Concurrency Control

Instructor: Mateil Zaharia
cs245.stanford.edu



https://cs245.stanford.edu/

The Problem

DB
(consistency
constraints)

~

Different transactions may need to access data

items at the same time, violating constraints

CS 245 2



The Problem

Even if each transaction maintains constraints
by itself, interleaving their actions does not

Could try to run just one transaction at a time
(serial schedule), but this has problems
» Too slow! Especially with external clients & 10



High-Level Approach

Define isolation levels: sets of guarantees
about what transactions may experience

Strongest level: serializability (result is same
as some serial schedule)

Many others possible: snapshot isolation,
read committed, read uncommitted, ...



Outline

What makes a schedule serializable?
Conflict serializability
Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation



Example

T,: Read(A) T,: Read(A)
A < A+100 A « Ax2
Write(A) Write(A)
Read(B) Read(B)
B « B+100 B « Bx2
Write(B) Write(B)

Constraint: A=B



Schedule C

A B

T4 T, 25 | 25
Read(A); A < A+100
Write(A); 125

Read(A); A « AX2;

Write(A); 250
Read(B); B « B+100;
Write(B); 125

Read(B); B « Bx2;

Write(B); 250

250 | 250




Schedule D

A B
T T 25 |2
Read(A); A <« A+100
Write(A); 125
Read(A); A < Ax2
Write(A); 250
Read(B); B « Bx2
Write(B); 50
Read(B); B «+ B+100;
Write(B); 150
250 | 150




Our Goal

Want schedules that are “good”, regardless of
» mltlal Sta_te and _ We don’t know the logic
» transaction semantics < in external client apps!

Only look at order of read & write operations
Example:

Sc = r(A)W(A)ra(A)w,(A)ry(B)w,(B)ry(B)w,(B)



Example:

Sc = r(AW(A)ro(A)w,(A)r (B)w, (B)ry(B)w,(B)

N AN J
Y Y

=

Se’ = F(AW(A) (B)wi(B)r2(A)w2(A)rz(B)wz(B)
—~ N —~ /
T, T,

00000



However, for Sp:

Sp = r(A)wW4(A)r(A)w,(A)ro(B)w,(B)r, (B)w, (B)

N J
Y
N -
N~
7\

Another way to view this:

» rq(B) after w,(B) means T, should be after T, in an
equivalent serial schedule (T, —> T,)

» I,(A) after w,(A) means T, should be after T, in an
equivalent serial schedule (T, > T,)

» Can’t have both of these!



Outline

What makes a schedule serializable?
Conflict serializability
Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation



Concepts

Transaction: sequence of r,(x), w;(x) actions

Schedule: a chronological order in which all the
transactions’ actions are executed

Conflicting actions: r,(A) w,(A) w,(A)

<

Wo(A) (A)  Wy(A)

pairs of actions that would change the
result of a read or write if swapped



Question

Is it OK to model reads & writes as occurring
at a single point in time in a schedule?



Question

What about conflicting, concurrent actions on
same object?

start r,(A) end r,(A)

. .
t t

start w,(A) end w,(A)

time

Assume “atomic actions” that only occur at one

point in time (e.g. implement using locking)

CS 245 15



Definition

Schedules S, S, are conflict equivalent if
S, can be transformed into S, by a series of
swaps of non-conflicting actions

(i.e., can reorder non-conflicting operations in
S, to obtain S,)



Definition

A schedule is conflict serializable if it is
conflict equivalent to some serial schedule

Key idea:
» Conflicts “change” result of reads and writes
» Conflict serializable implies that there exists

at least one equivalent serial execution with
the same effects

How can we compute whether a schedule is

conflict serializable?




Outline

What makes a schedule serializable?
Conflict serializability
Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation



Precedence Graph P(S)

Nodes: transactions in a schedule S

Edges: T, —» T, whenever
» Pi(A), qi(A) are actions in S
» Pi(A) <s q;(A) (occurs earlier in schedule)

» at least one of p;, q; is a write (i.e. p;(A) and

q;(A) are conflicting actions)



Exercise

What is P(S) for

S = w3(A) wy(C) ry(A) wy(B) r{(C) wy(A) ra(A) wy(D)

Is S serializable?



