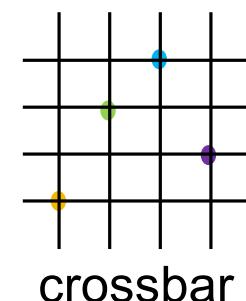


Choose matching M
that maximizes $\sum_{i,j \in M} L_{i,j}$

bipartite
match



“maximum WEIGHT match”



Observation: give preference to longer VOQs
Leads to 100% throughput for any traffic matrix.

Known methods for non-uniform traffic

2. It is practically possible with:

- IQ switch, VOQs, all running *twice as fast* (i.e. choose and transfer two cells per cell time)
- An arbiter running a *maximal* match (e.g. PIM)

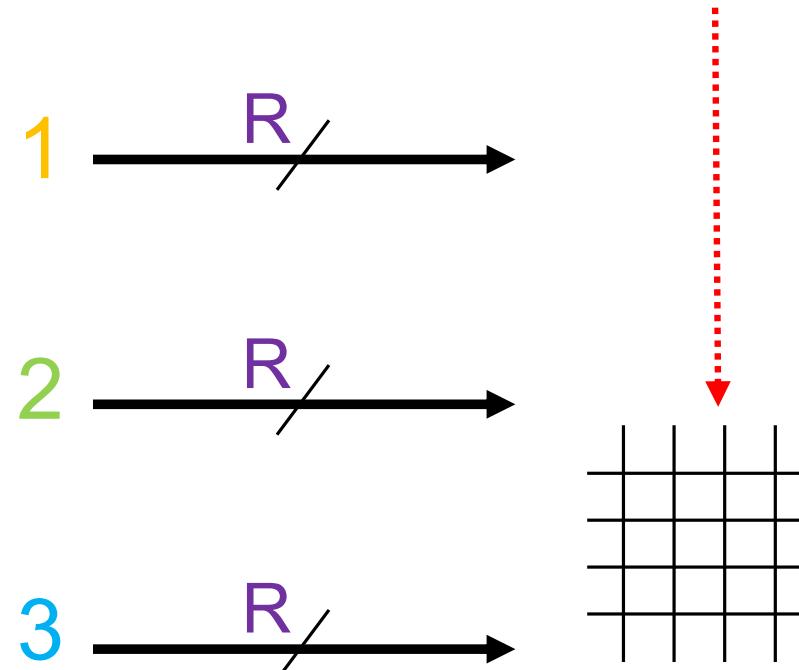
Intuition: Because maximal match is at least half the size of a maximum match, running twice as fast compensates for it.

