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ABSTRACT
Cloud object stores such as Amazon S3 are some of the largest
and most cost-effective storage systems on the planet, making them
an attractive target to store large data warehouses and data lakes.
Unfortunately, their implementation as key-value stores makes it dif-
ficult to achieve ACID transactions and high performance: metadata
operations such as listing objects are expensive, and consistency
guarantees are limited. In this paper, we present Delta Lake, an open
source ACID table storage layer over cloud object stores initially
developed at Databricks. Delta Lake uses a transaction log that is
compacted into Apache Parquet format to provide ACID properties,
time travel, and significantly faster metadata operations for large
tabular datasets (e.g., the ability to quickly search billions of table
partitions for those relevant to a query). It also leverages this de-
sign to provide high-level features such as automatic data layout
optimization, upserts, caching, and audit logs. Delta Lake tables
can be accessed from Apache Spark, Hive, Presto, Redshift and
other systems. Delta Lake is deployed at thousands of Databricks
customers that process exabytes of data per day, with the largest
instances managing exabyte-scale datasets and billions of objects.
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1. INTRODUCTION
Cloud object stores such as Amazon S3 [4] and Azure Blob

Storage [17] have become some of the largest and most widely used
storage systems on the planet, holding exabytes of data for millions
of customers [46]. Apart from the traditional advantages of clouds
services, such as pay-as-you-go billing, economies of scale, and
expert management [15], cloud object stores are especially attractive
because they allow users to scale computing and storage resources
separately: for example, a user can store a petabyte of data but only
run a cluster to execute a query over it for a few hours.

As a result, many organizations now use cloud object stores to
manage large structured datasets in data warehouses and data lakes.
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The major open source “big data” systems, including Apache Spark,
Hive and Presto [45, 52, 42], support reading and writing to cloud
object stores using file formats such as Apache Parquet and ORC [13,
12]. Commercial services including AWS Athena, Google BigQuery
and Redshift Spectrum [1, 29, 39] can also query directly against
these systems and these open file formats.

Unfortunately, although many systems support reading and writ-
ing to cloud object stores, achieving performant and mutable table
storage over these systems is challenging, making it difficult to im-
plement data warehousing capabilities over them. Unlike distributed
filesystems such as HDFS [5], or custom storage engines in a DBMS,
most cloud object stores are merely key-value stores, with no cross-
key consistency guarantees. Their performance characteristics also
differ greatly from distributed filesystems and require special care.

The most common way to store relational datasets in cloud object
stores is using columnar file formats such as Parquet and ORC,
where each table is stored as a set of objects (Parquet or ORC
“files”), possibly clustered into “partitions” by some fields (e.g., a
separate set of objects for each date) [45]. This approach can offer
acceptable performance for scan workloads as long as the object
files are moderately large. However, it creates both correctness and
performance challenges for more complex workloads. First, because
multi-object updates are not atomic, there is no isolation between
queries: for example, if a query needs to update multiple objects
in the table (e.g., remove the records about one user across all the
table’s Parquet files), readers will see partial updates as the query
updates each object individually. Rolling back writes is also difficult:
if an update query crashes, the table is in a corrupted state. Second,
for large tables with millions of objects, metadata operations are
expensive. For example, Parquet files include footers with min/max
statistics that can be used to skip reading them in selective queries.
Reading such a footer on HDFS might take a few milliseconds, but
the latency of cloud object stores is so much higher that these data
skipping checks can take longer than the actual query.

In our experience working with cloud customers, these consis-
tency and performance issues create major challenges for enterprise
data teams. Most enterprise datasets are continuously updated, so
they require a solution for atomic writes; most datasets about users
require table-wide updates to implement privacy policies such as
GDPR compliance [27]; and even purely internal datasets may re-
quire updates to repair incorrect data, incorporate late records, etc.
Anecdotally, in the first few years of Databricks’ cloud service
(2014–2016), around half the support escalations we received were
due to data corruption, consistency or performance issues due to
cloud storage strategies (e.g., undoing the effect of a crashed update
job, or improving the performance of a query that reads tens of
thousands of objects).



To address these challenges, we designed Delta Lake, an ACID
table storage layer over cloud object stores that we started providing
to customers in 2017 and open sourced in 2019 [26]. The core idea of
Delta Lake is simple: we maintain information about which objects
are part of a Delta table in an ACID manner, using a write-ahead log
that is itself stored in the cloud object store. The objects themselves
are encoded in Parquet, making it easy to write connectors from
engines that can already process Parquet. This design allows clients
to update multiple objects at once, replace a subset of the objects
with another, etc., in a serializable manner while still achieving high
parallel read and write performance from the objects themselves
(similar to raw Parquet). The log also contains metadata such as
min/max statistics for each data file, enabling order of magnitude
faster metadata searches than the “files in object store” approach.
Crucially, we designed Delta Lake so that all the metadata is in
the underlying object store, and transactions are achieved using
optimistic concurrency protocols against the object store (with some
details varying by cloud provider). This means that no servers need
to be running to maintain state for a Delta table; users only need
to launch servers when running queries, and enjoy the benefits of
separately scaling compute and storage.

Based on this transactional design, we were also able add multiple
other features in Delta Lake that are not available in traditional cloud
data lakes to address common customer pain points, including:

• Time travel to let users query point-in-time snapshots or roll
back erroneous updates to their data.

• UPSERT, DELETE and MERGE operations, which effi-
ciently rewrite the relevant objects to implement updates to
archived data and compliance workflows (e.g., for GDPR [27]).

• Efficient streaming I/O, by letting streaming jobs write small
objects into the table at low latency, then transactionally coa-
lescing them into larger objects later for performance. Fast
“tailing” reads of the new data added to a table are also sup-
ported, so that jobs can treat a Delta table as a message bus.

• Caching: Because the objects in a Delta table and its log
are immutable, cluster nodes can safely cache them on local
storage. We leverage this in the Databricks cloud service to
implement a transparent SSD cache for Delta tables.

• Data layout optimization: Our cloud service includes a fea-
ture that automatically optimizes the size of objects in a table
and the clustering of data records (e.g., storing records in Z-
order to achieve locality along multiple dimensions) without
impacting running queries.

• Schema evolution, allowing Delta to continue reading old
Parquet files without rewriting them if a table’s schema changes.

• Audit logging based on the transaction log.

Together, these feature improve both the manageability and per-
formance of working with data in cloud object stores, and enable
a “lakehouse” paradigm that combines the key features of data
warehouses and data lakes: standard DBMS management functions
usable directly against low-cost object stores. In fact, we found that
many Databricks customers could simplify their overall data archi-
tectures with Delta Lake, by replacing previously separate data lake,
data warehouse and streaming storage systems with Delta tables that
provide appropriate features for all these use cases. Figure 1 shows
an extreme example, where a data pipeline that includes object stor-
age, a message queue and two data warehouses for different business
intelligence teams (each running their own computing resources)

(a) Pipeline using separate storage systems.

(b) Using Delta Lake for both stream and table storage.

Figure 1: A data pipeline implemented using three storage sys-
tems (a message queue, object store and data warehouse), or
using Delta Lake for both stream and table storage. The Delta
Lake version removes the need to manage multiple copies of the
data and uses only low-cost object storage.

is replaced with just Delta tables on object storage, using Delta’s
streaming I/O and performance features to run ETL and BI. The new
pipeline uses only low-cost object storage and creates fewer copies
of the data, reducing both storage cost and maintenance overheads.

Delta Lake is now used by most of Databricks’ large customers,
where it processes exabytes of data per day (around half our overall
workload). It is also supported by Google Cloud, Alibaba, Tencent,
Fivetran, Informatica, Qlik, Talend, and other products [50, 26,
33]. Among Databricks customers, Delta Lake’s use cases are
highly diverse, ranging from traditional ETL and data warehousing
workloads to bioinformatics, real time network security analysis (on
hundreds of TB of streaming event data per day), GDPR compliance,
and data management for machine learning (managing millions of
images as records in a Delta table rather than S3 objects to get ACID
and improved performance). We detail these use cases in Section 5.

