
Combining Concurrency
Control and Recovery

Instructor: Matei Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

Outline
What makes a schedule serializable?
Conflict serializability

Precedence graphs
Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation

Concurrency control + recovery

CS 245 2

Example: Tj Ti

wj(A)
ri(A)
Commit Ti

Abort Tj

Concurrency Control & Recovery

…
…

… …
…

…

CS 245 3

Non-persistent commit (bad!)
avoided by
recoverable
schedules

Example: Tj Ti

wj(A)
ri(A)
wi(B)

Abort Tj
[Commit Ti]

…
…

…

…
…

…

CS 245 4

Concurrency Control & Recovery

Cascading rollback (bad!)
avoided by
avoids-cascading
-rollback (ACR)
schedules

Core Problem

Schedule is conflict serializable

Tj Ti

But not recoverable

CS 245 5

To Resolve This

Need to mark “final” decision for each
transaction:
» Commit decision: system guarantees

transaction will or has completed, no matter
what

» Abort decision: system guarantees
transaction will or has been rolled back

CS 245 6

To Model This, 2 New Actions:

ci = transaction Ti commits

ai = transaction Ti aborts

CS 245 7

...
...

...
...

Tj Ti

wj(A)
ri(A)

ci ¬ can we commit here?

Back to Example

CS 245 8

Definition
Ti reads from Tj in S (Tj ÞS Ti) if:

1. wj(A) <S ri(A)

2. aj <S r(A) (<S: does not precede)

3. If wj(A) <S wk(A) <S ri(A) then ak <S ri(A)

CS 245 9

Definition

Schedule S is recoverable if

whenever Tj ÞS Ti and j ¹ i and Ci Î S

then Cj <S Ci

CS 245 10

Notes

In all transactions, reads and writes must
precede commits or aborts
ó If ci Î Ti, then ri(A) < ai, wi(A) < ai

ó If ai Î Ti, then ri(A) < ai, wi(A) < ai

Also, just one of ci, ai per transaction

CS 245 11

How to Achieve Recoverable
Schedules?

CS 245 12

With 2PL, Hold Write Locks
Until Commit (“Strict 2PL”)

Tj Ti
Wj(A)

Cj
uj(A)

ri(A)

CS 245 13

...
...

...
...

...
...

With Validation, No Change!

Each transaction’s validation point is its
commit point, and only write after

CS 245 14

Definitions
S is recoverable if each transaction commits
only after all transactions from which it read
have committed.

S avoids cascading rollback if each
transaction may read only those values
written by committed transactions.

S is strict if each transaction may read and
write only items previously written by
committed transactions (≡ strict 2PL).
CS 245 15

Relationship of Recoverable,
ACR & Strict Schedules

Avoids cascading rollback

Recoverable

ACR

Strict

Serial

CS 245 16

Examples
Recoverable:

w1(A) w1(B) w2(A) r2(B) c1 c2

Avoids Cascading Rollback:
w1(A) w1(B) w2(A) c1 r2(B) c2

Strict:
w1(A) w1(B) c1 w2(A) r2(B) c2

CS 245 17

Recoverability & Serializability

Every strict schedule is serializable

Proof: equivalent to serial schedule based on
the order of commit points
» Only read/write from previously committed

transactions

CS 245 18

Recoverability & Serializability

CS 245 19

Distributed Databases

Instructor: Matei Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

Why Distribute Our DB?

Store the same data item on multiple nodes to
survive node failures (replication)

Divide data items & work across nodes to
increase scale, performance (partitioning)

Related reasons:
» Maintenance without downtime
» Elastic resource use (don’t pay when unused)

CS 245 21

Outline

Replication strategies

Partitioning strategies

AC & 2PC

CAP

Avoiding coordination

CS 245 22

Outline

Replication strategies

Partitioning strategies

AC & 2PC

CAP

Avoiding coordination

CS 245 23

Replication

General problem:
» How do recover from server failures?
» How to handle network failures?

CS 245 24

CS 245 25

Replication

Store each data item on multiple nodes!

Question: how to read/write to them?

CS 245 26

Primary-Backup

Elect one node “primary”

Store other copies on “backup”

Send requests to primary, which then forwards
operations or logs to backups

Backup coordination is either:
» Synchronous (write to backups before acking)
» Asynchronous (backups slightly stale)

CS 245 27

Quorum Replication

Read and write to intersecting sets of
servers; no one “primary”

Common: majority quorum
» More exotic ones exist, like grid quorums

Surprise: primary-backup
is a quorum too! C1: Write

C2: ReadCS 245 28

What If We Don’t Have
Intersection?