Another Exercise

What is P(S) for
S = Wq(A) ry(A) r3(A) wy(A)



Lemma

S4, S, conflict equivalent = P(S,) = P(S,)



Lemma

S1, S2 conflict equivalent = P(S1) = P(S2)

Proof:
Assume P(S,) # P(S,)

=3 T;: T,—> T;in S;and not in S,

= S, = ...p(A)... Gi(A)...

Sy, = ..qi(A)... pi(A)...

<

= S,, S, not conflict equivalent

/

.

Pi: G
conflict



Note: P(S1) = P(S2) £ S1, Sz conflict equivalent



Note: P(S1) = P(S2) £ S1, Sz conflict equivalent

Counter example:
S1= W4(A) ry(A) wy(B) ry(B)

S, = r(A) wy(A) ry(B) wy(B)



Theorem

P(S,) acyclic <= S, conflict serializable

(<) Assume S, is conflict serializable
= 31 S, (serial): S, S; conflict equivalent
= P(S,) = P(S,) (by previous lemma)
= P(S,) acyclic since P(S,) is acyclic



Theorem

P(S,) acyclic <= S, conflict serializable 1
/N

(=) Assume P(S1) is acyclic T2 T3

Transform S1 as follows: / \T4/

(1) Take T1 to be transaction with no inbound edges
(2) Move all T1 actions to the front

(3) we now have S1 = <T1 actions><... rest ...>
(4) repeat above steps to serialize rest!



Outline

What makes a schedule serializable?
Conflict serializability
Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation



How to Enforce Serializable
Schedules?

Option 1: run system, recording P(S); at end
of day, check for cycles in P(S) and declare
whether execution was good



How to Enforce Serializable
Schedules?

Option 2: prevent P(S) cycles from occurring

T, T, ... T,
N\ o
Scheduler




A Locking Protocol

Two new actions:

lock: |.(A) < Transaction i locks object A

unlock: ui(A)

T4 l sz

scheduler

]

lock
table




Rule #1: Well-Formed
Transactions

Ti: ... L(A) ... r(A) ... u(A) ...

Transactions can only operate on locked items

CS 245



Rule #2: Legal Scheduler

Only one transaction can lock item at a time

CS 245



Exercise

Which transactions are well-formed?
Which schedules are legal?

S1=11(A) 1(B) ri(A) wq(B) I5(B) ui(A) us(B)
r,(B) wy(B) ux(B) 13(B) r3(B) us(B)

S, = 11(A) ri(A) wi(B) us(A) uy(B) 1(B) ra(B)
w,(B) I3(B) r3(B) us(B)

Sz = [1(A) ry(A) uy(A) 14(B) w4(B) uy(B) 1(B)
r,(B) wy(B) uy(B) 15(B) r3(B) us(B)



Exercise

Which transactions are well-formed?
Which schedules are legal?

S1 =LA L (B) (A >w1(B u(A) Uy(B)
r,(B) wo(B) uy(B) 15(B 3) uz(B)

) ry(AY@W+(B) ’ 1(A)u B) r,(B)
6r ) us(B m|ssmg

A) ry(A) uq( w4(B) u4(B)
|2(B) r,(B )Wz(B) U2( ) 3(B) r3(B) u;(B)



Schedule F

A B
u 12 25 | 25
1(AyRead ) | T
A—A+100;Write(A);u1(A) 108

12(A);Read(A)

A—Ax2;Write(A);u2(A) 250
12(B);Read(B)

B«—Bx2;Write(B);u2(B) 50
11(B);Read(B)
B«—B+100;Write(B);u1(B) 150
250 | 150




Rule #3: 2-Phase Locking (2PL)

no unlocks no locks

Transactions must first lock all items they need,
then unlock them

CS 245 37



2-Phase Locking (2PL)

