
 
C-Store: A Column-oriented DBMS 

 
Mike Stonebraker∗, Daniel J. Abadi∗, Adam Batkin+, Xuedong Chen†, Mitch Cherniack+,  

Miguel Ferreira∗, Edmond Lau∗, Amerson Lin∗, Sam Madden∗, Elizabeth O’Neil†,  
Pat O’Neil†, Alex Rasin‡, Nga Tran+, Stan Zdonik‡ 

 
∗MIT CSAIL 

Cambridge, MA 

+Brandeis University 
Waltham, MA 

†UMass Boston 
Boston, MA 

‡Brown University 
Providence, RI 

 
Abstract 

This paper presents the design of a read-optimized 
relational DBMS that contrasts sharply with most 
current systems, which are write-optimized.  
Among the many differences in its design are: 
storage of data by column rather than by row, 
careful coding and packing of objects into storage 
including main memory during query processing, 
storing an overlapping collection of column-
oriented projections, rather than the current fare of 
tables and indexes, a non-traditional 
implementation of transactions which includes high 
availability and snapshot isolation for read-only 
transactions, and the extensive use of bitmap 
indexes to complement B-tree structures. 
We present preliminary performance data on a 

subset of TPC-H and show that the system we are 
building, C-Store, is substantially faster than 
popular commercial products.  Hence, the 
architecture looks very encouraging. 

1. Introduction 

Most major DBMS vendors implement record-oriented 
storage systems, where the attributes of a record (or tuple) 
are placed contiguously in storage.  With this row store 
architecture, a single disk write suffices to push all of the 
fields of a single record out to disk.  Hence, high 
performance writes are achieved, and we call a DBMS 
with a row store architecture a write-optimized system.  
These are especially effective on OLTP-style applications. 

In contrast, systems oriented toward ad-hoc querying 
of large amounts of data should be read-optimized.  Data 
warehouses represent one class of read-optimized system, 

in which periodically a bulk load of new data is 
performed, followed by a relatively long period of ad-hoc 
queries. Other read-mostly applications include customer 
relationship management (CRM) systems, electronic 
library card catalogs, and other ad-hoc inquiry systems.  In 
such environments, a column store architecture, in which 
the values for each single column (or attribute) are stored 
contiguously, should be more efficient.  This efficiency 
has been demonstrated in the warehouse marketplace by 
products like Sybase IQ [FREN95, SYBA04], Addamark  
[ADDA04], and KDB [KDB04]. In this paper, we discuss 
the design of a column store called C-Store that includes a 
number of novel features relative to existing systems. 

With a column store architecture, a DBMS need only 
read the values of columns required for processing a given 
query, and can avoid bringing into memory irrelevant 
attributes.  In warehouse environments where typical 
queries involve aggregates performed over large numbers 
of data items, a column store has a sizeable performance 
advantage.  However, there are several other major 
distinctions that can be drawn between an architecture that 
is read-optimized and one that is write-optimized. 

Current relational DBMSs were designed to pad 
attributes to byte or word boundaries and to store values in 
their native data format.  It was thought that it was too 
expensive to shift data values onto byte or word 
boundaries in main memory for processing.  However, 
CPUs are getting faster at a much greater rate than disk 
bandwidth is increasing.  Hence, it makes sense to trade 
CPU cycles, which are abundant, for disk bandwidth, 
which is not.  This tradeoff appears especially profitable in 
a read-mostly environment.   

There are two ways a column store can use CPU cycles 
to save disk bandwidth.  First, it can code data elements 
into a more compact form.  For example, if one is storing 
an attribute that is a customer’s state of residence, then US 
states can be coded into six bits, whereas the two-
character abbreviation requires 16 bits and a variable 
length character string for the name of the state requires 
many more.  Second, one should densepack values in 
storage.  For example, in a column store it is 
straightforward to pack N values, each K bits long, into N 
* K bits.  The coding and compressibility advantages of a 
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column store over a row store have been previously 
pointed out in [FREN95].  Of course, it is also desirable to 
have the DBMS query executor operate on the compressed 
representation whenever possible to avoid the cost of 
decompression, at least until values need to be presented 
to an application. 

Commercial relational DBMSs store complete tuples 
of tabular data along with auxiliary B-tree indexes on 
attributes in the table.  Such indexes can be primary, 
whereby the rows of the table are stored in as close to 
sorted order on the specified attribute as possible, or 
secondary, in which case no attempt is made to keep the 
underlying records in order on the indexed attribute.  Such 
indexes are effective in an OLTP write-optimized 
environment but do not perform well in a read-optimized 
world.  In the latter case, other data structures are 
advantageous, including bit map indexes [ONEI97], cross 
table indexes [ORAC04], and materialized views 
[CERI91].  In a read-optimized DBMS one can explore 
storing data using only these read-optimized structures, 
and not support write-optimized ones at all. 

Hence, C-Store physically stores a collection of 
columns, each sorted on some attribute(s).  Groups of 
columns sorted on the same attribute are referred to as 
“projections”; the same column may exist in multiple 
projections, possibly sorted on a different attribute in each.  
We expect that our aggressive compression techniques 
will allow us to support many column sort-orders without 
an explosion in space.  The existence of multiple sort-
orders opens opportunities for optimization. 

Clearly, collections of off-the-shelf “blade” or “grid” 
computers will be the cheapest hardware architecture for 
computing and storage intensive applications such as 
DBMSs [DEWI92]. Hence, any new DBMS architecture 
should assume a grid environment in which there are G 
nodes (computers), each with private disk and private 
memory. We propose to horizontally partition data across 
the disks of the various nodes in a “shared nothing” 
architecture [STON86]. Grid computers in the near future 
may have tens to hundreds of nodes, and any new system 
should be architected for grids of this size.  Of course, the 
nodes of a grid computer may be physically co-located or 
divided into clusters of co-located nodes.  Since database 
administrators are hard pressed to optimize a grid 
environment, it is essential to allocate data structures to 
grid nodes automatically.  In addition, intra-query 
parallelism is facilitated by horizontal partitioning of 
stored data structures, and we follow the lead of Gamma 
[DEWI90] in implementing this construct. 

Many warehouse systems (e.g. Walmart [WEST00]) 
maintain two copies of their data because the cost of 
recovery via DBMS log processing on a very large 
(terabyte) data set is prohibitive.  This option is rendered 
increasingly attractive by the declining cost per byte of 
disks.  A grid environment allows one to store such 
replicas on different processing nodes, thereby supporting 
a Tandem-style highly-available system [TAND89].  