CS 245 29

What If We Don’t Have
Intersection?
Alternative: “eventual consistency”
» If writes stop, eventually all replicas will

contain the same data
» Basic idea: asynchronously broadcast all

writes to all replicas

When is this acceptable?

CS 245 30

How Many Replicas?

In general, to survive F fail-stop failures, need
F+1 replicas

Question: what if replicas fail arbitrarily?
Adversarially?

CS 245 31

What To Do During Failures?

Cannot contact primary?

CS 245 32

What To Do During Failures?

Cannot contact primary?
» Is the primary failed?
» Or can we simply not contact it?

CS 245 33

What To Do During Failures?

Cannot contact majority?
» Is the majority failed?
» Or can we simply not contact it?

CS 245 34

Solution to Failures:

Traditional DB: page the DBA

Distributed computing: use consensus
» Several algorithms: Paxos, Raft
» Today: many implementations

• Zookeeper, etcd, Consul
» Idea: keep a reliable, distributed shared

record of who is “primary”

CS 245 35

Consensus in a Nutshell

Goal: distributed agreement
» e.g., on who is primary

Participants broadcast votes
» If majority of notes ever accept a vote v,

then they will eventually choose v
» In the event of failures, retry
» Randomization greatly helps!

Take CS244B

CS 245 36

What To Do During Failures?

Cannot contact majority?
» Is the majority failed?
» Or can we simply not contact it?

Consensus can provide an answer!
» Although we may need to stall…
» (more on that later)

CS 245 37

Replication Summary

Store each data item on multiple nodes!

Question: how to read/write to them?
» Answers: primary-backup, quorums
» Use consensus to decide on configuration

CS 245 38

Outline

Replication strategies

Partitioning strategies

AC & 2PC

CAP

Avoiding coordination

CS 245 39

Partitioning

General problem:
» Databases are big!
» What if we don’t want to store the whole

database on each server?

CS 245 40

Partitioning Basics

Split database into chunks called “partitions”
» Typically partition by row
» Can also partition by column (rare)

Put one or more partitions per server

CS 245 41

Partitioning Strategies

Hash keys to servers
» Random assignment

Partition keys by range
» Keys stored contiguously

What if servers fail (or we add servers)?
» Rebalance partitions (use consensus!)

Pros/cons of hash vs range partitioning?

CS 245 42

What About Distributed
Transactions?
Replication:
» Must make sure replicas stay up to date
» Need to reliably replicate commit log!

Partitioning:
» Must make sure all partitions commit/abort
» Need cross-partition concurrency control!

CS 245 43

Outline

Replication strategies

Partitioning strategies

AC & 2PC

CAP

Avoiding coordination

CS 245 44

Atomic Commitment

Informally: either all participants commit a
transaction, or none do

“participants” = partitions involved in a given
transaction

CS 245 45

So, What’s Hard?

CS 245 46

So, What’s Hard?

All the problems as consensus…

…plus, if any node votes to abort, all must
decide to abort
» In consensus, simply need agreement on

“some” value

CS 245 47

Two-Phase Commit

Canonical protocol for atomic commitment
(developed 1976-1978)

Basis for most fancier protocols

Widely used in practice

Use a transaction coordinator
» Usually client – not always!

CS 245 48

Two Phase Commit (2PC)
1. Transaction coordinator sends prepare

message to each participating node

2. Each participating node responds to
coordinator with prepared or no

3. If coordinator receives all prepared:
» Broadcast commit

4. If coordinator receives any no:
» Broadcast abort

CS 245 49

Case 1: Commit

CS 245 50UW CSE545

UW CSE545

Case 2: Abort

2PC + Validation

Participants perform validation upon receipt
of prepare message

Validation essentially blocks between prepare
and commit message

CS 245 52

2PC + 2PL

Traditionally: run 2PC at commit time
» i.e., perform locking as usual, then run 2PC

when transaction would normally commit

Under strict 2PL, run 2PC before unlocking
write locks

CS 245 53

2PC + Logging

Log records must be flushed to disk on each
participant before it replies to prepare
» (And updates must be replicated to F other

replicas if doing replication)

CS 245 54

