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At the time the paper was written...

« WWW was new, and Internet traffic was growing fast

* Fastest Ethernet networks ran at 100Mb/s

» Lots of interest in building faster switches and routers

» Lively debate about an alternative to the Internet, called "ATM”



But first...



A few words about packet queues...
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Observation: With one arrival “line” at the same rate, the queue Observation: The arrival rate is “bounded” by R on average.

'S glways empty (eret mggt 9“e st?re-and-fc’),rward packet). The Instantaneously, it can reach 2R. The queue size is unbounded.
arrival process is deterministically “bounded” by R. .




Different cases for A =1

1hr 2hr  3hr 4hr time

Q: How big does the buffer need to be?

Observation: For a given arrival rate, in order to know the queueing
delay, we need to know the pattern (or “process”) of arrivals.

0.5 1 1.5 2 time, s

Q: How big does the buffer need to be?



Background

Each port runs at rate R b/s.

A switch, or router, with N “ports”.
We say the “

ty” is N x R b/s.
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You said...

Onkar Deshpande

While the scheduling algorithms are novel and theoretically sound, certain
assumptions now seem outdated. The use of fixed-length cells, for instance,
appears less relevant in modern networks where packet sizes vary widely. Modern
datacenter traffic includes a mix of full-MTU packets (often 1500 bytes) and much

smaller control packets.

Hannah Dunn

The authors’ evaluation seemed unbiased and sound, though | did wonder about
the phrase, “this leads to latency bounds that seem acceptable for multimedia
applications,” because to whom do these bounds “seem” acceptable?



An output-queued (OQ) switch
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Properties of an OQ switch

 All buffering takes place at the output.

« Qutput queues must be able to write
packets at rate N x R.

Consequences

* “Work conserving”: Whenever there is a
packet in the system, its output is busy
sending a packet. No unnecessary idling.

* Average delay is minimized.

* But memory bandwidth limits the switching
capacity.



Traffic Matrix
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Traffic matrix, A = [Ai, j]

A; j is the fraction of traffic from input i to output ;

For example:
0.1 0.2 0.2 04
A= |02 03 01 01
1.0 0.0 0.0 0.0
0.1 04 0.3 0.1

Note that the row (input) sum: }.;4; ; < 1,Vi

Non-oversubscribed TM: Uniform Traffic Matrix:

Total traffic rate to each 1
outputis <1
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and still: Z Ay <1,Vi
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where: A < 1/N



OQ Switches and “100% Throughput”

If we send traffic according to any non-over-subscribed
traffic matrix to an OQ switch (with infinite buffers) then the
output rates correspond to the column sums.

i.e. The traffic rate at output j = RY;A;; <

We often say an OQ switch can “sustain 100% throughput”.

Q: What happens if the buffers are finite?
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An input-queued (IQ) switch
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Properties of an IQ switch

« All buffering takes place at the input.

 Input queues only need to be able to write
packets at rate R (instead of N x R).

Consequences

« Can build a switch N times faster.

But, a packet can be held up by packet
ahead destined to a different output.
Hence an 1Q switch is not “work
conserving”. It can unnecessarily idle.
May not achieve “100% throughput”.
Average delay is not minimized.

11



Head of Line Blocking




Head of Line Blocking

|Q switch with uniform traffic matrix, A < 1

Observation: HOL Blocking means we lose
42% of the switching capacity

Delay, d Poisson arrivals: I3
1<2—+2~58% & . .
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What does the "58%" result mean?
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Virtual Output Queues (VOQs)







Basic idea

With a VOQ, a packet cannot be held up by a packet in
front of it, destined to a different output.

Q: With VOQs, does/can 58% become 100% throughput?

|Q switch uniform T™, Poisson |Q switch with VOQs

Any TM, Any arrivals
Arrival rate Departure rate Arrival rate Departure rate
AR < 0.58R AR R
[—
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100% Throughput

Reminder: “100% throughput” is equivalent to

For a non over-subscribing traffic matrix, queues

don't grow without bound.
l.e. u = Afor every queue in the system.

Observations:
1. Burstiness of arrivals does not affect throughput

2. For a uniform Traffic Matrix, solution is triviall
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An input-queued (1Q) switch

with VOQs and a crossbar
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equivalent to choosing a permutation.
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N2VOQs

[mm bipartite bipartite
0 request
match
graph

._

e.g. ‘maximum size match”

aka “maximum cardinality match”

sbar
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Crossbar schedule

Fixed cycle of permutations:
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A < 1, therefore
arrival rate < departure rate.
True for all VOQs, therefore
100% throughput for uniform TM
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100% throughput for uniform traffic

Four (trivial) algorithms for a uniform traffic matrix:

1. Cycle through permutations in “round-robin” (i.e. previous slide).
2. Each time, randomly pick one of the permutations in (1).