However, there is no requirement that one store multiple 
copies in the exact same way.  C-Store allows redundant 
objects to be stored in different sort orders providing 
higher retrieval performance in addition to high 
availability.  In general, storing overlapping projections 
further improves performance, as long as redundancy is 
crafted so that all data can be accessed even if one of the 
G sites fails.  We call a system that tolerates K failures K-
safe.  C-Store will be configurable to support a range of 
values of K. 

It is clearly essential to perform transactional updates, 
even in a read-mostly environment.  Warehouses have a 
need to perform on-line updates to correct errors.  As well, 
there is an increasing push toward real-time warehouses, 
where the delay to data visibility shrinks toward zero.  The 
ultimate desire is on-line update to data warehouses.  
Obviously, in read-mostly worlds like CRM, one needs to 
perform general on-line updates.   

There is a tension between providing updates and 
optimizing data structures for reading.  For example, in 
KDB and Addamark, columns of data are maintained in 
entry sequence order. This allows efficient insertion of 
new data items, either in batch or transactionally, at the 
end of the column.  However, the cost is a less-than-
optimal retrieval structure, because most query workloads 
will run faster with the data in some other order.  
However, storing columns in non-entry sequence will 
make insertions very difficult and expensive. 

C-Store approaches this dilemma from a fresh 
perspective. Specifically, we combine in a single piece of 
system software, both a read-optimized column store and 
an update/insert-oriented writeable store, connected by a 
tuple mover, as noted in Figure 1.   At the top level, there 
is a small Writeable Store (WS) component, which is 
architected to support high performance inserts and 
updates.  There is also a much larger component called the 
Read-optimized Store (RS), which is capable of 
supporting very large amounts of information.  RS, as the 
name implies, is optimized for read and supports only a 
very restricted form of insert, namely the batch movement 
of records from WS to RS, a task that is performed by the 
tuple mover of Figure 1. 

 

  

 

 

 

 

 

Figure 1. Architecture of C-Store 

Of course, queries must access data in both storage 
systems.  Inserts are sent to WS, while deletes must be 



marked in RS for later purging by the tuple mover.  
Updates are implemented as an insert and a delete.  In 
order to support a high-speed tuple mover, we use a 
variant of the LSM-tree concept [ONEI96], which 
supports a merge out process that moves tuples from WS 
to RS in bulk by an efficient method of merging ordered 
WS data objects with large RS blocks, resulting in a new 
copy of RS that is installed when the operation completes. 

The architecture of Figure 1 must support transactions 
in an environment of many large ad-hoc queries, smaller 
update transactions, and perhaps continuous inserts.  
Obviously, blindly supporting dynamic locking will result 
in substantial read-write conflict and performance 
degradation due to blocking and deadlocks.   

Instead, we expect read-only queries to be run in 
historical mode.  In this mode, the query selects a 
timestamp, T, less than the one of the most recently 
committed transactions, and the query is semantically 
guaranteed to produce the correct answer as of that point 
in history.  Providing such snapshot isolation [BERE95] 
requires C-Store to timestamp data elements as they are 
inserted and to have careful programming of the runtime 
system to ignore elements with timestamps later than T. 

Lastly, most commercial optimizers and executors are 
row-oriented, obviously built for the prevalent row stores 
in the marketplace.  Since both RS and WS are column-
oriented, it makes sense to build a column-oriented 
optimizer and executor.  As will be seen, this software 
looks nothing like the traditional designs prevalent today. 

In this paper, we sketch the design of our updatable 
column store, C-Store, that can simultaneously achieve 
very high performance on warehouse-style queries and 
achieve reasonable speed on OLTP-style transactions.  C-
Store is a column-oriented DBMS that is architected to 
reduce the number of disk accesses per query.  The 
innovative features of C-Store include: 

1. A hybrid architecture with a WS component optimized 
for frequent insert and update and an RS component 
optimized for query performance.  

2. Redundant storage of elements of a table in several 
overlapping projections in different orders, so that a 
query can be solved using the most advantageous 
projection.  

3. Heavily compressed columns using one of several 
coding schemes.  

4. A column-oriented optimizer and executor, with 
different primitives than in a row-oriented system. 

5. High availability and improved performance through 
K-safety using a sufficient number of overlapping 
projections. 

6. The use of snapshot isolation to avoid 2PC and locking 
for queries. 

It should be emphasized that while many of these topics 
have parallels with things that have been studied in 
isolation in the past, it is their combination in a real 
system that make C-Store interesting and unique. 

 The rest of this paper is organized as follows.  In 
Section 2 we present the data model implemented by C-
Store.  We explore in Section 3 the design of the RS 
portion of C-Store, followed in Section 4 by the WS 
component.  In Section 5 we consider the allocation of C-
Store data structures to nodes in a grid, followed by a 
presentation of C-Store updates and transactions in 
Section 6. Section 7 treats the tuple mover component of 
C-Store, and Section 8 presents the query optimizer and 
executor.  In Section 9 we present a comparison of C-
Store performance to that achieved by both a popular 
commercial row store and a popular commercial column 
store.  On TPC-H style queries, C-Store is significantly 
faster than either alternate system. However, it must be 
noted that the performance comparison is not fully 
completed; we have not fully integrated the WS and tuple 
mover, whose overhead may be significant.  Finally, 
Sections 10 and 11 discuss related previous work and our 
conclusions. 

2. Data Model 

C-Store supports the standard relational logical data 
model, where a database consists of a collection of named 
tables, each with a named collection of attributes 
(columns). As in most relational systems, attributes (or 
collections of attributes) in C-Store tables can form a 
unique primary key or be a foreign key that references a 
primary key in another table.  The C-Store query language 
is assumed to be SQL, with standard SQL semantics. Data 
in C-Store is not physically stored using this logical data 
model.  Whereas most row stores implement physical 
tables directly and then add various indexes to speed 
access, C-Store implements only projections.  
Specifically, a C-Store projection is anchored on a given 
logical table, T, and contains one or more attributes from 
this table.  In addition, a projection can contain any 
number of other attributes from other tables, as long as 
there is a sequence of n:1 (i.e., foreign key) relationships 
from the anchor table to the table containing an attribute. 

To form a projection, we project the attributes of 
interest from T, retaining any duplicate rows, and perform 
the appropriate sequence of value-based foreign-key joins 
to obtain the attributes from the non-anchor table(s).  
Hence, a projection has the same number of rows as its 
anchor table.  Of course, much more elaborate projections 
could be allowed, but we believe this simple scheme will 
meet our needs while ensuring high performance.  We 
note that we use the term projection slightly differently 
than is common practice, as we do not store the base 
table(s) from which the projection is derived. 