Known methods for non-uniform traffic

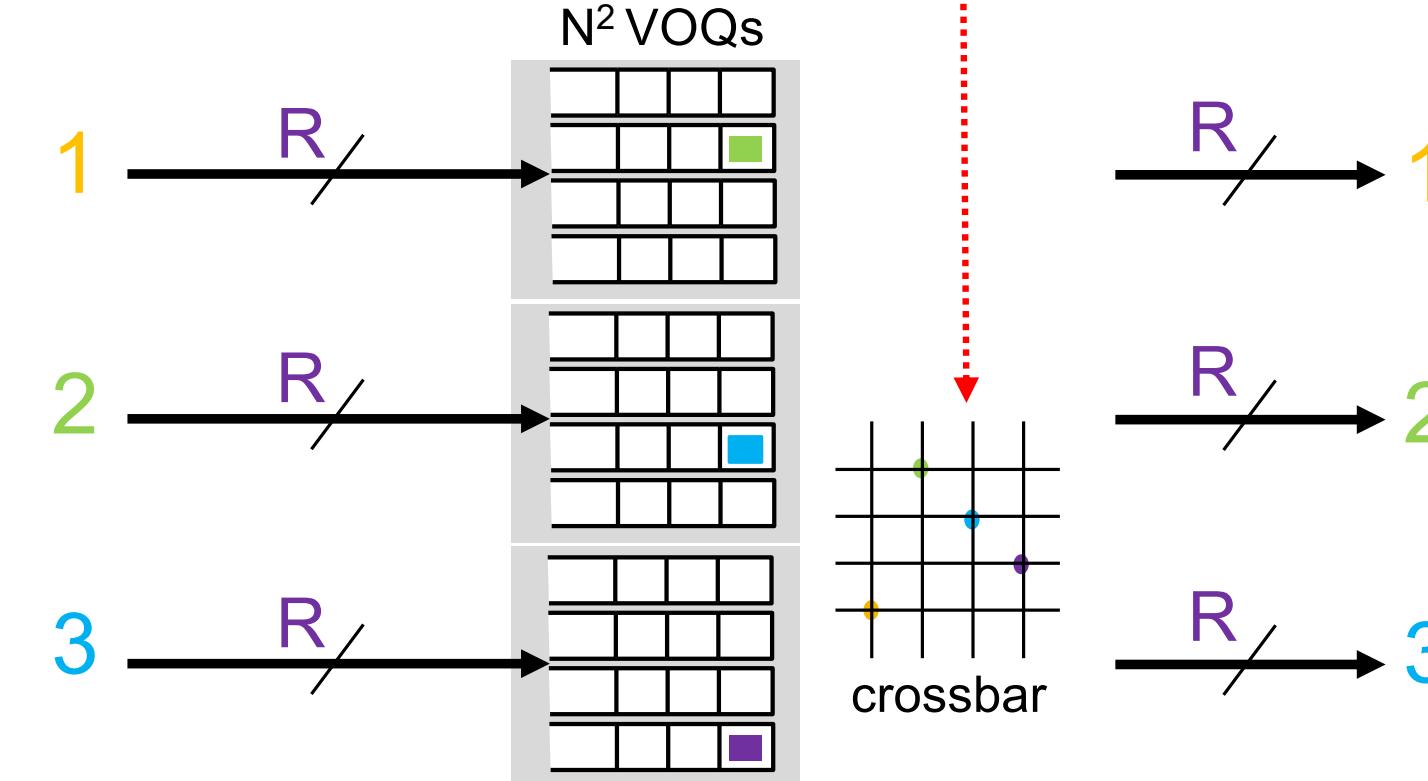
3. 2 switch stages with a fixed schedule of permutations!