3. Each time, pick a permutation uniformly and at random from all
possible N! permutations.

4. Wait until all VOQs are non-empty, then pick any algorithm above.
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Quick recap so far



An input-queued (IQ) switch
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Properties of an IQ switch

« All buffering takes place at the input.

 Input queues only need to be able to write
packets at rate R (instead of N x R).

Consequences

« Can build a switch N times faster.

HOL Blocking: a packet can be held up by
packet ahead destined to a different output.
Hence an 1Q switch is not “work
conserving”. It can unnecessarily idle.
May not achieve “100% throughput”.
Average delay is not minimized.
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Delay, d

5/2
3/2

Head of Line Blocking

|Q switch with uniform traffic matrix, A < 1

Observation: HOL Blocking means we lose
42% of the switching capacity

Poisson arrivals:
1<2—+2=58%
Karol ‘87

OQ Switch

0.5 058

0.75 Load, 1 1

Poisson arrivals:
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)
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100% throughput easy for uniform traffic

Four (trivial) algorithms for a uniform traffic matrix:

1.
2.
3.

Cyc
Eac

e through permutations in “round-robin”.
n time, randomly pick one of the permutations in (1).

Eac

N time, pick a permutation uniformly and at random from all

possible N! permutations.
Wait until all VOQs are non-empty, then pick any algorithm above.
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Q: So why did the authors need Parallel
Iterative Matching (PIM)?

Because in practice, arrivals are not uniform.

(If we know the matrix, we can still create a cycle of permutations to
serve every VOQ at the rate in the traffic matrix).

In practice we don’t know the traffic matrix.
Hence, PIM....



Parallel Iterative Matching

uar selection |uar select|on

1 1 10 1

Iteration 1: 2 2 20 ? 2 ¢ \. 2

3 3 3 3 3 0\ 03

4 4 4 4 4 4

Request Grant Accept | qQ: Are we done?
| Q: Is a larger match possible?
1
lteration 2: 2




PIM Properties

1. Inputs and outputs make decisions independently and in parallel.
2. Guaranteed to find a maximal match in at most N iterations.
3. Typically completes in much fewer than N iterations.

Q: How large is a maximal match compared to a maximum match??

A maximal match is guaranteed to be at least half the cardinality
(size) of a maximum match.

Q: Uh-oh, does that mean throughput is limited to 50%?7?



Note log scale

Parallel Iterative Matching
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Parallel It
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Parallel lterative Matching
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How many PIM iterations should be run?



Parallel Iterative Matching

Number of iterations

Consider the n requests to output

Requesting K
iInputs receiving {

no other grants

Requesting
iInputs receiving <
other grants

—

n-k

ok |
—, all requests to j are resolved

w.p.y

1 — —, at most k remain unresolved
n

k k
E [Num unresolved requests] <—0 +(1 - —)- k
n n

1
< %, because (1—a)-asZ, when a <1

Therefore, 3/4 of all requests are resolved each iteration.

4
(It follows that the number of iterations =< log,N + 5)



Known methods for non-uniform traffic

1. 100% throughput is now known to be theoretically possible with:
- 1Q switch, with VOQs, and

- An arbiter to pick a permutation to maximize
the total matching weight (e.g. weight is VOQ occupancy)
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N2VOQs

bipartite
request
graph

1
1

Choose matching M
that maximizes Zi,jeM Li,j

bipartite

match

'{ / |
- 7 ) L

1 crossbar

3

“maximum WEIGHT match”

Observation: give preference to longer VOQs
Leads to 100% throughput for any traffic matrix.
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Known methods for non-uniform traffic

2. It Is practically possible with:

- 1Q switch, VOQs, all running twice as fast (i.e. choose and
transfer two cells per cell time)

- An arbiter running a maximal match (e.g. PIM)

Intuition: Because maximal match is at least half the size of a
maximum match, running twice as fast compensates for it.
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Known methods for non-uniform traffic

3. 2 switch stages with a fixed schedule of permutations!
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A 2-stage "Valiant”™ Load-balancing switch

Fixed cycle of permutations Fixed cycle of permutations
N2VOQs
R, R/ R,
+> v
| — — —l
3R, 3R, | R, .3
crossbar
H

Intuition: If uniform traffic is so easy, can | make
non-uniform traffic “sufficiently uniform™?

N*R;V N*R;,

R/ N
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<End>
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