
Concurrency Control

Instructor: Matei Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

The Problem

T1 T2 … Tn

DB
(consistency
constraints)

Different transactions may need to access data
items at the same time, violating constraints

CS 245 2

The Problem

Even if each transaction maintains constraints
by itself, interleaving their actions does not

Could try to run just one transaction at a time
(serial schedule), but this has problems
» Too slow! Especially with external clients & IO

CS 245 3

High-Level Approach

Define isolation levels: sets of guarantees
about what transactions may experience

Strongest level: serializability (result is same
as some serial schedule)

Many others possible: snapshot isolation,
read committed, read uncommitted, …

CS 245 4

Outline
What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
CS 245 5

Example

T1: Read(A) T2: Read(A)
A ¬ A+100 A ¬ A´2
Write(A) Write(A)
Read(B) Read(B)
B ¬ B+100 B ¬ B´2
Write(B) Write(B)

Constraint: A=B

CS 245 6

Schedule C
T1 T2

Read(A); A ¬ A+100
Write(A);

Read(A); A ¬ A´2;
Write(A);

Read(B); B ¬ B+100;
Write(B);

Read(B); B ¬ B´2;
Write(B);

A B
25 25

125

250

125

250
250 250

CS 245 7

Schedule D
T1 T2
Read(A); A ¬ A+100
Write(A);

Read(A); A ¬ A´2;
Write(A);
Read(B); B ¬ B´2;
Write(B);

Read(B); B ¬ B+100;
Write(B);

A B
25 25

125

250

50

150
250 150

CS 245 8

Want schedules that are “good”, regardless of
» initial state and
» transaction semantics

Only look at order of read & write operations

Example:

SC = r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

Our Goal

We don’t know the logic
in external client apps!

CS 245 9

SC’ = r1(A)w1(A)r1(B)w1(B)r2(A)w2(A)r2(B)w2(B)

T1 T2

Example:

SC = r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

CS 245 10

However, for SD:

SD = r1(A)w1(A)r2(A)w2(A)r2(B)w2(B)r1(B)w1(B)

Another way to view this:
» r1(B) after w2(B) means T1 should be after T2 in an

equivalent serial schedule (T2 ® T1)
» r2(A) after w1(A) means T2 should be after T1 in an

equivalent serial schedule (T1 ® T2)
» Can’t have both of these!

CS 245 11

Outline
What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
CS 245 12

Transaction: sequence of ri(x), wi(x) actions

Schedule: a chronological order in which all the
transactions’ actions are executed

Conflicting actions: r1(A) w1(A) w1(A)

w2(A) r2(A) w2(A)

pairs of actions that would change the
result of a read or write if swapped

CS 245 13

Concepts

Question

Is it OK to model reads & writes as occurring
at a single point in time in a schedule?

S = … r1(x) … w2(b) …

CS 245 14

Question

What about conflicting, concurrent actions on
same object?

start r1(A) end r1(A)

start w2(A) end w2(A)

CS 245 15

time

Assume “atomic actions” that only occur at one
point in time (e.g. implement using locking)

Definition

Schedules S1, S2 are conflict equivalent if
S1 can be transformed into S2 by a series of
swaps of non-conflicting actions

(i.e., can reorder non-conflicting operations in
S1 to obtain S2)

CS 245 16

Definition

A schedule is conflict serializable if it is
conflict equivalent to some serial schedule

CS 245 17

Key idea:
» Conflicts “change” result of reads and writes
» Conflict serializable implies that there exists

at least one equivalent serial execution with
the same effects

How can we compute whether a schedule is
conflict serializable?

Outline
What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
CS 245 18

Precedence Graph P(S)

Nodes: transactions in a schedule S

Edges: Ti ® Tj whenever
» pi(A), qj(A) are actions in S
» pi(A) <S qj(A) (occurs earlier in schedule)
» at least one of pi, qj is a write (i.e. pi(A) and

qj(A) are conflicting actions)

CS 245 19

Exercise

What is P(S) for

S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D)

Is S serializable?