 
Table 1: Sample EMP data 

Name Age Dept Salary 

Bob 25 Math 10K 
Bill 27 EECS 50K 
Jill 24 Biology 80K 



We denote the ith projection over table t as ti, followed 
by the names of the fields in the projection.  Attributes 
from other tables are prepended with the name of the 
logical table they come from.  In this section, we consider 
an example for the standard EMP(name, age, salary, dept) 
and DEPT(dname, floor) relations. Sample EMP data is 
shown in Table 1. One possible set of projections for these 
tables could be as shown in Example 1. 

EMP1 (name, age) 
EMP2 (dept, age, DEPT.floor) 
EMP3 (name, salary)  
DEPT1(dname, floor) 

Example 1: Possible projections for EMP and DEPT 

Tuples in a projection are stored column-wise. Hence, 
if there are K attributes in a projection, there will be K 
data structures, each storing a single column, each of 
which is sorted on the same sort key.  The sort key can be 
any column or columns in the projection. Tuples in a 
projection are sorted on the key(s) in left to right order. 

We indicate the sort order of a projection by appending 
the sort key to the projection separated by a vertical bar. A 
possible ordering for the above projections would be: 

 
EMP1(name, age| age) 
EMP2(dept, age, DEPT.floor| DEPT.floor) 
EMP3(name, salary| salary) 
DEPT1(dname, floor| floor) 

Example 2:  Projections in Example 1 with sort orders 

Lastly, every projection is horizontally partitioned into 
1 or more segments, which are given a segment identifier, 
Sid, where Sid  > 0.  C-Store supports only value-based 
partitioning on the sort key of a projection.  Hence, each 
segment of a given projection is associated with a key 
range of the sort key for the projection.  Moreover, the set 
of all key ranges partitions the key space.  

Clearly, to answer any SQL query in C-Store, there 
must be a covering set of projections for every table in the 
database such that every column in every table is stored in 
at least one projection.  However, C-Store must also be 
able to reconstruct complete rows of tables from the 
collection of stored segments.  To do this, it will need to 
join segments from different projections, which we 
accomplish using storage keys and join indexes.  

Storage Keys. Each segment associates every data 
value of every column with a storage key, SK.  Values 
from different columns in the same segment with 
matching storage keys belong to the same logical row.  
We refer to a row of a segment using the term record or 
tuple.  Storage keys are numbered 1, 2, 3, … in RS and are 
not physically stored, but are inferred from a tuple’s 
physical position in the column (see Section  3 below.)  
Storage keys are physically present in WS and are 
represented as integers, larger than the largest integer 
storage key for any segment in RS. 

Join Indices. To reconstruct all of the records in a 
table T from its various projections, C-Store uses join 

indexes.  If T1 and T2 are two projections that cover a 
table T, a join index from the M segments in T1 to the N 
segments in T2 is logically a collection of M tables, one 
per segment, S, of T1  consisting of rows of the form: 

(s: SID in T2, k: Storage Key in Segment s) 

Here, an entry in the join index for a given tuple in a 
segment of T1 contains the segment ID and storage key of 
the corresponding (joining) tuple in T2. Since all join 
indexes are between projections anchored at the same 
table, this is always a one-to-one mapping.   An alternative 
view of a join index is that it takes T1, sorted in some 
order O, and logically resorts it into the order, O' of T2. 

In order to reconstruct T from the segments of T1, …, 
Tk it must be possible to find a path through a set of join 
indices that maps each attribute of T into some sort order 
O*.  A path is a collection of join indexes originating with 
a sort order specified by some projection, Ti , that passes 
through zero or more intermediate join indices and ends 
with a projection sorted in order O*.  For example, to be 
able to reconstruct the EMP table from projections in 
Example 2, we need at least two join indices.  If we 
choose age  as a common sort order, we could build two 
indices that map EMP2 and EMP3 to the ordering of 
EMP1. Alternatively, we could create a join index that 
maps EMP2 to EMP3 and one that maps EMP3 to EMP1. 
Figure 2 shows a simple example of a join index that maps 
EMP3 to EMP1, assuming a single segment (SID = 1) for 
each projection.  For example, the first entry of EMP3, 
(Bob, 10K) , corresponds to the second entry of EMP1, and 
thus the first entry of the join index has storage key 2. 

 
Figure 2: A join index from EMP3 to EMP1. 

In practice, we expect to store each column in several 
projections, thereby allowing us to maintain relatively few 
join indices.  This is because join indexes are very 
expensive to store and maintain in the presence of updates, 
since each modification to a projection requires every join 
index that points into or out of it to be updated as well. 

The segments of the projections in a database and their 
connecting join indexes must be allocated to the various 
nodes in a C-Store system. The C-Store administrator can 
optionally specify that the tables in a database must be K-
safe.  In this case, the loss of K nodes in the grid will still 
allow all tables in a database to be reconstructed (i.e., 
despite the K failed sites, there must exist a covering set of 
projections and a set of join indices that map to some 
common sort order.)  When a failure occurs, C-Store 
simply continues with K-1 safety until the failure is 



repaired and the node is brought back up to speed.  We are 
currently working on fast algorithms to accomplish this. 

Thus, the C-Store physical DBMS design problem is to 
determine the collection of projections, segments, sort 
keys, and join indices to create for the collection of logical 
tables in a database. This physical schema must give K-
safety as well as the best overall performance for a given 
training workload, provided by the C-Store administrator, 
subject to requiring no more than a given space budget, B.  
Additionally, C-Store can be instructed to keep a log of all 
queries to be used periodically as the training workload.  
Because there are not enough skilled DBAs to go around, 
we are writing an automatic schema design tool.  Similar 
issues are addressed in [PAPA04] 

We now turn to the representation of projections, 
segments, storage keys, and join indexes in C-Store. 

3. RS 

RS is a read-optimized column store.  Hence any 
segment of any projection is broken into its constituent 
columns, and each column is stored in order of the sort 
key for the projection.  The storage key for each tuple in 
RS is the ordinal number of the record in the segment.  
This storage key is not stored but calculated as needed. 

3.1 Encoding Schemes 

Columns in the RS are compressed using one of 4 
encodings.  The encoding chosen for a column depends on 
its ordering (i.e., is the column ordered by values in that 
column (self-order) or by corresponding values of some 
other column in the same projection (foreign-order), and 
the proportion of distinct values it contains.  We describe 
these encodings below. 

 
Type 1:  Self-order, few distinct values:  A column 
encoded using Type 1 encoding is represented by a 
sequence of triples, (v, f, n) such that v is a value stored in 
the column, f is the position in the column where v first 
appears, and n is the number of times v appears in the 
column.  For example, if a group of 4’s appears in 
positions 12-18, this is captured by the entry, (4, 12, 7).  
For columns that are self-ordered, this requires one triple 
for each distinct value in the column.  To support search 
queries over values in such columns, Type 1-encoded 
columns have clustered B-tree indexes over their value 
fields.  Since there are no online updates to RS, we can 
densepack the index leaving no empty space.  Further, 
with large disk blocks (e.g., 64-128K), the height of this 
index can be kept small (e.g., 2 or less).  