Anecdotally, Delta Lake reduced the fraction of support issues
about cloud storage at Databricks from a half to nearly none. It also
improved workload performance for most customers, with speedups
as high as 100× in extreme cases where its data layout optimizations
and fast access to statistics are used to query very high-dimensional
datasets (e.g., the network security and bioinformatics use cases).
The open source Delta Lake project [26] includes connectors to
Apache Spark (batch or streaming), Hive, Presto, AWS Athena,
Redshift and Snowflake, and can run over multiple cloud object
stores or over HDFS. In the rest of this paper, we present the moti-
vation and design of Delta Lake, along with customer use cases and
performance experiments that motivated our design.



2. MOTIVATION: CHARACTERISTICS AND
CHALLENGES OF OBJECT STORES

In this section, we describe the API and performance characteris-
tics of cloud object stores to explain why efficient table storage on
these systems can be challenging, and sketch existing approaches to
manage tabular datasets on them.

2.1 Object Store APIs
Cloud object stores, such as Amazon S3 [4] and Azure Blob Stor-

age [17], Google Cloud Storage [30], and OpenStack Swift [38],
offer a simple but easy-to-scale key-value store interface. These
systems allow users to create buckets that each store multiple ob-
jects, each of which is a binary blob ranging in size up to a few TB
(for example, on S3, the limit on object sizes is 5 TB [4]). Each
object is identified by a string key. It is common to model keys af-
ter file system paths (e.g., warehouse/table1/part1.parquet),
but unlike file systems, cloud object stores do not provide cheap
renames of objects or of “directories”. Cloud object stores also
provide metadata APIs, such as S3’s LIST operation [41], that can
generally list the available objects in a bucket by lexicographic order
of key, given a start key. This makes it possible to efficiently list
the objects in a “directory” if using file-system-style paths, by start-
ing a LIST request at the key that represents that directory prefix
(e.g., warehouse/table1/). Unfortunately, these metadata APIs
are generally expensive: for example, S3’s LIST only returns up to
1000 keys per call, and each call takes tens to hundreds of millisec-
onds, so it can take minutes to list a dataset with millions of objects
using a sequential implementation.

When reading an object, cloud object stores usually support byte-
range requests, so it is efficient to read just a range within a large
object (e.g., bytes 10,000 to 20,000). This makes it possible to
leverage storage formats that cluster commonly accessed values.

Updating objects usually requires rewriting the whole object at
once. These updates can be made atomic, so that readers will either
see the new object version or the old one. Some systems also support
appends to an object [48].

Some cloud vendors have also implemented distributed filesystem
interfaces over blob storage, such as Azure’s ADLS Gen2 [18],
which over similar semantics to Hadoop’s HDFS (e.g., directories
and atomic renames). Nonetheless, many of the problems that Delta
Lake tackles, such as small files [36] and atomic updates across
multiple directories, are still present even when using a distributed
filesystem—indeed, multiple users run Delta Lake over HDFS.

2.2 Consistency Properties
The most popular cloud object stores provide eventual consistency

for each key and no consistency guarantees across keys, which
creates challenges when managing a dataset that consists of multiple
objects, as described in the Introduction. In particular, after a client
uploads a new object, other clients are not necessarily guaranteed
to see the object in LIST or read operations right away. Likewise,
updates to an existing object may not immediately be visible to other
clients. Moreover, depending on the object store, even the client
doing a write may not immediately see the new objects.

The exact consistency model differs by cloud provider, and can be
fairly complex. As a concrete example, Amazon S3 provides read-
after-write consistency for clients that write a new object, meaning
that read operations such as S3’s GET will return the object contents
after a PUT. However, there is one exception: if the client writing
the object issued a GET to the (nonexistent) key before its PUT,
then subsequent GETs might not read the object for a period of time,
most likely because S3 employs negative caching. Moreover, S3’s
LIST operations are always eventually consistent, meaning that a

LIST after a PUT might not return the new object [40]. Other cloud
object stores offer stronger guarantees [31], but still lack atomic
operations across multiple keys.

2.3 Performance Characteristics
In our experience, achieving high throughput with object stores

requires a careful balance of large sequential I/Os and parallelism.
For reads, the most granular operation available is reading a

sequential byte range, as described earlier. Each read operation
usually incurs at least 5–10 ms of base latency, and can then read
data at roughly 50–100 MB/s, so an operation needs to read at least
several hundred kilobytes to achieve at least half the peak throughput
for sequential reads, and multiple megabytes to approach the peak
throughput. Moreover, on typical VM configurations, applications
need to run multiple reads in parallel to maximize throughput. For
example, the VM types most frequently used for analytics on AWS
have at least 10 Gbps network bandwidth, so they need to run 8–10
reads in parallel to fully utilize this bandwidth.

LIST operations also require significant parallelism to quickly list
large sets of objects. For example, S3’s LIST operations can only
return up to 1000 objects per requests, and take tens to hundreds of
milliseconds, so clients need to issue hundreds of LISTs in parallel
to list large buckets or “directories”. In our optimized runtime
for Apache Spark in the cloud, we sometimes parallelize LIST
operations over the worker nodes in the Spark cluster in addition to
threads in the driver node to have them run faster. In Delta Lake, the
metadata about available objects (including their names and data
statistics) is stored in the Delta log instead, but we also parallelize
reads from this log over the cluster.

Write operations generally have to replace a whole object (or
append to it), as discussed in Section 2.1. This implies that if a
table is expected to receive point updates, then the objects in it
should be kept small, which is at odds with supporting large reads.
Alternatively, one can use a log-structured storage format.

Implications for Table Storage. The performance characteristics
of object stores lead to three considerations for analytical workloads:

1. Keep frequently accessed data close-by sequentially, which
generally leads to choosing columnar formats.

2. Make objects large, but not too large. Large objects increase
the cost of updating data (e.g., deleting all data about one
user) because they must be fully rewritten.

3. Avoid LIST operations, and make these operations request
lexicographic key ranges when possible.

2.4 Existing Approaches for Table Storage
Based on the characteristics of object stores, three major approces

are used to manage tabular datasets on them today. We briefly sketch
these approaches and their challenges.

1. Directories of Files. The most common approach, supported by
the open source big data stack as well as many cloud services, is
to store the table as a collection of objects, typically in a columnar
format such as Parquet. As a refinement, the records may be “parti-
tioned” into directories based on one or more attributes. For example,
for a table with a date field, we might create a separate directory
of objects for each date, e.g., mytable/date=2020-01-01/obj1
and mytable/date=2020-01-01/obj2 for data from Jan 1st, then
mytable/date=2020-01-02/obj1 for Jan 2nd, etc, and split in-
coming data into multiple objects based on this field. Such partition-
ing reduces the cost of LIST operations and reads for queries that
only access a few partitions.



This approach is attractive because the table is “just a bunch of
objects” that can be accessed from many tools without running any
additional data stores or systems. It originated in Apache Hive on
HDFS [45] and matches working with Parquet, Hive and other big
data software on filesystems.

Challenges with this Approach. As described in the Introduction,
the “just a bunch of files” approach suffers from both performance
and consistency problems on cloud object stores. The most common
challenges customers encountered are:

• No atomicity across multiple objects: Any transaction that
needs to write or update multiple objects risks having partial
writes visible to other clients. Moreover, if such a transaction
fails, data is left in a corrupt state.

• Eventual consistency: Even with successful transactions,
clients may see some of the updated objects but not others.

• Poor performance: Listing objects to find the ones relevant
for a query is expensive, even if they are partitioned into
directories by a key. Moreover, accessing per-object statistics
stored in Parquet or ORC files is expensive because it requires
additional high-latency reads for each feature.

• No management functionality: The object store does not
implement standard utilities such as table versioning or audit
logs that are familiar from data warehouses.

2. Custom Storage Engines. “Closed-world” storage engines
built for the cloud, such as the Snowflake data warehouse [23],
can bypass many of the consistency challenges with cloud object
stores by managing metadata themselves in a separate, strongly
consistent service, which holds the “source of truth” about what
objects comprise a table. In these engines, the cloud object store
can be treated as a dumb block device and standard techniques can
be used to implement efficient metadata storage, search, updates,
etc. over the cloud objects. However, this approach requires running
a highly available service to manage the metadata, which can be
expensive, can add overhead when querying the data with an external
computing engine, and can lock users into one provider.