CS 245 20

Another Exercise

What is P(S) for

S = w1(A) r2(A) r3(A) w4(A)

CS 245 21

Lemma

S1, S2 conflict equivalent Þ P(S1) = P(S2)

CS 245 22

S1, S2 conflict equivalent Þ P(S1) = P(S2)

Proof:
Assume P(S1) ¹ P(S2)
Þ $ Ti: Ti ® Tj in S1 and not in S2

Þ S1 = …pi(A)... qj(A)… pi, qj

S2 = …qj(A)… pi(A)... conflict

Þ S1, S2 not conflict equivalent
CS 245 23

Lemma

Note: P(S1) = P(S2) Þ S1, S2 conflict equivalent

CS 245 24

Note: P(S1) = P(S2) Þ S1, S2 conflict equivalent

Counter example:

S1 = w1(A) r2(A) w2(B) r1(B)

S2 = r2(A) w1(A) r1(B) w2(B)

CS 245 25

P(S1) acyclic ÜÞ S1 conflict serializable

(Ü) Assume S1 is conflict serializable
Þ $ Ss (serial): Ss, S1 conflict equivalent
Þ P(Ss) = P(S1) (by previous lemma)
Þ P(S1) acyclic since P(Ss) is acyclic

CS 245 26

Theorem

(Þ) Assume P(S1) is acyclic
Transform S1 as follows:
(1) Take T1 to be transaction with no inbound edges
(2) Move all T1 actions to the front

S1 = ……. qj(A)…….p1(A)…..

(3) we now have S1 = <T1 actions><... rest ...>
(4) repeat above steps to serialize rest!
CS 245 27

P(S1) acyclic ÜÞ S1 conflict serializable

Theorem
T1

T2 T3

T4

Outline
What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
CS 245 28

How to Enforce Serializable
Schedules?
Option 1: run system, recording P(S); at end
of day, check for cycles in P(S) and declare
whether execution was good

CS 245 29

How to Enforce Serializable
Schedules?
Option 2: prevent P(S) cycles from occurring

T1 T2 ….. Tn

CS 245 30

Scheduler

DB

A Locking Protocol

Two new actions:

lock: li(A)

unlock: ui(A)

CS 245 31

scheduler

T1 T2

lock
table

Transaction i locks object A

Rule #1: Well-Formed
Transactions

Ti: … li(A) … ri(A) … ui(A) ...

CS 245 32

Transactions can only operate on locked items

Rule #2: Legal Scheduler

S = …….. li(A) ………... ui(A) ……...

CS 245 33

no lj(A)

Only one transaction can lock item at a time

Exercise
Which transactions are well-formed?
Which schedules are legal?

S1 = l1(A) l1(B) r1(A) w1(B) l2(B) u1(A) u1(B)
r2(B) w2(B) u2(B) l3(B) r3(B) u3(B)

S2 = l1(A) r1(A) w1(B) u1(A) u1(B) l2(B) r2(B)
w2(B) l3(B) r3(B) u3(B)

S3 = l1(A) r1(A) u1(A) l1(B) w1(B) u1(B) l2(B)
r2(B) w2(B) u2(B) l3(B) r3(B) u3(B)

CS 245 34

Exercise
Which transactions are well-formed?
Which schedules are legal?

S1 = l1(A) l1(B) r1(A) w1(B) l2(B) u1(A) u1(B)
r2(B) w2(B) u2(B) l3(B) r3(B) u3(B)

S2 = l1(A) r1(A) w1(B) u1(A) u1(B) l2(B) r2(B)
w2(B) l3(B) r3(B) u3(B)

S3 = l1(A) r1(A) u1(A) l1(B) w1(B) u1(B)
l2(B) r2(B) w2(B) u2(B) l3(B) r3(B) u3(B)

CS 245 35

u2(B) missing

T1 T2
l1(A);Read(A)
A←A+100;Write(A);u1(A)

l2(A);Read(A)
A←A´2;Write(A);u2(A)
l2(B);Read(B)
B←B´2;Write(B);u2(B)

l1(B);Read(B)
B←B+100;Write(B);u1(B)

Schedule F

CS 245 36

A B
25 25

125

250

50

150
250 150

Rule #3: 2-Phase Locking (2PL)

Ti = ……. li(A) ………... ui(A) ……...