Type 2: Foreign-order, few distinct values:  A column 
encoded using Type 2 encoding is represented by a 
sequence of tuples, (v, b) such that v is a value stored in 
the column and b is a bitmap indicating the positions in 
which the value is stored.  For example, given a column of 
integers 0,0,1,1,2,1,0,2,1, we can Type 2-encode this as 
three pairs: (0, 110000100), (1, 001101001), and 

(2,000010010). Since each bitmap is sparse, it is run 
length encoded to save space.  To efficiently find the i-th 
value of a type 2-encoded column,  we include “offset 
indexes”:  B-trees that map positions in a column to the 
values contained in that column. 

Type 3:  Self-order, many distinct values:  The idea for 
this scheme is to represent every value in the column as a 
delta from the previous value in the column.  Thus, for 
example, a column consisting of values 1,4,7,7,8,12 would 
be represented by the sequence: 1,3,3,0,1,4, such that the 
first entry in the sequence is the first value in the column, 
and every subsequent entry is a delta from the previous 
value.  Type-3 encoding is a block-oriented form of this 
compression scheme, such that the first entry of every 
block is a value in the column and its associated storage 
key, and every subsequent value is a delta from the 
previous value.  This scheme is reminiscent of the way 
VSAM codes B-tree index keys [VSAM04]. Again, a 
densepack B-tree tree at the block-level can be used to 
index these coded objects. 

Type 4: Foreign-order, many distinct values:  If there are a 
large number of values, then it probably makes sense to 
leave the values unencoded.  However, we are still 
investigating possible compression techniques for this 
situation. A densepack B-tree can still be used for the 
indexing.   

3.2 Join Indexes 

Join indexes must be used to connect the various 
projections anchored at the same table.  As noted earlier, a 
join index is a collection of (sid, storage_key) pairs.  Each 
of these two fields can be stored as normal columns. 

There are physical database design implications 
concerning where to store join indexes, and we address 
these in the next section.  In addition, join indexes must 
integrate RS and WS; hence, we revisit their design in the 
next section as well.  

4. WS 

In order to avoid writing two optimizers, WS is also a 
column store and implements the identical physical 
DBMS design as RS.  Hence, the same projections and 
join indexes are present in WS.  However, the storage 
representation is drastically different because WS must be 
efficiently updatable transactionally.  

The storage key, SK, for each record is explicitly 
stored in each WS segment.  A unique SK is given to each 
insert of a logical tuple in a table T.  The execution engine 
must ensure that this SK is recorded in each projection 
that stores data for the logical tuple. This SK is an integer, 
larger than the number of records in the largest segment in 
the database.   

For simplicity and scalability, WS is horizontally 
partitioned in the same way as RS.  Hence, there is a 1:1 
mapping between RS segments and WS segments.  A (sid, 



storage_key) pair identifies a record in either of these 
containers. 

Since we assume that WS is trivial in size relative to 
RS, we make no effort to compress data values; instead we 
represent all data directly.  Therefore, each projection uses 
B-tree indexing to maintain a logical sort-key order. 

Every column in a WS projection is represented as a 
collection of pairs, (v, sk), such that v is a value in the 
column and sk is its corresponding storage key.  Each pair 
is represented in a conventional B-tree on the second field.  
The sort key(s) of each projection is additionally 
represented by pairs (s, sk) such that s is a sort key value 
and sk is the storage key describing where s first appears.  
Again, this structure is represented as a conventional B-
tree on the sort key field(s).  To perform searches using 
the sort key, one uses the latter B-tree to find the storage 
keys of interest, and then uses the former collection of B-
trees to find the other fields in the record.   

Join indexes can now be fully described.  Every 
projection is represented as a collection of pairs of 
segments, one in WS and one in RS.  For each record in 
the “sender,” we must store the sid and storage key of a 
corresponding record in the “receiver.”  It will be useful to 
horizontally partition the join index in the same way as the 
“sending” projection and then to co-locate join index 
partitions with the sending segment they are associated 
with.  In effect, each (sid, storage key) pair is a pointer to 
a record which can be in either the RS or WS. 

5.  Storage Management 

The storage management issue is the allocation of 
segments to nodes in a grid system; C-Store will perform 
this operation automatically using a storage allocator.    It 
seems clear that all columns in a single segment of a 
projection should be co-located.  As noted above, join 
indexes should be co-located with their “sender” 
segments.  Also, each WS segment will be co-located with 
the RS segments that contain the same key range.   

Using these constraints, we are working on an 
allocator.  This system will perform initial allocation, as 
well as reallocation when load becomes unbalanced.  The 
details of this software are beyond the scope of this paper. 

Since everything is a column, storage is simply the 
persistence of a collection of columns.  Our analysis 
shows that a raw device offers little benefit relative to 
today’s file systems.  Hence, big columns (megabytes) are 
stored in individual files in the underlying operating 
system. 

6. Updates and Transactions 

An insert is represented as a collection of new objects 
in WS, one per column per projection, plus the sort key 
data structure.  All inserts corresponding to a single 
logical record have the same storage key.    The storage 
key is allocated at the site where the update is received.  
To prevent C-Store nodes from needing to synchronize 

with each other to assign storage keys, each node 
maintains a locally unique counter to which it appends its 
local site id to generate a globally unique storage key.  
Keys in the WS will be consistent with RS storage keys 
because we set the initial value of this counter to be one 
larger than the largest key in RS. 

We are building WS on top of BerkeleyDB [SLEE04]; 
we use the B-tree structures in that package to support our 
data structures.  Hence, every insert to a projection results 
in a collection of physical inserts on different disk pages, 
one per column per projection.  To avoid poor 
performance, we plan to utilize a very large main memory 
buffer pool, made affordable by the plummeting cost per 
byte of primary storage.  As such, we expect “hot” WS 
data structures to be largely main memory resident.  

C-Store’s processing of deletes is influenced by our 
locking strategy. Specifically, C-Store expects large 
numbers of ad-hoc queries with large read sets 
interspersed with a smaller number of OLTP transactions 
covering few records. If C-Store used conventional 
locking, then substantial lock contention would likely be 
observed, leading to very poor performance.   