Challenges with this Approach. Despite the benefits of a clean-slate
“closed-world” design, some specific challenges we encountered
with this approach are:

• All I/O operations to a table need contact the metadata service,
which can increase its resource cost and reduce performance
and availability. For example, when accessing a Snowflake
dataset in Spark, the reads from Snowflake’s Spark connector
stream data through Snowflake’s services, reducing perfor-
mance compared to direct reads from cloud object stores.

• Connectors to existing computing engines require more en-
gineering work to implement than an approach that reuses
existing open formats such as Parquet. In our experience, data
teams wish to use a wide range of computing engines on their
data (e.g. Spark, TensorFlow, PyTorch and others), so making
connectors easy to implement is important.

• The proprietary metadata service ties users to a specific ser-
vice provider, whereas an approach based on directly access-
ing objects in cloud storage enables users to always access
their data using different technologies.

Apache Hive ACID [32] implements a similar approach over
HDFS or object stores by using the Hive Metastore (a transactional

mytable/date=2020-01-01/1b8a32d2ad.parquet
/a2dc5244f7.parquet

/date=2020-01-02/f52312dfae.parquet
/ba68f6bd4f.parquet

/_delta_log/000001.json
/000002.json
/000003.json
/000003.parquet
/000004.json
/000005.json
/_last_checkpoint

Data objects
(partitioned

by date field)

Log records
& checkpoints

Contains {version: “000003”}
Combines log
records 1 to 3Transaction’s operations, e.g.,

add date=2020-01-01/a2dc5244f7f7.parquet
add date=2020-01-02/ba68f6bd4f1e.parquet

Figure 2: Objects stored in a sample Delta table.

RDBMS such as MySQL) to keep track of multiple files that hold
updates for a table stored in ORC format. However, this approach is
limited by the performance of the metastore, which can become a
bottleneck for tables with millions of objects in our experience.

3. Metadata in Object Stores. Delta Lake’s approach is to store a
transaction log and metadata directly within the cloud object store,
and use a set of protocols over object store operations to achieve
serializability. The data within a table is then stored in Parquet
format, making it easy to access from any software that already
supports Parquet as long as a minimal connector is available to
discover the set of objects to read.1 Although we believe that Delta
Lake was the first system to use this design (starting in 2016), two
other software packages also support it now — Apache Hudi [8]
and Apache Iceberg [10]. Delta Lake offers a number of unique
features not supported by these systems, such as Z-order clustering,
caching, and background optimization. We discuss the similarities
and differences between these systems in more detail in Section 8.

3. DELTA LAKE STORAGE FORMAT AND
ACCESS PROTOCOLS

A Delta Lake table is a directory on a cloud object store or file
system that holds data objects with the table contents and a log of
transaction operations (with occasional checkpoints). Clients update
these data structures using optimistic concurrency control protocols
that we tailored for the characteristics of cloud object stores. In this
section, we describe Delta Lake’s storage format and these access
protocols. We also describe Delta Lake’s transaction isolation levels,
which include serializable and snapshot isolation within a table.

3.1 Storage Format
Figure 2 shows the storage format for a Delta table. Each table is

stored within a file system directory (mytable here) or as objects
starting with the same “directory” key prefix in an object store.

3.1.1 Data Objects
The table contents are stored in Apache Parquet objects, possibly

organized into directories using Hive’s partition naming convention.

1As we discuss in Section 4.8, most Hadoop ecosystem projects
already supported a simple way to read only a subset of files in a
directory called “manifest files,” which were first added to support
symbolic links in Hive. Delta Lake can maintain a manifest file for
each table to enable consistent reads from these systems.



For example, in Figure 2, the table is partitioned by the date col-
umn, so the data objects are in separate directories for each date.
We chose Parquet as our underlying data format because it was
column-oriented, offered diverse compression updates, supported
nested data types for semi-structured data, and already had perfor-
mant implementations in many engines. Building on an existing,
open file format also ensured that Delta Lake can continue to take
advantage of newly released updates to Parquet libraries and sim-
plified developing connectors to other engines (Section 4.8). Other
open source formats, such as ORC [12], would likely have worked
similarly, but Parquet had the most mature support in Spark.

Each data object in Delta has a unique name, typically chosen by
the writer by generating a GUID. However, which objects are part
of each version of the table is determined by the transaction log.

3.1.2 Log
The log is stored in the _delta_log subdirectory within the

table. It contains a sequence of JSON objects with increasing,
zero-padded numerical IDs to store the log records, together with
occasional checkpoints for specific log objects that summarize the
log up to that point in Parquet format.2 As we discuss in Section 3.2,
some simple access protocols (depending on the atomic operations
available in each object store) are used to create new log entries or
checkpoints and have clients agree on an order of transactions.

Each log record object (e.g., 000003.json) contains an array
of actions to apply to the previous version of the table in order to
generate the next one. The available actions are:

Change Metadata. The metaData action changes the current
metadata of the table. The first version of a table must contain a
metaData action. Subsequent metaData actions completely over-
write the current metadata of the table. The metadata is a data
structure containing the schema, partition column names (i.e., date
in our example) if the column is partitioned, the storage format of
data files (typically Parquet, but this provides extensibility), and
other configuration options, such as marking a table as append-only.

Add or Remove Files. The add and remove actions are used to
modify the data in a table by adding or removing individual data
objects respectively. Clients can thus search the log to find all added
objects that have not been removed to determine the set of objects
that make up the table.

The add record for a data object can also include data statistics,
such as the total record count and per-column min/max values and
null counts. When an add action is encountered for a path that is
already present in the table, statistics from the latest version replace
that from any previous version. This can be used to “upgrade” old
tables with more types of statistics in new versions of Delta Lake.

The remove action includes a timestamp that indicates when
the removal occurred. Physical deletion of the data object can
happen lazily after a user-specified retention time threshold. This
delay allows concurrent readers to continue to execute against stale
snapshots of the data. A remove action should remain in the log
and any log checkpoints as a tombstone until the underlying data
object has been deleted.

The dataChange flag on either add or remove actions can be
set to false to indicate that this action, when combined with other
actions in the same log record object, only rearranges existing data
or adds statistics. For example, streaming queries that are tailing the
transaction log can use this flag to skip actions that would not affect
their results, such as changing the sort order in earlier data files.

2Zero-padding the IDs of log records makes it efficient for clients to
find all the new records after a checkpoint using the lexicographic
LIST operations available on object stores.

Protocol Evolution. The protocol action is used to increase the
version of the Delta protocol that is required to read or write a given
table. We use this action to add new features to the format while
indicating which clients are still compatible.

Add Provenance Information. Each log record object can also
include provenance information in a commitInfo action, e.g., to
log which user did the operation.

Update Application Transaction IDs. Delta Lake also provides a
means for application to include their own data inside log records,
which can be useful for implementing end-to-end transactional ap-
plications. For example, stream processing systems that write to
a Delta table need to know which of their writes have previously
been committed in order to achieve “exactly-once” semantics: if
the streaming job crashes, it needs to know which of its writes have
previously made it into the table, so that it can replay subsequent
writes starting at the correct offset in its input streams. To support
this use case, Delta Lake allows applications to write a custom txn

action with appId and version fields in their log record objects
that can track application-specific information, such as the corre-
sponding offset in the input stream in our example. By placing this
information in the same log record as the corresponding Delta add
and remove operations, which is inserted into the log atomically, the
application can ensure that Delta Lake adds the new data and stores
its version field atomically. Each application can simply generate
its appId randomly to receive a unique ID. We use this facility in
the Delta Lake connector for Spark Structured Streaming [14].

3.1.3 Log Checkpoints
For performance, it is necessary to compress the log periodically

into checkpoints. Checkpoints store all the non-redundant actions in
the table’s log up to a certain log record ID, in Parquet format. Some
sets of actions are redundant and can be removed. These include:

• add actions followed by a remove action for the same data
object. The adds can be removed because the data object is no
longer part of the table. The remove actions should be kept
as a tombstone according to the table’s data retention con-
figuration. Specifically, clients use the timestamp in remove

actions to decide when to delete an object from storage.