CS 245 37

no unlocks no locks

Transactions must first lock all items they need,
then unlock them

locks
held by
Ti

Time

Growing Shrinking
Phase Phase

CS 245 38

2-Phase Locking (2PL)

T1 T2
l1(A);Read(A)
A←A+100;Write(A)
l1(B);u1(A)

CS 245 39

Schedule G

T1 T2
l1(A);Read(A)
A←A+100;Write(A)
l1(B);u1(A)

l2(A);Read(A)
A←A⨯2;Write(A)
l2(B) delayed

CS 245 40

Schedule G

T1 T2
l1(A);Read(A)
A←A+100;Write(A)
l1(B);u1(A)

l2(A);Read(A)
A←A⨯2;Write(A)
l2(B)

Read(B);B←B+100
Write(B);u1(B)

delayed

CS 245 41

Schedule G

T1 T2
l1(A);Read(A)
A←A+100;Write(A)
l1(B);u1(A)

l2(A);Read(A)
A←A´2;Write(A)
l2(B)

Read(B);B←B+100
Write(B);u1(B)

l2(B);u2(A);Read(B)
B←B´2;Write(B);u2(B)

delayed

CS 245 42

Schedule G

T1 T2
l1(A); Read(A) l2(B); Read(B)
A←A+100; Write(A) B←B´2; Write(B)
l1(B) l2(A)

CS 245 43

Schedule H (T2 Ops Reversed)

delayed
(T1 holds A)

delayed
(T2 holds B)

Problem: Deadlock between the transactions

Dealing with Deadlock

Option 1: Detect deadlocks and roll back one
of the deadlocked transactions
» The rolled back transaction no longer appears

in our schedule

Option 2: Agree on an order to lock items in
that prevents deadlocks
» E.g. transactions acquire locks in key order
» Must know which items Ti will need up front!

CS 245 44

Is 2PL Correct?

Yes! We can prove that following rules #1,2,3
gives conflict-serializable schedules

CS 245 45

Conflict Rules for Lock Ops

li(A), lj(A) conflict

li(A), uj(A) conflict

Note: no conflict <ui(A), uj(A)>, <li(A), rj(A)>,...

CS 245 46

Theorem

Rules #1,2,3 Þ conflict-serializable schedule
(2PL)

CS 245 47

To help in proof:
Definition: Shrink(Ti) = SH(Ti) =

first unlock action of Ti

Lemma
Ti ® Tj in S Þ SH(Ti) <S SH(Tj)

CS 245 48

Proof:
Ti ® Tj means that

S = … pi(A) … qj(A) …; p, q conflict
By rules 1, 2:

S = … pi(A) … ui(A) … lj(A) ... qj(A) …

By rule 3: SH(Ti) SH(Tj)
So, SH(Ti) <S SH(Tj)

Theorem: Rules #1,2,3 Þ
Conflict Serializable Schedule
Proof:

(1) Assume P(S) has cycle

T1 ® T2 ®…. Tn ® T1

(2) By lemma: SH(T1) < SH(T2) < ... < SH(T1)

(3) Impossible, so P(S) acyclic

(4) Þ S is conflict serializable
CS 245 49

2PL is a Subset of Serializable

CS 245 50

2PL
Serializable

S1: w1(X) w3(X) w2(Y) w1(Y)

CS 245 51

2PL
Serializable

S1

S1 cannot be achieved via 2PL:
The lock by T1 for Y must occur after w2(Y), so the
unlock by T1 for X must occur after this point (and
before w1(X)). Thus, w3(X) cannot occur under 2PL
where shown in S1.

But S1 is serializable: equivalent to T2, T1, T3.

SC: w1(A) w2(A) w1(B) w2(B)

Are our schedules SC and SD 2PL schedules?

SD: w1(A) w2(A) w2(B) w1(B)

CS 245 52

If You Need More Practice

Optimizing Performance

Beyond this simple 2PL protocol, it is all a
matter of improving performance and
allowing more concurrency….
» Shared locks
» Multiple granularity
» Inserts, deletes and phantoms
» Other types of C.C. mechanisms

CS 245 54

So far:

S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

Do not conflict

CS 245 55

Shared Locks

So far:

S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

Do not conflict

Instead:
S=... l-S1(A) r1(A) l-S2(A) r2(A) …. u1(A) u2(A)

CS 245 56

Shared Locks

Multiple Lock Modes

Lock actions
l-mi(A): lock A in mode m (m is S or X)
u-mi(A): unlock mode m (m is S or X)

Shorthand:
ui(A): unlock whatever modes Ti has locked A

CS 245 57

Ti =... l-S1(A) … r1(A) … u1(A) …

Ti =... l-X1(A) … w1(A) … u1(A) …

CS 245 58

Rule 1: Well-Formed
Transactions

Transactions must acquire the right lock type
for their actions (S for read only, X for r/w).