Instead, in C-Store, we isolate read-only transactions 
using snapshot isolation.  Snapshot isolation works by 
allowing read-only transactions to access the database as 
of some time in the recent past, before which we can 
guarantee that there are no uncommitted transactions.  For 
this reason, when using snapshot isolation, we do not need 
to set any locks.  We call the most recent time in the past 
at which snapshot isolation can run the high water mark 
(HWM) and introduce a low-overhead mechanism for 
keeping track of its value in our multi-site environment.  If 
we let read-only transactions set their effective time 
arbitrarily, then we would have to support general time 
travel, an onerously expensive task.  Hence, there is also a 
low water mark (LWM) which is the earliest effective 
time at which a read-only transaction can run. Update 
transactions continue to set read and write locks and obey 
strict two-phase locking, as described in Section  6.2. 

6.1 Providing Snapshot Isolation 

The key problem in snapshot isolation is determining 
which of the records in WS and RS should be visible to a 
read-only transaction running at effective time ET.  To 
provide snapshot isolation, we cannot perform updates in 
place.  Instead, an update is turned into an insert and a 
delete.  Hence, a record is visible if it was inserted before 
ET and deleted after ET. To make this determination 
without requiring a large space budget, we use coarse 
granularity “epochs,” to be described in Section 6.1.1, as 
the unit for timestamps.  Hence, we maintain an insertion 
vector (IV) for each projection segment in WS, which 
contains for each record the epoch in which the record was 
inserted.  We program the tuple mover  (described in 
Section 7) to ensure that no records in RS were inserted 
after the LWM.  Hence, RS need not maintain an insertion 



vector.  In addition, we maintain a deleted record vector 
(DRV) for each projection, which has one entry per 
projection record, containing a 0 if the tuple has not been 
deleted; otherwise, the entry contains the epoch in which 
the tuple was deleted.  Since the DRV is very sparse 
(mostly zeros), it can be compactly coded using the type 2 
algorithm described earlier.   We store the DRV in the 
WS, since it must be updatable.  The runtime system can 
now consult IV and DRV to make the visibility calculation 
for each query on a record-by-record basis. 

6.1.1 Maintaining the High Water Mark 

To maintain the HWM, we designate one site the 
timestamp authority (TA) with the responsibility of 
allocating timestamps to other sites.  The idea is to divide 
time into a number of epochs; we define the epoch number 
to be the number of epochs that have elapsed since the 
beginning of time.   We anticipate epochs being relatively 
long – e.g., many seconds each, but the exact duration 
may vary from deployment to deployment.  We define the 
initial HWM to be epoch 0 and start current epoch at 1.  
Periodically, the TA decides to move the system to the 
next epoch; it sends a end of epoch message to each site, 
each of which increments current epoch from e to e+1, 
thus causing new transactions that arrive to be run with a 
timestamp e+1.   Each site waits for all the transactions 
that began in epoch e (or an earlier epoch) to complete and 
then sends an epoch complete message to the TA. Once 
the TA has received epoch complete messages from all 
sites for epoch e, it sets the HWM to be e, and sends this 
value to each site.   Figure 3 illustrates this process. 

After the TA has broadcast the new HWM with value 
e, read-only transactions can begin reading data from 
epoch e or earlier and be assured that this data has been 
committed.   To allow users to refer to a particular real-
world time when their query should start, we maintain a 
table mapping epoch numbers to times, and start the query 
as of the epoch nearest to the user-specified time. 

To avoid epoch numbers from growing without bound 
and consuming extra space, we plan to “reclaim” epochs 
that are no longer needed.  We will do this by “wrapping” 
timestamps, allowing us to reuse old epoch numbers as in 
other protocols, e.g., TCP.  In most warehouse 
applications, records are kept for a specific amount of 
time, say 2 years.  Hence, we merely keep track of the 

oldest epoch in any DRV, and ensure that wrapping 
epochs through zero does not overrun.    

To deal with environments for which epochs cannot 
effectively wrap, we have little choice but to enlarge the 
“wrap length” of epochs or the size of an epoch.    

6.2 Locking-based Concurrency Control 

Read-write transactions use strict two-phase locking 
for concurrency control [GRAY92].  Each site sets locks 
on data objects that the runtime system reads or writes, 
thereby implementing a distributed lock table as in most 
distributed databases.  Standard write-ahead logging is 
employed for recovery purposes; we use a NO-FORCE, 
STEAL policy [GRAY92] but differ from the traditional 
implementation of logging and locking in that we only log 
UNDO records, performing REDO as described in Section 
 6.3, and we do not use strict two-phase commit, avoiding 
the PREPARE phase as described in Section  6.2.1 below.   

Locking can, of course, result in deadlock.  We resolve 
deadlock via timeouts through the standard technique of 
aborting one of the deadlocked transactions. 

6.2.1 Distributed COMMIT Processing 

In C-Store, each transaction has a master that is 
responsible for assigning units of work corresponding to a 
transaction to the appropriate sites and determining the 
ultimate commit state of each transaction.  The protocol 
differs from two-phase commit (2PC) in that no 
PREPARE messages are sent. When the master receives a 
COMMIT statement for the transaction, it waits until all 
workers have completed all outstanding actions and then 
issues a commit (or abort) message to each site.  Once a 
site has received a commit message, it can release all locks 
related to the transaction and delete the UNDO log for the 
transaction.  This protocol differs from 2PC because the 
master does not PREPARE the worker sites.  This means 
it is possible for a site the master has told to commit to 
crash before writing any updates or log records related to a 
transaction to stable storage.  In such cases, the failed site 
will recover its state, which will reflect updates from the 
committed transaction, from other projections on other 
sites in the system during recovery.   

6.2.2 Transaction Rollback 

When a transaction is aborted by the user or the C-
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Figure 3. Illustration showing how the HWM selection algorithm works.  Gray arrows indicate messages from the TA 
to the sites or vice versa.  We can begin reading tuples with timestamp e when all transactions from epoch e have 
committed.  Note that although T4 is still executing when the HWM is incremented, read-only transactions will not 
see its updates because it is running in epoch e+1. 



Store system, it is undone by scanning backwards in the 
UNDO log, which contains one entry for each logical 
update to a segment.  We use logical logging (as in ARIES 
[MOHA92]), since physical logging would result in many 
log records, due to the nature of the data structures in WS. 

6.3 Recovery 

As mentioned above, a crashed site recovers by 
running a query (copying state) from other projections.  
Recall that C-Store maintains K-safety; i.e. sufficient 
projections and join indexes are maintained, so that K sites 
can fail within t, the time to recover, and the system will 
be able to maintain transactional consistency. There are 
three cases to consider.  If the failed site suffered no data 
loss, then we can bring it up to date by executing updates 
that will be queued for it elsewhere in the network.  Since 
we anticipate read-mostly environments, this roll forward 
operation should not be onerous.  Hence, recovery from 
the most common type of crash is straightforward. The 
second case to consider is a catastrophic failure which 
destroys both the RS and WS.  In this case, we have no 
choice but to reconstruct both segments from other 
projections and join indexes in the system.  The only 
needed functionality is the ability to retrieve auxiliary data 
structures (IV, DRV) from remote sites. After restoration, 
the queued updates must be run as above.   The third case 
occurs if WS is damaged but RS is intact.  Since RS is 
written only by the tuple mover, we expect it will typically 
escape damage.  Hence, we discuss this common case in 
detail below.   