• Multiple adds for the same object can be replaced by the last
one, because new ones can only add statistics.

• Multiple txn actions from the same appId can be replaced
by the latest one, which contains its latest version field.

• The changeMetadata and protocol actions can also be
coalesced to keep only the latest metadata.

The end result of the checkpointing process is therefore a Par-
quet file that contains an add record for each object still in the
table, remove records for objects that were deleted but need to be
retained until the retention period has expired, and a small num-
ber of other records such as txn, protocol and changeMetadata.
This column-oriented file is in an ideal format for querying meta-
data about the table, and for finding which objects may contain
data relevant for a selective query based on their data statistics. In
our experience, finding the set of objects to read for a query is
nearly always faster using a Delta Lake checkpoint than using LIST
operations and reading Parquet file footers on an object store.

Any client may attempt to create a checkpoint up to a given log
record ID, and should write it as a .parquet file for the correspond-
ing ID if successful. For example, 000003.parquet would repre-
sent a checkpoint of the records up to and including 000003.json.
By default, our clients write checkpoints every 10 transactions.



Lastly, clients accessing the Delta Lake table need to efficiently
find the last checkpoint (and the tail of the log) without LISTing all
the objects in the _delta_log directory. Checkpoint writers write
their new checkpoint ID in the _delta_log/_last_checkpoint
file if it is newer than the current ID in that file. Note that it is fine
for the _last_checkpoint file to be out of date due to eventual
consistency issues with the cloud object store, because clients will
still search for new checkpoints after the ID in this file.

3.2 Access Protocols
Delta Lake’s access protocols are designed to let clients achieve

serializable transactions using only operations on the object store,
despite object stores’ eventual consistency guarantees. The key
choice that makes this possible is that a log record object, such
as 000003.json, is the “root” data structure that a client needs to
know to read a specific version of the table. Given this object’s
content, the client can then query for other objects from the object
store, possibly waiting if they are not yet visible due to eventual
consistency delays, and read the table data. For transactions that
perform writes, clients need a way to ensure that only a single writer
can create the next log record (e.g., 000003.json), and can then
use this to implement optimistic concurrency control.

3.2.1 Reading from Tables
We first describe how to run read-only transactions against a Delta

table. These transactions will safely read some version of the table.
Read-only transactions have five steps:

1. Read the _last_checkpoint object in the table’s log direc-
tory, if it exists, to obtain a recent checkpoint ID.

2. Use a LIST operation whose start key is the last checkpoint
ID if present, or 0 otherwise, to find any newer .json and
.parquet files in the table’s log directory. This provides a list
files that can be used to reconstruct the table’s state starting
from a recent checkpoint. (Note that, due to eventual consis-
tency of the cloud object store, this LIST operation may return
a non-contiguous set of objects, such has 000004.json and
000006.json but not 000005.json. Nonetheless, the client
can use the largest ID returned as a target table version to read
from, and wait for missing objects to become visible.)

3. Use the checkpoint (if present) and subsequent log records
identified in the previous step to reconstruct the state of the
table—namely, the set of data objects that have add records
but no corresponding remove records, and their associated
data statistics. Our format is designed so that this task can run
in parallel: for example, in our Spark connector, we read the
checkpoint Parquet file and log objects using Spark jobs.

4. Use the statistics to identify the set of data object files relevant
for the read query.

5. Query the object store to read the relevant data objects, pos-
sibly in parallel across a cluster. Note that due to eventual
consistency of the cloud object stores, some worker nodes
may not be able to query objects that the query planner found
in the log; these can simply retry after a short amount of time.

We note that this protocol is designed to tolerate eventual consis-
tency at each step. For example, if a client reads a stale version of
the _last_checkpoint file, it can still discover newer log files in
the subsequent LIST operation and reconstruct a recent snapshot
of the table. The _last_checkpoint file only helps to reduce the
cost of the LIST operation by providing a recent checkpoint ID.

Likewise, the client can tolerate inconsistency in listing the recent
records (e.g., gaps in the log record IDs) or in reading the data
objects referenced in the log that may not yet be visible to it in the
object store.

3.2.2 Write Transactions
Transactions that write data generally proceed in up to five steps,

depending on the operations in the transaction:

1. Identify a recent log record ID, say r, using steps 1–2 of the
read protocol (i.e., looking forward from the last checkpoint
ID). The transaction will then read the data at table version r
(if needed) and attempt to write log record r + 1.

2. Read data at table version r, if required, using the same steps
as the read protocol (i.e. combining the previous checkpoint
and any further log records, then reading the data objects
referenced in those).

3. Write any new data objects that the transaction aims to add to
the table into new files in the correct data directories, generat-
ing the object names using GUIDs. This step can happen in
parallel. At the end, these objects are ready to reference in a
new log record.

4. Attempt to write the transaction’s log record into the r + 1
.json log object, if no other client has written this object.
This step needs to be atomic, and we discuss how to achieve
that in various object stores shortly. If the step fails, the
transaction can be retried; depending on the query’s semantics,
the client can also reuse the new data objects it wrote in step
3 and simply try to add them to the table in a new log record.

5. Optionally, write a new .parquet checkpoint for log record
r + 1. (In practice, our implementations do this every 10
records by default.) Then, after this write is complete, update
the _last_checkpoint file to point to checkpoint r + 1.

Note that the fifth step, of writing a checkpoint and then updating
the _last_checkpoint object, only affects performance, and a
client failure anywhere during this step will not corrupt the data.
For example, if a client fails to write a checkpoint, or writes a
checkpoint Parquet object but does not update _last_checkpoint,
then other clients can still read the table using earlier checkpoints.
The transaction commits atomically if step 4 is successful.

Adding Log Records Atomically. As is apparent in the write
protocol, step 4, i.e., creating the r + 1 .json log record object,
needs to be atomic: only one client should succeed in creating the
object with that name. Unfortunately, not all large-scale storage
systems have an atomic put-if-absent operation, but we were able to
implement this step in different ways for different storage systems:

• Google Cloud Storage and Azure Blob Store support atomic
put-if-absent operations, so we use those.

• On distributed filesystems such as HDFS, we use atomic
renames to rename a temporary file to the target name (e.g.,
000004.json) or fail if it already exists. Azure Data Lake
Storage [18] also offers a filesystem API with atomic renames,
so we use the same approach there.

• Amazon S3 does not have atomic “put if absent” or rename
operations. In Databricks service deployments, we use a sep-
arate lightweight coordination service to ensure that only one
client can add a record with each log ID. This service is only
needed for log writes (not reads and not data operations), so



its load is low. In our open source Delta Lake connector for
Apache Spark, we ensure that writes going through the same
Spark driver program (SparkContext object) get different
log record IDs using in-memory state, which means that users
can still make concurrent operations on a Delta table in a sin-
gle Spark cluster. We also provide an API to plug in a custom
LogStore class that can use other coordination mechanisms
if the user wants to run a separate, strongly consistent store.

3.3 Available Isolation Levels
Given Delta Lake’s concurrency control protocols, all transactions

that perform writes are serializable, leading to a serial schedule in
increasing order of log record IDs. This follows from the commit
protocol for write transactions, where only one transaction can
write the record with each record ID. Read transactions can achieve
either snapshot isolation or serializability. The read protocol we
described in Section 3.2.1 only reads a snapshot of the table, so
clients that leverage this protocol will achieve snapshot isolation, but
a client that wishes to run a serializable read (perhaps between other
serializable transactions) could execute a read-write transaction that
performs a dummy write to achieve this. In practice, Delta Lake
connector implementations also cache the latest log record IDs they
have accessed for each table in memory, so clients will “read their
own writes” even if they use snapshot isolation for reads, and read a
monotonic sequence of table versions when doing multiple reads.

Importantly, Delta Lake currently only supports transactions
within one table. The object store log design could also be extended
to manage multiple tables in the same log in the future.