# locks
held by

» Time

Growing
Phase



Schedule G

T1 12

11(A);Read(A)
A—A+100;Write(A)
11(B);u1(A)




Schedule G

T1 12

11(A);Read(A)
A—A+100;Write(A)
11(B);u1(A)
12(A);Read(A)
A—Ax2;Write(A)
12(B) <«— delayed




Schedule G

T1 12

11(A);Read(A)
A—A+100;Write(A)
11(B);u1(A)
12(A);Read(A)
A—Ax2;Write(A)
12(B) <«— delayed
Read(B);B—B+100
Write(B);u1(B)




Schedule G

T1 12

11(A);Read(A)
A—A+100;Write(A)
11(B);u1(A)
12(A);Read(A)
A—Ax2;Write(A)
12(B) <«— delayed
Read(B);B—B+100
Write(B);u1(B)
12(B);u2(A);Read(B)
B—Bx2;Write(B);uz(B)




Schedule H (T2 Ops Reversed)

T1 T2
11(A); Read(A) 12(B); Read(B)
A—A+100; Write(A) | B«—Bx2; Write(B)
11(B) < delayed 12(A) «— delayed

(T2 holds B) (T1 holds A)

Problem: Deadlock between the transactions

CS 245 43



Dealing with Deadlock

Option 1: Detect deadlocks and roll back one
of the deadlocked transactions

» The rolled back transaction no longer appears
In our schedule

Option 2: Agree on an order to lock items in
that prevents deadlocks
» E.g. transactions acquire locks in key order
» Must know which items T; will need up front!



Is 2PL Correct?

Yes! We can prove that following rules #1,2,3
gives conflict-serializable schedules



Conflict Rules for Lock Ops

(A), I,(A) conflict
(A), u;(A) conflict

Note: no conflict <u;(A), ui(A)>, <li(A), r;(A)>,...



Theorem

Rules #1,2,3 = conflict-serializable schedule
(2PL)

To help in proof:
Definition: Shrink(T;) = SH(T)) =
first unlock action of T,



Lemma

T, > T;in S = SH(T;) <g SH(T;)

Proof:
T; — T; means that

S=..pA) ... g(A)...; p,qconflict
By rules 1, 2:

S=...p(A) ... u(A) ... i(A) ... qi(A) ...

By rule 3: SH(T) SH(T))

So, SH(T;) <g SH(T;)



Theorem: Rules #1,2,3 =
Conflict Serializable Schedule

Proof:
(1) Assume P(S) has cycle
Tio>oT,>.... T, > T,
(2) By lemma: SH(T,) < SH(T,) < ... < SH(T,)
(3) Impossible, so P(S) acyclic

(4) = S is conflict serializable



2PL is a Subset of Serializable

Serializable

CCCCC



Serializable
;

S1: wy(X) w;(X) wy(Y) wy(Y)

S, cannot be achieved via 2PL.:
The lock by T, for Y must occur after w,(Y), so the
unlock by T, for X must occur after this point (and

before w4(X)). Thus, w;(X) cannot occur under 2PL
where shown in S;.

But S1 is serializable: equivalentto T,, T,, Ts.



If You Need More Practice

Are our schedules S and Sy 2PL schedules?
Sci Wi(A) Wy(A) wy(B) wy(B)

Sp: W4(A) wy(A) wy(B) w,(B)



Optimizing Performance

Beyond this simple 2PL protocol, it is all a
matter of improving performance and
allowing more concurrency....

» Shared locks

» Multiple granularity

» Inserts, deletes and phantoms

» Other types of C.C. mechanisms



Shared Locks

So far:

S = 1,(A) r{(A) us(A) ... I(A) rp(A) uy(A) ...

~

Do not conflict



Shared Locks

So far:

S = 1,(A) r{(A) us(A) ... I(A) rp(A) uy(A) ...