6.3.1 Efficiently Recovering the WS 

Consider a WS segment, Sr, of a projection with a sort 
key K and a key range R on a recovering site r along with 
a collection C of other projections, M1, …, Mb which 
contain the sort key of Sr.  The tuple mover guarantees 
that each WS segment, S, contains all tuples with an 
insertion timestamp later than some time tlastmove(S), which 
represents the most recent insertion time of any record in 
S’s corresponding RS segment.  

To recover, the recovering site first inspects every 
projection in C for a collection of columns that covers the 
key range K with each segment having tlastmove(S) ≤ 
tlastmove(Sr).  If it succeeds, it can run a collection of queries 
of the form: 

SELECT desired_fields,  
       insertion_epoch, 
       deletion_epoch 
FROM recovery_segment 

WHERE insertion_ epoch > tlastmove( Sr)  
      AND insertion_epoch <= HWM 
      AND deletion_epoch = 0  
          OR deletion_epoch >= LWM 
      AND sort_key in K 
 

 
As long as the above queries return a storage key, other 
fields in the segment can be found by following 

appropriate join indexes.  As long as there is a collection 
of segments that cover the key range of Sr, this technique 
will restore Sr to the current HWM.  Executing queued 
updates will then complete the task. 

On the other hand, if there is no cover with the desired 
property, then some of the tuples in Sr have already been 
moved to RS on the remote site. Although we can still 
query the remote site, it is challenging to identify the 
desired tuples without retrieving everything in RS and 
differencing against the local RS segment, which is 
obviously an expensive operation. 

To efficiently handle this case, if it becomes common, 
we can force the tuple mover to log, for each tuple it 
moves, the storage key in RS that corresponds to the 
storage key and epoch number of the tuple before it was 
moved from WS.  This log can be truncated to the 
timestamp of the oldest tuple still in the WS on any site, 
since no tuples before that will ever need to be recovered.  
In this case, the recovering site can use a remote WS 
segment, S, plus the tuple mover log to solve the query 
above, even though tlastmove(S) comes after tlastmove(Sr). 

At r, we must also reconstruct the WS portion of any 
join indexes that are stored locally, i.e. for which Sr is a 
“sender.”  This merely entails querying remote 
“receivers,” which can then compute the join index as they 
generate tuples, transferring the WS partition of the join 
index along with the recovered columns. 

7. Tuple Mover 

The job of the tuple mover is to move blocks of tuples 
in a WS segment to the corresponding RS segment, 
updating any join indexes in the process.  It operates as a 
background task looking for worthy segment pairs. When 
it finds one, it performs a merge-out process, MOP on this 
(RS, WS) segment pair.   

MOP will find all records in the chosen WS segment 
with an insertion time at or before the LWM, and then 
divides them into two groups: 
• Ones deleted at or before LWM.  These are discarded, 

because the user cannot run queries as of a time when 
they existed. 

• Ones that were not deleted, or deleted after LWM.  
These are moved to RS. 

MOP will create a new RS segment that we name RS'. 
Then, it reads in blocks from columns of the RS segment, 
deletes any RS items with a value in the DRV less than or 
equal to the LWM, and merges in column values from 
WS. The merged data is then written out to the new RS' 
segment, which grows as the merge progresses. The most 
recent insertion time of a record in RS’ becomes the 
segment’s new tlastmove and is always less than or equal to 
the LWM. This old-master/new-master approach will be 
more efficient than an update-in-place strategy, since 
essentially all data objects will move. Also, notice that 
records receive new storage keys in RS', thereby requiring 
join index maintenance.  Since RS items may also be 



deleted, maintenance of the DRV is also mandatory. Once 
RS' contains all the WS data and join indexes are modified 
on RS', the system cuts over from RS to RS'. The disk 
space used by the old RS can now be freed. 

Periodically the timestamp authority sends out to each 
site a new LWM epoch number.  Hence, LWM “chases” 
HWM, and the delta between them is chosen to mediate 
between the needs of users who want historical access and 
the WS space constraints.  

8. C-Store Query Execution 

The query optimizer will accept a SQL query and 
construct a query plan of execution nodes.  In this section, 
we describe the nodes that can appear in a plan and then 
the architecture of the optimizer itself.   

8.1 Query Operators and Plan Format 

There are 10 node types and each accepts operands or 
produces results of type projection (Proj ), column 
(Col ), or bitstring (Bits ).  A projection is simply a set of 
columns with the same cardinality and ordering.  A 
bitstring is a list of zeros and ones indicating whether the 
associated values are present in the record subset being 
described.   In addition, C-Store query operators accept 
predicates (Pred ), join indexes (JI ), attribute names 
(Att ), and expressions (Exp) as arguments. 

Join indexes and bitstrings are simply special types of 
columns.  Thus, they also can be included in projections 
and used as inputs to operators where appropriate. 

We briefly summarize each operator below. 
1. Decompress converts a compressed column to an 
uncompressed (Type 4) representation.   
2. Select is equivalent to the selection operator of 
the relational algebra (σ), but rather than producing a 
restriction of its input, instead produces a bitstring 
representation of the result.   
3.  Mask accepts a bitstring B and projection Cs, and 
restricts Cs by emitting only those values whose 
corresponding bits in B are 1.  
4. Project equivalent to the projection operator of 
the relational algebra (π). 
5. Sort sorts all columns in a projection by some 
subset of those columns (the sort columns).  
6. Aggregation Operators  compute SQL-like 
aggregates over a named column, and for each group 
identified by the values in a projection. 
7. Concat combines one or more projections sorted in 
the same order into a single projection 
8. Permute permutes a projection according to the 
ordering defined by a join index.  
9. Join joins two projections according to a predicate 
that correlates them.  
10. Bitstring Operators BAnd produces the 
bitwise AND of two bitstrings.  BOr produces a bitwise 
OR.  BNot  produces the complement of a bitstring.   

A C-Store query plan consists of a tree of the operators 
listed above, with access methods at the leaves and 
iterators serving as the interface between connected nodes.  
Each non-leaf plan node consumes the data produced by 
its children via a modified version of the standard iterator 
interface [GRAE93] via calls of “get_next.”  To reduce 
communication overhead (i.e., number of calls of 
“get_next”) between plan nodes,  C-Store iterators return 
64K blocks from a single column. This approach preserves 
the benefit of using iterators (coupling data flow with 
control flow), while changing the granularity of data flow 
to better match the column-based model. 