3.4 Transaction Rates
Delta Lake’s write transaction rate is limited by the latency of

the put-if-absent operations to write new log records, described in
Section 3.2.2. As in any optimistic concurrency control protocol, a
high rate of write transactions will result in commit failures. In prac-
tice, the latency of writes to object stores can be tens to hundreds
of milliseconds, limiting the write transaction rate to several trans-
actions per second. However, we have found this rate sufficient for
virtually all current Delta Lake applications: even applications that
ingest streaming data into cloud storage typically have a few highly
parallel jobs (e.g., Spark Streaming jobs) doing writes that can batch
together many new data objects in a transaction. If higher rates are
required in the future, we believe that a custom LogStore that coor-
dinates access to the log, similar to our S3 commit service, could
provide significantly faster commit times (e.g. by persisting the end
of the log in a low-latency DBMS and asynchronously writing it
to the object store). Of course, read transactions at the snapshot
isolation level create no contention, as they only read objects in the
object store, so any number of these can run concurrently.

4. HIGHER-LEVEL FEATURES IN DELTA
Delta Lake’s transactional design enables a wide range of higher-

level data management features, similar to many of the facilities in
a traditional analytical DBMS. In this section, we discuss some of
the most widely used features and the customer use cases or pain
points that motivated them.

4.1 Time Travel and Rollbacks
Data engineering pipelines often go awry, especially when ingest-

ing “dirty” data from external systems, but in a traditional data lake
design, it is hard to undo updates that added objects into a table.
In addition, some workloads, such as machine learning training,
require faithfully reproducing an old version of the data (e.g., to
compare a new and old training algorithm on the same data). Both

of these issues created significant challenges for Databricks users
before Delta Lake, requiring them to design complex remediations
to data pipeline errors or to duplicate datasets.

Because Delta Lake’s data objects and log are immutable, Delta
Lake makes it straightforward to query a past snapshot of the data,
as in typical MVCC implementations. A client simply needs to read
the table state based on an older log record ID. To facilitate time
travel, Delta Lake allows users to configure a per-table data retention
interval, and supports SQL AS OF timestamp and VERSION AS

OF commit_id syntax for reading past snapshots. Clients can also
discover which commit ID they just read or wrote in an operation
through Delta Lake’s API. For example, we use this API in the
MLflow open source project [51] to automatically record the table
versions read during an ML training workload.

Users have found time travel especially helpful for fixing errors
in data pipelines. For example, to efficiently undo an update that
overwrote some users’ data, an analyst could use a SQL MERGE

statement of the table against its previous version as follows:

MERGE INTO mytable target

USING mytable TIMESTAMP AS OF <old_date> source

ON source.userId = target.userId

WHEN MATCHED THEN UPDATE SET *

We are also developing a CLONE command that creates a copy-on-
write new version of a table starting at one of its existing snapshots.

4.2 Efficient UPSERT, DELETE and MERGE
Many analytical datasets in enterprises need to be modified over

time. For example, to comply with data privacy regulations such as
GDPR [27], enterprises need to be able to delete data about a specific
user on demand. Even with internal datasets that are not about
individuals, old records may need to be updated due to errors in
upstream data collection or late-arriving data. Finally, applications
that compute an aggregate dataset (e.g., a table summary queried by
business analysts) will need to update it over time.

In traditional data lake storage formats, such as a directory of
Parquet files on S3, it is hard to perform these updates without stop-
ping concurrent readers. Even then, update jobs must be executed
carefully because a failure during the job will leave the table in a
partially-updated state. With Delta Lake, all of these operations can
be executed transactionally, replacing any updated objects through
new add and remove records in the Delta log. Delta Lake supports
standard SQL UPSERT, DELETE and MERGE syntax.

4.3 Streaming Ingest and Consumption
Many data teams wish to deploy streaming pipelines to ETL

or aggregate data in real time, but traditional cloud data lakes are
difficult to use for this purpose. These teams thus deploy a separate
streaming message bus, such as Apache Kafka [11] or Kinesis [2],
which often duplicates data and adds management complexity.

We designed Delta Lake so that a table’s log can help both data
producers and consumers treat it as a message queue, removing the
need for separate message buses in many scenarios. This support
comes from three main features:

Write Compaction. A simple data lake organized as a collection
of objects makes it easy to insert data (just write a new object),
but creates an unpleasant tradeoff between write latency and query
performance. If writers wish to add new records into a table quickly
by writing small objects, readers will ultimately be slowed down
due to smaller sequential reads and more metadata operations. In
contrast, Delta Lake allows users to run a background process that
compacts small data objects transactionally, without affecting read-
ers. Setting dataChange flag to false on log records that compact



files, described in Section 3.1.2, also allows streaming consumers to
ignore these compaction operations altogether if they have already
read the small objects. Thus, streaming applications can quickly
transfer data to one another by writing small objects, while queries
on old data stay fast.

Exactly-Once Streaming Writes. Writers can use the txn action
type in log records, described in Section 3.1.2, to keep track of which
data they wrote into a Delta Lake table and implement “exactly-once”
writes. In general, stream processing systems that aim to update
data in an external store need some mechanism to make their writes
idempotent in order to avoid duplicate writes after a failure. This
could be done by ensuring that each record has a unique key in the
case of overwrites, or more generally, by atomically updating a “last
version written” record together with each write, which can then be
used to only write newer changes. Delta Lake facilitates this latter
pattern by allowing applications to update an (appId, version)

pair with each transaction. We use this feature in our Structured
Streaming [14] connector to support exactly-once writes for any
kind of streaming computation (append, aggregation, upsert, etc).

Efficient Log Tailing. The final tool needed to use Delta Lake ta-
bles as message queues is a mechanism for consumers to efficiently
find new writes. Fortunately, the storage format for the log, in a se-
ries of .json objects with lexicographically increasing IDs, makes
this easy: a consumer can simply run object store LIST operations
starting at the last log record ID it has seen to discover new ones.
The dataChange flag in log records allows streaming consumers to
skip log records that only compact or rearrange existing data, and
just read new data objects. It is also easy for a streaming application
to stop and restart at the same log record in a Delta Lake table by
remembering the last record ID it finished processing.

Combining these three features, we found that many users could
avoid running a separate message bus system altogether and use
a low-cost cloud object store with Delta to implement streaming
pipelines with latency on the order of seconds.

4.4 Data Layout Optimization
Data layout has a large effect on query performance in analyti-

cal systems, especially because many analytical queries are highly
selective. Because Delta Lake can update the data structures that
represent a table transactionally, it can support a variety of layout
optimizations without affecting concurrent operations. For example,
a background process could compact data objects, change the record
order within these objects, or even update auxiliary data structures
such as data statistics and indexes without impacting other clients.
We take advantage of this property to implement a number of data
layout optimization features:

OPTIMIZE Command. Users can manually run an OPTIMIZE

command on a table that compacts small objects without affecting
ongoing transactions, and computes any missing statistics. By de-
fault, this operation aims to make each data object 1 GB in size,
a value that we found suitable for many workloads, but users can
customize this value.

Z-Ordering by Multiple Attributes. Many datasets receive
highly selective queries along multiple attributes. For example,
one network security dataset that we worked with stored informa-
tion about data sent on the network in as (sourceIp, destIp, time)
tuples, with highly selective queries along each of these dimensions.
A simple directory partitioning scheme, as in Apache Hive [45], can
help to partition the data by a few attributes once it is written, but
the number of partitions becomes prohibitively large when using
multiple attributes. Delta Lake supports reorganizing the records

Figure 3: DESCRIBE HISTORY output for a Delta Lake table on
Databricks, showing where each update came from.

in a table in Z-order [35] along a given set of attributes to achieve
high locality along multiple dimensions. The Z-order curve is an
easy-to-compute space-filling curve that creates locality in all of the
specified dimensions. It can lead to significantly better performance
for query workloads that combine these dimensions in practice, as
we show in Section 6. Users can set a Z-order specification on a ta-
ble and then run OPTIMIZE to move a desired subset of the data (e.g.,
just the newest records) into Z-ordered objects along the selected
attributes. Users can also change the order later.

Z-ordering works hand-in-hand with data statistics to let queries
read less data. In particular, Z-ordering will tend to make each data
object contain a small range of the possible values in each of the
chosen attributes, so that more data objects can be skipped when
running a selective query.