A 2-stage “Valiant” Load-balancing switch

Fixed cycle of permutations

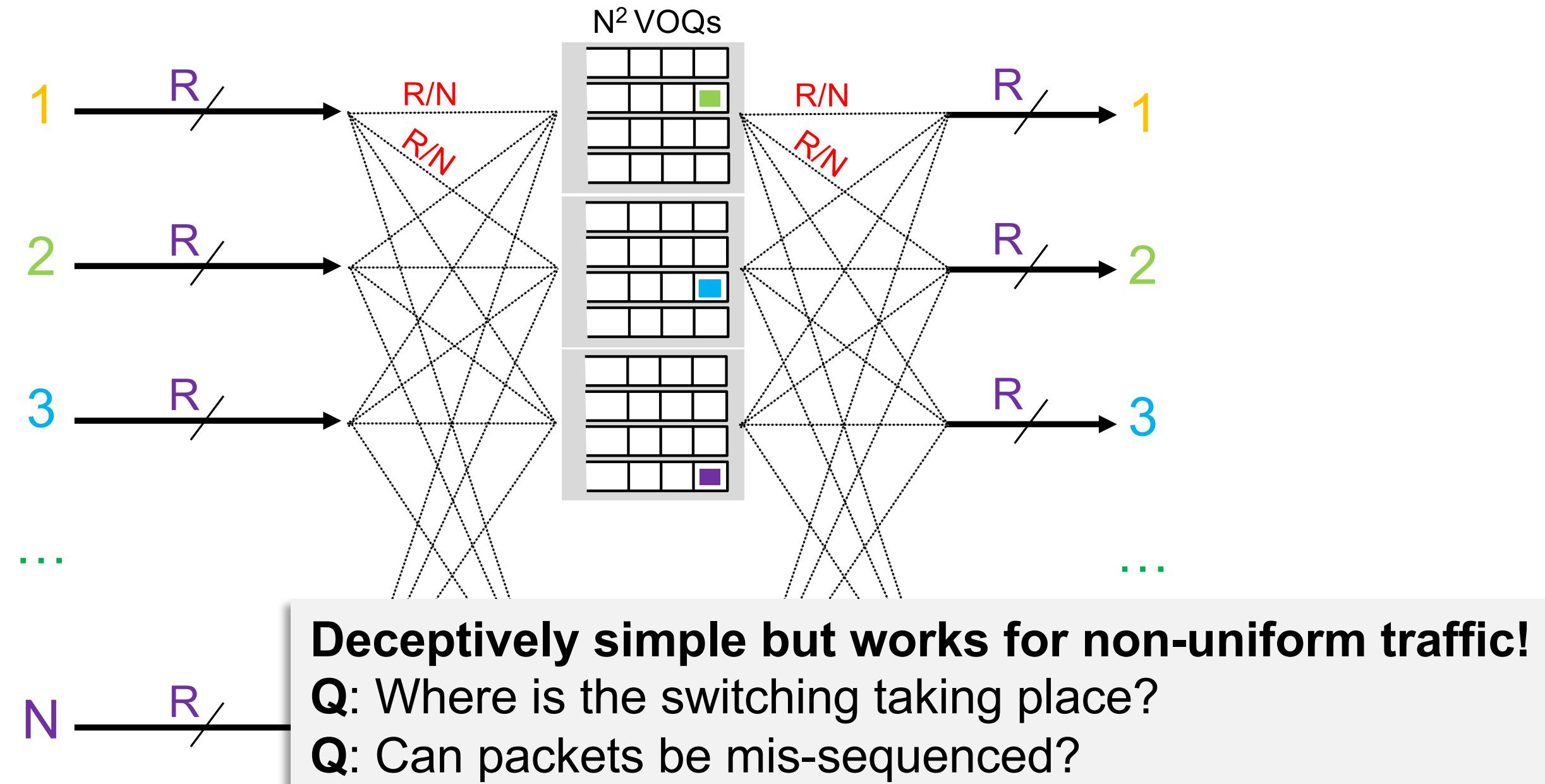


Fixed cycle of permutations



Intuition: If uniform traffic is so easy, can I make non-uniform traffic “sufficiently uniform”?

A 2-stage “Valiant” Load-balancing switch



<End>

Refs:

1. **58% result.** Karol, M. J., Hluchyj, M. G., & Morgan, S. P. (1987). Input Versus Output Queueing on a Space-Division Packet Switch. *IEEE Transactions on Communications*, 35(12), 1347-1356. <https://doi.org/10.1109/TCOM.1987.1096719>
2. **iSLIP: A simpler version of PIM.** McKeown, N. (1999). The iSLIP scheduling algorithm for input-queued switches. *IEEE ACM Transactions on Networking*, 7(2), 188–201. <https://doi.org/10.1109/90.769767>
3. **100% throughput with a maximal match.** Dai, Jim & Prabhakar, Balaji. (2000). The Throughput of Data Switches With and Without Speedup.
4. **2-stage Valiant load balancing switch.** Cheng-Shang Chang, Duan-Shin Lee, and Ching-Ming Lien. 2001. Load balanced Birkhoff-von Neumann switches with resequencing. SIGMETRICS '01. <https://doi.org/10.1145/507553.507563>
5. **More on VLB switches.** Isaac Keslassy, Shang-Tse Chuang, Kyoungsik Yu, David Miller, Mark Horowitz, Olav Solgaard, and Nick McKeown. 2003. Scaling internet routers using optics. SIGCOMM '03. <https://doi.org/10.1145/863955.863978>
6. **Early CS244 project!** Shang-Tse Chuang, A. Goel, N. McKeown and B. Prabhakar, "Matching output queueing with a combined input output queued switch," IEEE INFOCOM '99. pp. 1169-1178 vol.3, <https://doi.org/10.1109/INFCOM.1999.751673>.