8.2 Query Optimization 

We plan to use a Selinger-style [SELI79] optimizer 
that uses cost-based estimation for plan construction.  We 
anticipate using a two-phase optimizer [HONG92] to limit 
the complexity of the plan search space. Note that query 
optimization in this setting differs from traditional query 
optimization in at least two respects: the need to consider 
compressed representations of data and the decisions 
about when to mask a projection using a bitstring. 

C-Store operators have the capability to operate on 
both compressed and uncompressed input. As will be 
shown in Section 9, the ability to process compressed data 
is the key to the performance benefits of C-Store.  An 
operator’s execution cost (both in terms of I/O and 
memory buffer requirements) is dependent on the 
compression type of the input. For example, a Select  
over Type 2 data (foreign order/few values, stored as a 
delta-encoded bitmaps, with one bitmap per value) can be 
performed by reading only those bitmaps from disk whose 
values match the predicate (despite the column itself not 
being sorted). However, operators that take Type 2 data as 
input require much larger memory buffer space (one page 
of memory for each possible value in the column) than 
any of the other three types of compression. Thus, the cost 
model must be sensitive to the representations of input and 
output columns. 

The major optimizer decision is which set of 
projections to use for a given query.  Obviously, it will be 
time consuming to construct a plan for each possibility, 
and then select the best one. Our focus will be on pruning  
this search space.  In addition, the optimizer must decide 
where in the plan to mask a projection according to a 
bitstring.  For example, in some cases it is desirable to 
push the Mask early in the plan (e.g, to avoid producing a 
bitstring while performing selection over Type 2 
compressed data) while in other cases it is best to delay 
masking until a point where it is possible to feed a 
bitstring to the next operator in the plan (e.g., COUNT) that 
can produce results solely by processing the bitstring.  

9. Performance Comparison 

At the present time, we have a storage engine and the 
executor for RS running.  We have an early 



implementation of the WS and tuple mover; however they 
are not at the point where we can run experiments on 
them.  Hence, our performance analysis is limited to read-
only queries, and we are not yet in a position to report on 
updates.  Moreover, RS does not yet support segments or 
multiple grid nodes.  As such, we report single-site 
numbers.  A more comprehensive performance study will 
be done once the other pieces of the system have been 
built. 

Our benchmarking system is a 3.0 Ghz Pentium, 
running RedHat Linux, with 2 Gbytes of memory and 750 
Gbytes of disk.   

In the decision support (warehouse) market TPC-H is 
the gold standard, and we use a simplified version of this 
benchmark, which our current engine is capable of 
running.  Specifically, we implement the lineitem, order, 
and customer tables as follows: 

 
CREATE TABLE LINEITEM ( 
L_ORDERKEY INTEGER NOT NULL, 
L_PARTKEY INTEGER NOT NULL, 
L_SUPPKEY INTEGER NOT NULL, 
L_LINENUMBER INTEGER NOT NULL, 
L_QUANTITY INTEGER NOT NULL, 
L_EXTENDEDPRICE INTEGER NOT NULL, 
L_RETURNFLAG CHAR(1) NOT NULL, 
L_SHIPDATE INTEGER NOT NULL); 
 
CREATE TABLE ORDERS  ( 
O_ORDERKEY INTEGER NOT NULL, 
O_CUSTKEY INTEGER NOT NULL, 
O_ORDERDATE INTEGER NOT NULL); 
 
CREATE TABLE CUSTOMER ( 
C_CUSTKEY INTEGER NOT NULL, 
C_NATIONKEY INTEGER NOT NULL); 

 
We chose columns of type INTEGER and CHAR(1) to 

simplify the implementation.  The standard data for the 
above table schema for TPC-H scale_10 totals 60,000,000 
line items (1.8GB), and was generated by the data 
generator available from the TPC website.   

We tested three systems and gave each of them a 
storage budget of 2.7  GB (roughly 1.5 times the raw data 
size) for all data plus indices.  The three systems were C-
Store as described above and two popular commercial 
relational DBMS systems, one that implements a row store 
and another that implements a column store.  In both of 
these systems, we turned off locking and logging.  We 
designed the schemas for the three systems in a way to 
achieve the best possible performance given the above 
storage budget.  The row-store was unable to operate 
within the space constraint so we gave it 4.5 GB which is 
what it needed to store its tables plus indices.  The actual 
disk usage numbers are shown below. 

C-Store Row Store Column Store 
1.987 GB 4.480 GB 2.650 GB 

Obviously, C-Store uses 40% of the space of the row 
store, even though it uses redundancy and the row store 
does not.  The main reasons are C-Store compression and 

absence of padding to word or block boundaries. The 
column store requires 30% more space than C-Store.  
Again, C-Store can store a redundant schema in less space 
because of superior compression and absence of padding. 
       We ran the following seven queries on each system: 
 
Q1.  Determine the total number of lineitems shipped for 

each day after day D.   
SELECT l_shipdate, COUNT (*) 
FROM lineitem 
WHERE l_shipdate > D 
GROUP BY l_shipdate 

 Q2.  Determine the total number of lineitems shipped for 
each supplier on day D.   

SELECT l_suppkey, COUNT (*) 
FROM lineitem 
WHERE l_shipdate = D 
GROUP BY l_suppkey 

Q3.  Determine the total number of lineitems shipped for 
each supplier after day D.   

SELECT l_suppkey, COUNT (*) 
FROM lineitem 
WHERE l_shipdate > D 
GROUP BY l_suppkey 

Q4.  For every day after D, determine the latest shipdate 
of all items ordered on that day.  

SELECT o_orderdate, MAX (l_shipdate) 
FROM lineitem, orders 
WHERE l_orderkey = o_orderkey AND 
      o_orderdate > D 
GROUP BY o_orderdate 

Q5.  For each supplier, determine the latest shipdate of an 
item from an order that was made on some date, D. 

SELECT l_suppkey, MAX (l_shipdate) 
FROM lineitem, orders 
WHERE l_orderkey = o_orderkey AND  
      o_orderdate = D 
GROUP BY l_suppkey 

Q6.  For each supplier, determine the latest shipdate of an 
item from an order made after some date, D. 

SELECT l_suppkey, MAX (l_shipdate) 
FROM lineitem, orders 
WHERE l_orderkey = o_orderkey AND 
       o_orderdate > D 
GROUP BY l_suppkey 

Q7.  Return a list of identifiers for all nations represented 
by customers along with their total lost revenue for 
the parts they have returned.  This is a simplified 
version of query 10 (Q10) of TPC-H. 