AUTO OPTIMIZE. On Databricks’s cloud service, users can set
the AUTO OPTIMIZE property on a table to have the service auto-
matically compact newly written data Objects.

More generally, Delta Lake’s design also allows maintaining
indexes or expensive-to-compute statistics when updating a table.
We are exploring several new features in this area.

4.5 Caching
Many cloud users run relatively long-lived clusters for ad-hoc

query workloads, possibly scaling the clusters up and down auto-
matically based on their workload. In these clusters, there is an
opportunity to accelerate queries on frequently accessed data by
caching object store data on local devices. For example, AWS i3 in-
stances offer 237 GB of NVMe SSD storage per core at roughly 50%
higher cost than the corresponding m5 (general-purpose) instances.

At Databricks, we built a feature to cache Delta Lake data on
clusters transparently, which accelerates both data and metadata
queries on these tables by caching data and log objects. Caching is
safe because data, log and checkpoint objects in Delta Lake tables
are immutable. As we show in Section 6, reading from the cache
can significantly increase query performance.

4.6 Audit Logging
Delta Lake’s transaction log can also be used for audit logging

based on commitInfo records. On Databricks, we offer a locked-
down execution mode for Spark clusters where user-defined func-
tions cannot access cloud storage directly (or call private APIs in
Apache Spark), which allows us to ensure that only the runtime
engine can write commitInfo records, and ensures an immutable
audit log. Users can view the history of a Delta Lake table using
the DESCRIBE HISTORY command, as shown in Figure 3. Commit
information logging is also available in the open source version of



Delta Lake. Audit logging is a data security best practice that is
increasingly mandatory for many enterprises due to regulation.

4.7 Schema Evolution and Enforcement
Datasets maintained over a long time often require schema up-

dates, but storing these datasets as “just a bunch of objects” means
that older objects (e.g., old Parquet files) might have the “wrong”
schema. Delta Lake can perform schema changes transactionally
and update the underlying objects along with the schema change
if needed (e.g., delete a column that the user no longer wishes to
retain). Keeping a history of schema updates in the transaction
log can also allow using older Parquet objects without rewriting
them for certain schema changes (e.g., adding columns). Equally
importantly, Delta clients ensure that newly written data follows the
table’s schema. These simple checks have caught many user errors
appending data with the wrong schema that had been challenging to
trace down when individual jobs were simply writing Parquet files
to the same directory before the use of Delta Lake.

4.8 Connectors to Query and ETL Engines
Delta Lake provides full-fledged connectors to Spark SQL and

Structured Streaming using Apache Spark’s data source API [16].
In addition, it currently provides read-only integrations with several
other systems: Apache Hive, Presto, AWS Athena, AWS Redshift,
and Snowflake, enabling users of these systems to query Delta tables
using familiar tools and join them with data in these systems. Finally,
ETL and Change Data Capture (CDC) tools including Fivetran,
Informatica, Qlik and Talend can write to Delta Lake [33, 26].

Several of the query engine integrations use a special mechanism
that was initially used for symbolic links in Hive, called symlink
manifest files. A symlink manifest file is a text file in the object
store or file system that contains a lists of paths that should be
visible in a directory. Various Hive-compatible systems can look for
such manifest files, usually named _symlink_format_manifest,
when they read a directory, and then treat the paths specified in the
manifest file as the contents of the directory. In the context of Delta
Lake, manifest files allow us to expose as static snapshot of the
Parquet data objects that make up a table to readers that support
this input format, by simply creating a manifest file that lists those
objects. This file can be written atomically for each directory, which
means that systems that read from a non-partitioned Delta table see
a fully consistent read-only snapshot of the table, while systems
that read from a partitioned table see a consistent snapshot of each
partition directory. To generate manifest files for a table, users run a
simple SQL command. They can then load the data as an external
table in Presto, Athena, Redshift or Snowflake.

In other cases, such as Apache Hive, the open source community
has designed a Delta Lake connector using available plugin APIs.

5. DELTA LAKE USE CASES
Delta Lake is currently in active use at thousands of Databricks

customers, where it processes exabytes of data per day, as well as
at other organizations in the open source community [26]. These
use cases span a variety of data sources and applications. The data
types stored in Delta Lake include Change Data Capture (CDC)
logs from enterprise OLTP systems, application logs, time series
data, graphs, aggregate tables for reporting, and image or feature
data for machine learning (ML). The applications running over this
data include SQL workloads (the most common application type),
business intelligence, streaming, data science, machine learning
and graph analytics. Delta Lake is a good fit for most data lake
applications that would have used structured storage formats such as
Parquet or ORC, and many traditional data warehousing workloads.

Across these use cases, we found that customers often use Delta
Lake to simplify their enterprise data architectures, by running
more workloads directly against cloud object stores and creating a
“lakehouse” system with both data lake and transactional features.
For example, consider a typical data pipeline that loads records
from multiple sources—say, CDC logs from an OLTP database and
sensor data from a facility—and then passes it through ETL steps to
make derived tables available for data warehousing and data science
workloads (as in Figure 1). A traditional implementation would
need to combine message queues such as Apache Kafka [11] for
any results that need to be computed in real time, a data lake for
long-term storage, and a data warehouse such as Redshift [3] for
users that need fast analytical queries by leveraging indexes and fast
node-attached storage device (e.g., SSDs). This requires multiple
copies of the data and constantly running ingest jobs into each
system. With Delta Lake, several of these storage systems can be
replaced with object store tables depending on the workloads, taking
advantage of features such as ACID transactions, streaming I/O and
SSD caching to regain some of the performance optimizations in
each specialized system. Although Delta Lake clearly cannot replace
all the functionality in the systems we listed, we found that in many
cases it can replace at least some of them. Delta’s connectors (§4.8)
also enable querying it from many existing engines.

In the rest of this section, we detail several common use cases.

5.1 Data Engineering and ETL
Many organizations are migrating ETL/ELT and data warehous-

ing workloads to the cloud to simplify their management, while
others are augmenting traditional enterprise data sources (e.g., point-
of-sale events in OLTP systems) with much larger data streams from
other sources (e.g., web visits or inventory tracking systems) for
downstream data and machine learning applications. These appli-
cations all require a reliable and easy-to-maintain data engineering
/ ETL process to feed them with data. When organizations deploy
their workloads to the cloud, we found that many of them prefer us-
ing cloud object stores as a landing area (data lake) to minimize stor-
age costs, and then compute derived datasets that they load into more
optimized data warehouse systems (perhaps with node-attached stor-
age). Delta Lake’s ACID transactions, UPSERT/MERGE support
and time travel features allow these organizations to reuse existing
SQL queries to perform their ETL process directly on the object
store, and to leverage familiar maintenance features such as roll-
backs, time travel and audit logs. Moreover, using a single storage
system (Delta Lake) instead of a separate data lake and warehouse
reduces the latency to make new data queryable by removing the
need for a separate ingest process. Finally, Delta Lake’s support of
both SQL and programmatic APIs (via Apache Spark) makes it easy
to write data engineering pipelines using a variety of tools.

This data engineering use case is common in virtually all the
data and ML workloads we encountered, spanning industries such
as financial services, healthcare and media. In many cases, once
their basic ETL pipeline is complete, organizations also expose part
of their data to new workloads, which can simply run on separate
clusters accessing the same object store with Delta Lake (e.g., a data
science workload using PySpark). Other organizations convert parts
of the pipeline to streaming queries using tools as Spark’s Structured
Streaming (streaming SQL) [14]. These other workloads can easily
run on new cloud VMs and access the same tables.

5.2 Data Warehousing and BI
Traditional data warehouse systems combine ETL/ELT function-

ality with efficient tools to query the tables produced to enable inter-
active query workloads such as business intelligence (BI). The key



technical features to support these workloads are usually efficient
storage formats (e.g. columnar formats), data access optimizations
such as clustering and indexing, fast storage hardware, and a suit-
ably optimized query engine [43]. Delta Lake can support all these
features directly for tables in a cloud object store, through its com-
bination of columnar formats, data layout optimization, max-min
statistics, and SSD caching, all of which can be implemented reli-
ably due to its transactional design. Thus, we have found that most
Delta Lake users also run ad-hoc query and BI workloads against
their lakehouse datasets, either through SQL directly or through BI
software such as Tableau. This use case is common enough that
Databricks has developed a new vectorized execution engine for BI
workloads [21], as well as optimizations to its Spark runtime. Like
in the case of ETL workloads, one advantage of running BI directly
on Delta Lake is that it is easier to give analysts fresh data to work
on, since the data does not need to be loaded into a separate system.