~

Do not conflict

Instead:
S=... I-S;(A) r1(A) I-S5(A) r5(A) .... us(A) U,(A)



Multiple Lock Modes

Lock actions
I-m,(A): lock Ain mode m (m is S or X)
u-m,(A): unlock mode m (mis S or X)

Shorthand:
u(A): unlock whatever modes T, has locked A



Rule 1: Well-Formed
Transactions

T, =... -S4(A) ... ry(A) ... uy(A) ...
T, = I-X4(A) ... wy(A) ... uy(A) ...

Transactions must acquire the right lock type
for their actions (S for read only, X for r/w).

CS 245 -,



Rule 1: Well-Formed
Transactions

What about transactions that read and write
same object?

Option 1: Request exclusive lock

T, = L -X(A) ..o rg(A) ... wy(A) ... U(A) ...



Rule 1: Well-Formed
Transactions

What about transactions that read and write
same object?

Option 2: Upgrade lock to X on write

(Think of this as getting a 2" lock, or dropping S to get X.)



Rule 2: Legal Scheduler

S=..I1S(A)... ...u(A)...
<no |-xj(A)=

S= .. IX(A) ... ..u(A)...
r;o |-xj(A)r

no I-S;(A)



A Way to Summarize Rule #2

Lock mode compatibility matrix

New request
A

r A
compat = S X
~
Lock S | true false
already <

held in X | false | false




Rule 3: 2PL Transactions

No change except for upgrades:
(I) If upgrade gets more locks

(e.g., S —> {S, X}) then no change!
(I1) If upgrade releases read lock (e.g., S—X)

can be allowed in growing phase



Rules 1,2,3 = Conf. Serializable
Schedules for S/X Locks

Proof: similar to X locks case
Detail:
I-m;(A), I-n;(A) do not conflict if compat(m,n)

I-m;(A), u-n;(A) do not conflict if compat(m,n)



Lock Modes Beyond S/X

Examples:
(1) increment lock

(2) update lock



Example 1: Increment Lock

Atomic addition action: IN;(A)
{Read(A); A « A+k; Write(A)}

IN;(A), IN;(A) do not conflict, because addition
IS commutative!



Compatibility Matrix

New request

r A A
compat S| X ||
S|\ T|F|F
Lock<
Iread
e | PP LF
| | F| F [T
.




Update Locks

A common deadlock problem with upgrades:

T1 T2
I-S1(A)

I-S2(A)
I-X1(A)

I-X2(A)

--- Deadlock ---

CS 245 68



Solution

If Ti wants to read A and knows it may later
want to write A, it requests an update lock
(not shared lock)



Compatibility Matrix

New request
A

-

compat S | X | U
S| T |F
Lock
alrz(;dy < X F F
held in U




Compatibility Matrix

New request
A

compat S| X | U
S| T F|T

Lock _
alrg(;(_jy 5 X F B F
held in i U = ~ =

Note: asymmetric table!

CS 245



Which Objects Do We Lock?

Table A | | |UPl€A Disk
Tuple B block
Table B Tuple C A
Disk
block
B

DB DB DB



Which Objects Do We Lock?

Locking works in any case, but should we
choose small or large objects?



Which Objects Do We Lock?

Locking works in any case, but should we
choose small or large objects?

If we lock large objects (e.g., relations)
— Need few locks
— Low concurrency

If we lock small objects (e.g., tuples, fields)
— Need more locks
— More concurrency



We Can Have It Both Ways!

Ask any janitor to give you the solution...

Stall 1 | Stall2 | Stall3 | Stall 4
A

restroom




Example



Example

CCCCC

T1(1S)



Example

CCCCC

T1(1S), T2(S)



Example 2

CCCCC

T1(1S)



Example 2
() @

CCCCC

), T2(1X)



Example 3
T1(1S), T2(S), T3(1X)?

CCCCC



Multiple Granularity Locks

compat Requester
IS IX S SIX X
1S
Holder |IX
S
SIX
X




Multiple Granularity Locks

compat Requester
S IX S SIX X

S| T| T | T | T]F

Holder IXI T|T|F|F|F
SITIEITIEIE

SIX\T | F|F|F|F

x| F|F|F|FI|F