SELECT c_nationkey, sum(l_extendedprice) 
FROM lineitem, orders, customers 
WHERE l_orderkey=o_orderkey AND 
 o_custkey=c_custkey AND 
 l_returnflag='R' 
GROUP BY c_nationkey 

 
We constructed schemas for each of the three systems that 
best matched our seven-query workload.  These schema 
were tuned individually for the capabilities of each 
system. For C-Store, we used the following schema: 

 
 D1: (l_orderkey, l_partkey, l_suppkey, 

l_linenumber, l_quantity, 
l_extendedprice, l_returnflag, l_shipdate 
| l_shipdate, l_suppkey) 



D2: (o_orderdate, l_shipdate, l_suppkey | 
o_orderdate, l_suppkey) 

D3: (o_orderdate, o_custkey, o_orderkey |  
o_orderdate) 

D4: (l_returnflag, l_extendedprice, 
c_nationkey | l_returnflag) 

D5: (c_custkey, c_nationkey | c_custkey) 

D2 and D4 are materialized (join) views.  D3 and D5 
are added for completeness since we don’t use them in any 
of the seven queries.  They are included so that we can 
answer arbitrary queries on this schema as is true for the 
product schemas. 

On the commercial row-store DBMS, we used the 
common relational schema given above with a collection 
of system-specific tuning parameters. We also used 
system-specific tuning parameters for the commercial 
column-store DBMS.  Although we believe we chose 
good values for the commercial systems, obviously, we 
cannot guarantee they are optimal. 

The following table indicates the performance that we 
observed.  All measurements are in seconds and are taken 
on a dedicated machine. 

Query C-Store Row Store Column 
Store 

Q1 0.03 6.80 2.24 
Q2 0.36 1.09 0.83 
Q3 4.90 93.26 29.54 
Q4 2.09 722.90 22.23 
Q5 0.31 116.56 0.93 
Q6 8.50 652.90 32.83 
Q7 2.54 265.80 33.24 

As can be seen, C-Store is much faster than either 
commercial product.  The main reasons are: 
• Column representation – avoids reads of unused 
attributes (same as competing column store). 
• Storing overlapping projections, rather than the whole 
table – allows storage of multiple orderings of a column 
as appropriate. 
• Better compression of data – allows more orderings in 
the same space. 
• Query operators operate on compressed 
representation – mitigates the storage barrier problem of 
current processors. 

In order to give the other systems every possible 
advantage, we tried running them with the materialized 
views that correspond to the projections we used with C-
Store.  This time, the systems used space as follows (C-
Store numbers, which did not change, are included as a 
reference): 

 
C-Store Row Store Column Store 
1.987 GB 11.900 GB 4.090 GB 

 
The relative performance numbers in seconds are as 
follows: 
 
 

Query C-Store Row Store Column 
Store 

Q1 0.03 0.22 2.34 
Q2 0.36 0.81 0.83 
Q3 4.90 49.38 29.10 
Q4 2.09 21.76 22.23 
Q5 0.31 0.70 0.63 
Q6 8.50 47.38 25.46 
Q7 2.54 18.47 6.28 
As can be seen, the performance gap closes, but at the 

same time, the amount of storage needed by the two 
commercial systems grows quite large.   

In summary, for this seven query benchmark, C-Store 
is on average 164 times faster than the commercial row-
store and 21 times faster than the commercial column-
store in the space-constrained case.  For the case of 
unconstrained space, C-Store is 6.4 times faster than the 
commercial row-store, but the row-store takes 6 times the 
space.  C-Store is on average 16.5 times faster than the 
commercial column-store, but the column-store requires 
1.83 times the space. 

 Of course, this performance data is very preliminary.  
Once we get WS running and write a tuple mover, we will 
be in a better position to do an exhaustive study. 

10. Related Work 

One of the thrusts in the warehouse market is in 
maintaining so-called “data cubes.”  This work dates from 
Essbase by Arbor software in the early 1990’s, which was 
effective at “slicing and dicing” large data sets 
[GRAY97].  Efficiently building and maintaining specific 
aggregates on stored data sets has been widely studied 
[KOTI99, ZHAO97]. Precomputation of such aggregates 
as well as more general materialized views [STAU96] is 
especially effective when a prespecified set of queries is 
run at regular intervals.  On the other hand, when the 
workload cannot be anticipated in advance, it is difficult to 
decide what to precompute.  C-Store is aimed entirely at 
this latter problem. 

Including two differently architected DBMSs in a 
single system has been studied before in data mirrors 
[RAMA02].  However, the goal of data mirrors was to 
achieve better query performance than could be achieved 
by either of the two underlying systems alone in a 
warehouse environment.  In contrast, our goal is to 
simultaneously achieve good performance on update 
workloads and ad-hoc queries.  Consequently, C-Store 
differs dramatically from a data mirror in its design. 

Storing data via columns has been implemented in 
several systems, including Sybase IQ, Addamark, Bubba 
[COPE88], Monet [BONC04], and KDB.  Of these, Monet 
is probably closest to C-Store in design philosophy. 
However, these systems typically store data in entry 
sequence and do not have our hybrid architecture nor do 
they have our model of overlapping materialized 
projections. 



Similarly, storing tables using an inverted organization 
is well known.  Here, every attribute is stored using some 
sort of indexing, and record identifiers are used to find 
corresponding attributes in other columns.  C-Store uses 
this sort of organization in WS but extends the architecture 
with RS and a tuple mover. 

There has been substantial work on using compressed 
data in databases; Roth and Van Horn [ROTH93] provide 
an excellent summary of many of the techniques that have 
been developed.  Our coding schemes are similar to some 
of these techniques, all of which are derived from a long 
history of work on the topic in the broader field of 
computer science [WITT87].  Our observation that it is 
possible to operate directly on compressed data has been 
made before [GRAE91, WESM00]. 

Lastly, materialized views, snapshot isolation, 
transaction management, and high availability have also 
been extensively studied.  The contribution of C-Store is 
an innovative combination of these techniques that 
simultaneously provides improved performance, K-safety, 
efficient retrieval, and high performance transactions. 

11. Conclusions 

This paper has presented the design of C-Store, a 
radical departure from the architecture of current DBMSs.  
Unlike current commercial systems, it is aimed at the 
“read-mostly” DBMS market.  The innovative 
contributions embodied in C-Store include: 
• A column store representation, with an associated 

query execution engine. 
• A hybrid architecture that allows transactions on a 

column store. 
• A focus on economizing the storage representation on 

disk, by coding data values and dense-packing the data. 
• A data model consisting of overlapping projections of 

tables, unlike the standard fare of tables, secondary 
indexes, and projections. 

• A design optimized for a shared nothing machine 
environment. 

• Distributed transactions without a redo log or two 
phase commit. 

• Efficient snapshot isolation. 
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