5.3 Compliance and Reproducibility
Traditional data lake storage formats were designed mostly for

immutable data, but new data privacy regulation such as the EU’s
GDPR [27], together with industry best practices, require orga-
nizations to have an efficient way to delete or correct data about
individual users. We have seen organizations multiple industries
convert existing cloud datasets to Delta Lake in order to use its effi-
cient UPSERT, MERGE and DELETE features. Users also leverage
the audit logging feature (Section 4.6) for data governance.

Delta Lake’s time travel support is also useful for reproducible
data science and machine learning. We have integrated Delta Lake
with MLflow [51], an open source model management platform
developed at Databricks, to automatically record which version of a
dataset was used to train an ML model and let developers reload it.

5.4 Specialized Use Cases

5.4.1 Computer System Event Data
One of the largest single use cases we have seen deploys Delta

Lake as a Security Information and Event Management (SIEM)
platform at a large technology company. This organization logs
a wide range of computer system events throughout the company,
such as TCP and UDP flows on the network, authentication requests,
SSH logins, etc., into a centralized set of Delta Lake tables that span
well into the petabytes. Multiple programmatic ETL, SQL, graph
analytics and machine learning jobs then run against these tables to
search for known patterns that indicate an intrusion (e.g., suspicious
login events from a user, or a set of servers exporting a large amount
of data). Many of these are streaming jobs to minimize the time to
detect issues. In addition, over 100 analysts query the source and
derived Delta Lake tables directly to investigate suspicious alerts or
to design new automated monitoring jobs.

This information security use case is interesting because it is easy
to collect vast amounts of data automatically (hundreds of terabytes
per day in this deployment), because the data has to be kept for a
long time to allow forensic analysis for newly discovered intrusions
(sometimes months after the fact), and because the data needs to be
queried along multiple dimensions. For example, if an analyst dis-
covers that a particular server was once compromised, she may wish
to query network flow data by source IP address (to see what other
servers the attacker reached from there), by destination IP address
(to see how the attacker logged into the original server), by time,
and by any number of other dimensions (e.g., an employee access
token that this attacker obtained). Maintaining heavyweight index
structures for these multi-petabyte datasets would be highly expen-
sive, so this organization uses Delta Lake’s ZORDER BY feature to

rearrange the records within Parquet objects to provide clustering
across many dimensions. Because forensic queries along these di-
mensions are highly selective (e.g., looking for one IP address out
of millions), Z-ordering combines well with Delta Lake min/max
statistics-based skipping to significantly reduce the number of ob-
jects that each query has to read. Delta Lake’s AUTO OPTIMIZE

feature, time travel and ACID transactions have also played a large
role in keeping these datasets correct and fast to access despite
hundreds of developers collaborating on the data pipeline.

5.4.2 Bioinformatics
Bioinformatics is another domain where we have seen Delta Lake

used extensively to manage machine-generated data. Numerous data
sources, including DNA sequencing, RNA sequencing, electronic
medical records, and time series from medical devices, have enabled
biomedical companies to collect detailed information about patients
and diseases. These data sources are often joined against public
datasets, such as the UK Biobank [44], which holds sequencing
information and medical records for 500,000 individuals.

Although traditional bioinformatics tools have used custom data
formats such as SAM, BAM and VCF [34, 24], many organizations
are now storing this data in data lake formats such as Parquet. The
Big Data Genomics project [37] pioneered this approach. Delta Lake
further enhances bioinformatics workloads by enabling fast multi-
dimensional queries (through Z-ordering), ACID transactions, and
efficient UPSERTs and MERGEs. In several cases, these features
have led to over 100× speedups over previous Parquet implementa-
tions. In 2019, Databricks and Regeneron released Glow [28], an
open source toolkit for genomics data that uses Delta for storage.

5.4.3 Media Datasets for Machine Learning
One of the more surprising applications we have seen is using

Delta Lake to manage multimedia datasets, such as a set of images
uploaded to a website that needs to be used for machine learning. Al-
though images and other media files are already encoded in efficient
binary formats, managing these datasets as collections of millions
of objects in a cloud object store is challenging because each object
is only a few kilobytes in size. Object store LIST operations can
take minutes to run, and it is also difficult to read enough objects
in parallel to feed a machine learning inference job running on
GPUs. We have seen multiple organizations store these media files
as BINARY records in a Delta table instead, and leverage Delta for
faster inference queries, stream processing, and ACID transactions.
For example, leading e-commerce and travel companies are using
this approach to manage the millions of user-uploaded images.

6. PERFORMANCE EXPERIMENTS
In this section, we motivate some of Delta Lake’s features through

performance experiments. We study (1) the impact of tables with a
large number of objects or partitions on open source big data sys-
tems, which motivates Delta Lake’s decision to centralize metadata
and statistics in checkpoints, and (2) the impact of Z-ordering on
a selective query workload from a large Delta Lake use case. We
also show that Delta improves query performance vs. Parquet on
TPC-DS and does not add significant overhead for write workloads.

6.1 Impact of Many Objects or Partitions
Many of the design decisions in Delta Lake stem from the high

latency of listing and reading objects in cloud object stores. This
latency can make patterns like loading a stream as thousands of small
objects or creating Hive-style partitioned tables with thousands
of partitions expensive. Small files are also often a problem in
HDFS [36], but the performance impact is worse with cloud storage.
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could be skipped using min/max statistics for either a global
sort order on the four fields, or Z-order.

To evaluate the impact of a high number of objects, we created
16-node AWS clusters of i3.2xlarge VMs (where each VM has 8
vCPUs, 61 GB RAM and 1.9 TB SSD storage) using Databricks and
a popular cloud vendor that offers hosted Apache Hive and Presto.
We then created small tables with 33,000,000 rows but between
1000 and 1,000,000 partitions in S3, to measure just the metadata
overhead of a large number of partitions, and ran a simple query that
sums all the records. We executed this query on Apache Spark as
provided by the Databricks Runtime [25] (which contains optimiza-
tions over open source Spark) and Hive and Presto as offered by the
other vendor, on both Parquet and Delta Lake tables. As shown in
Figure 4, Databricks Runtime with Delta Lake significantly outper-
forms the other systems, even without the SSD cache. Hive takes
more than an hour to find the objects in a table with only 10,000 par-
titions, which is a reasonable number of to expect when partitioning
a table by date and one other attribute, and Presto takes more than an
hour for 100,000 partitions. Databricks Runtime listing Parquet files
completes in 450 seconds with 100,000 partitions, largely because
we have optimized it to run LIST requests in parallel across the
cluster. However, Delta Lake takes 108 seconds even with 1 million
partitions, and only 17 seconds if the log is cached on SSDs.

While millions of Hive partitions may seem unrealistic, real-
world petabyte-scale tables using Delta Lake do contain hundreds
of millions of objects, and listing these large objects is as expensive
as listing the small objects in our experiment.

6.2 Impact of Z-Ordering
To motivate Z-ordering, we evaluate the percent of data objects

in a table skipped using Z-ordering compared to partitioning or
sorting the table by a single column. We generate a dataset inspired

0.93 0.99
1.44

3.76

0

1

2

3

4

TP
C

-D
S 

Po
w

er
 

Te
st

 D
ur

at
io

n 
(h

)

Databricks, Delta

Databricks, Parquet

3rd-Party Spark, Parquet

3rd-Party Presto, Parquet

Figure 6: TPC-DS power test duration for Spark on Databricks
and Spark and Presto on a third-party cloud service.

by the information security use case in Section 5.4.1, with four
fields: sourceIP, sourcePort, destIP and destPort, where
each record represents a network flow. We generate records by
selecting 32-bit IP addresses and 16-bit port numbers uniformly at
random, and we store the table as 100 Parquet objects. We then eval-
uate the number of objects that can be skipped in queries that search
for records matching a specific value in each of the dimensions (e.g.,
SELECT SUM(col) WHERE sourceIP = "127.0.0.1").

Figure 5 shows the results using either (1) a global sort order
(specifically, sourceIP, sourcePort, destIP and destPort in
that order) and (2) Z-ordering by these four fields. With the global
order, searching by source IP results in effective data skipping using
the min/max column statistics for the Parquet objects (most queries
only need to read one of the 100 Parquet objects), but searching
by any other field is ineffective, because each file contains many
records and its min and max values for those columns are close to
the min and max for the whole dataset. In contrast, Z-ordering by all
four columns allows skipping at least 43% of the Parquet objects for
queries in each dimension, and 54% on average if we assume that
queries in each dimension are equally likely (compared to 25% for
the single sort order). These improvements are higher for tables with
even more Parquet objects because each object contains a smaller
range of the Z-order curve, and hence, a smaller range of values in
each dimension. For example, multi-attribute queries on a 500 TB
network traffic dataset at the organization described in Section 5.4.1,
Z-ordered using multiple fields similar to this experiment, were able
to skip 93% of the data in the table.

6.3 TPC-DS Performance
To evaluate end-to-end performance of Delta Lake on a stan-

dard DBMS benchmark, we ran the TPC-DS power test [47] on
Databricks Runtime (our implementation of Apache Spark) with
Delta Lake and Parquet file formats, and on the Spark and Presto
implementations in a popular cloud service. Eacy system ran one
master and 8 workers on i3.2xlarge AWS VMs, which have 8 vC-
PUs each. We used 1 TB of total TPC-DS data in S3, with fact tables
partitioned on the surrogate key date column. Figure 6 shows the
average duration across three runs of the test in each configuration.
We see that Databricks Runtime with Delta Lake outperforms all
the other configurations. In this experiment, some of Delta Lake’s
advantages handling large numbers of partitions (Section 6.1) do
not manifest because many tables are small, but Delta Lake does
provide a speedup over Parquet, primarily due to speeding up the
longer queries in the benchmark. The execution and query planning
optimizations in Databricks Runtime account for the difference over
the third party Spark service (both are based on Apache Spark 2.4).

6.4 Write Performance
We also evaluated the performance of loading a large dataset into

Delta Lake as opposed to Parquet to test whether Delta’s statistics
collection adds significant overhead. Figure 7 shows the time to load
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Figure 7: Time to load 400 GB of TPC-DS store_sales data
into Delta or Parquet format.

a 400 GB TPC-DS store_sales table, initially formatted as CSV,
on a cluster with one i3.2xlarge master and eight i3.2xlarge
workers (with results averaged over 3 runs). Spark’s performance
writing to Delta Lake is similar to writing to Parquet, showing that
statistics collection does not add a significant overhead over the
other data loading work.

7. DISCUSSION AND LIMITATIONS
Our experience with Delta Lake shows that ACID transactions

can be implemented over cloud object stores for many enterprise
data processing workloads, and that they can support large-scale
streaming, batch and interactive workloads. Delta Lake’s design
is especially attractive because it does not require any other heavy-
weight system to mediate access to cloud storage, making it trivial
to deploy and directly accessible from a wide range of query engines
that support Parquet. Delta Lake’s support for ACID then enables
other powerful performance and management features.

Nonetheless, Delta Lake’s design and the current implementa-
tion have some limits that are interesting avenues for future work.
First, Delta Lake currently only provides serializable transactions
within a single table, because each table has its own transaction log.
Sharing the transaction log across multiple tables would remove
this limitation, but might increase contention to append log records
via optimistic concurrency. For very high transaction volumes, a
coordinator could also mediate write access to the log without be-
ing part of the read and write path for data objects. Second, for
streaming workloads, Delta Lake is limited by the latency of the
underlying cloud object store. For example, it is difficult to achieve
millisecond-scale streaming latency using object store operations.
However, we found that for the large-scale enterprise workloads
where users wish to run parallel jobs, latency on the order of a few
seconds using Delta Lake tables was acceptable. Third, Delta Lake
does not currently support secondary indexes (other than the min-
max statistics for each data object), but we have started prototyping
a Bloom filter based index. Delta’s ACID transactions allow us to
update such indexes transactionally with changes to the base data.

8. RELATED WORK
Multiple research and industry projects have sought to adapt data

management systems to a cloud environment. For example, Brant-
ner et al. explored building an OLTP database system over S3 [20];
bolt-on consistency [19] implements causal consistency on top of
eventually consistent key-value stores; AWS Aurora [49] is a com-
mercial OLTP DBMS with separately scaling compute and storage
layers; and Google BigQuery [29], AWS Redshift Spectrum [39]
and Snowflake [23] are OLAP DBMSes that can scale computing
clusters separately from storage and can read data from cloud ob-
ject stores. Other work, such as the Relational Cloud project [22],
considers how to automatically adapt DBMS engines to elastic,
multi-tenant workloads.

Delta Lake shares these works’ vision of leveraging widely avail-
able cloud infrastructure, but targets a different set of requirements.
Specifically, most previous DBMS-on-cloud-storage systems re-
quire the DBMS to mediate interactions between clients and storage
(e.g., by having clients connect to an Aurora or Redshift frontend
server). This creates an additional operational burden (frontend
nodes have to always be running), as well as possible scalability,
availability or cost issues when streaming large amounts of data
through the frontend nodes. In contrast, we designed Delta Lake so
that many, independently running clients could coordinate access
to a table directly through cloud object store operations, without a
separately running service in most cases (except for a lightweight
coordinator for log record IDs on S3, as described in §3.2.2). This
design makes Delta Lake operationally simple for users and ensures
highly scalable reads and writes at the same cost as the underly-
ing object store. Moreover, the system is as highly available as
the underlying cloud object store: no other components need to be
hardened or restarted for disaster recovery. Of course, this design
is feasible here due to the nature of the workload that Delta Lake
targets: an OLAP workload with relatively few write transactions
per second, but large transaction sizes, which works well with our
optimistic concurrency approach.

The closest systems to Delta Lake’s design and goals are Apache
Hudi [8] and Apache Iceberg [10], both of which define data formats
and access protocols to implement transactional operations on cloud
object stores. These systems were developed concurrently with
Delta Lake and do not provide all its features. For example, neither
system provides data layout optimizations such as Delta Lake’s
ZORDER BY (§4.4), a streaming input source that applications can
use to efficiently scan new records added to a table (§4.3), or support
for local caching as in the Databricks service (§4.5). In addition,
Apache Hudi only supports one writer at a time (but multiple read-
ers) [9]. Both projects offer connectors to open source engines
including Spark and Presto, but lack connectors to commercial data
warehouses such as Redshift and Snowflake, which we implemented
using manifest files (§4.8), and to commercial ETL tools.

Apache Hive ACID [32] also implements transactions over object
stores or distributed file systems, but it relies on the Hive metastore
(running in an OLTP DBMS) to track the state of each table. This
can create a bottleneck in tables with millions of partitions, and
increases users’ operational burden. Hive ACID also lacks support
for time travel (§4.1). Low-latency stores over HDFS, such as
HBase [7] and Kudu [6], can also combine small writes before
writing to HDFS, but require running a separate distributed system.

There is a long line of work to combine high-performance trans-
actional and analytical processing, exemplified by C-Store [43] and
HTAP systems. These systems usually have a separate writable store
optimized for OLTP and a long-term store optimized for analytics.
In our work, we sought instead to support a modest transaction rate
without running a separate highly available write store by designing
the concurrency protocol to go directly against object stores.

9. CONCLUSION
We have presented Delta Lake, an ACID table storage layer over

cloud object stores that enables a wide range of DBMS-like perfor-
mance and management features for data in low-cost cloud storage.
Delta Lake is implemented solely as a storage format and a set of
access protocols for clients, making it simple to operate and highly
available, and giving clients direct, high-bandwidth access to the
object store. Delta Lake is used at thousands of organizations to pro-
cesses exabytes of data per day, oftentimes replacing more complex
architectures that involved multiple data management systems. It is
open source under an Apache 2 license at https://delta.io.

https://delta.io
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