Rule 1: Well-Formed
Transactions
What about transactions that read and write
same object?

Option 1: Request exclusive lock

T1 = ...l-X1(A) … r1(A) ... w1(A) ... u(A) …

CS 245 59

Rule 1: Well-Formed
Transactions
What about transactions that read and write
same object?

Option 2: Upgrade lock to X on write

T1 = ...l-S1(A)…r1(A)...l-X1(A)…w1(A)...u1(A)…

CS 245 60

(Think of this as getting a 2nd lock, or dropping S to get X.)

Rule 2: Legal Scheduler

S = ... l-Si(A) … … ui(A) …

no l-Xj(A)

S = ... l-Xi(A) … … ui(A) …

no l-Xj(A)
no l-Sj(A)

CS 245 61

A Way to Summarize Rule #2

Lock mode compatibility matrix

compat = S X
S true false
X false false

CS 245 62

Lock
already
held in

New request

Rule 3: 2PL Transactions

No change except for upgrades:

(I) If upgrade gets more locks

(e.g., S ® {S, X}) then no change!

(II) If upgrade releases read lock (e.g., S®X)

can be allowed in growing phase

CS 245 63

Proof: similar to X locks case

Detail:

l-mi(A), l-nj(A) do not conflict if compat(m,n)

l-mi(A), u-nj(A) do not conflict if compat(m,n)

CS 245 64

Rules 1,2,3 Þ Conf. Serializable
Schedules for S/X Locks

Lock Modes Beyond S/X

Examples:

(1) increment lock

(2) update lock

CS 245 65

Example 1: Increment Lock

Atomic addition action: INi(A)

{Read(A); A ¬ A+k; Write(A)}

INi(A), INj(A) do not conflict, because addition
is commutative!

CS 245 66

Compatibility Matrix

compat S X I

S T F F

X F F F

I F F T

CS 245 67

Lock
already
held in

New request

A common deadlock problem with upgrades:

T1 T2
l-S1(A)

l-S2(A)
l-X1(A)

l-X2(A)
--- Deadlock ---

CS 245 68

Update Locks

Solution

If Ti wants to read A and knows it may later
want to write A, it requests an update lock
(not shared lock)

CS 245 69

compat S X U
S T F
X F F
U

Lock
already
held in

CS 245 70

Compatibility Matrix
New request

compat S X U
S T F T
X F F F
U F F F

Lock
already
held in

CS 245 71

Compatibility Matrix
New request

Note: asymmetric table!

Which Objects Do We Lock?

?

CS 245 72

Table A

Table B

...

Tuple A
Tuple B
Tuple C

...

Disk
block

A

Disk
block

B

...

DB DB DB

Which Objects Do We Lock?

Locking works in any case, but should we
choose small or large objects?

CS 245 73

Which Objects Do We Lock?

Locking works in any case, but should we
choose small or large objects?

CS 245 74

If we lock large objects (e.g., relations)
– Need few locks
– Low concurrency

If we lock small objects (e.g., tuples, fields)
– Need more locks
– More concurrency

We Can Have It Both Ways!

Ask any janitor to give you the solution...

CS 245 75

hall

Stall 1 Stall 2 Stall 3 Stall 4

restroom

Example

CS 245 76

R1

t1
t2 t3 t4

Example

CS 245 77

R1

t1
t2 t3 t4

T1(IS)

T1(S)

Example

CS 245 78

R1

t1
t2 t3 t4

T1(IS)

T1(S)

, T2(S)

Example 2

CS 245 79

R1

t1
t2 t3 t4

T1(IS)

T1(S)

Example 2

CS 245 80

R1

t1
t2 t3 t4

T1(IS)

T1(S)

, T2(IX)

T2(X)

Example 3

CS 245 81

R1

t1
t2 t3 t4

T1(IS)

T1(S)

, T2(S), T3(IX)?

compat Requester
IS IX S SIX X

IS
Holder IX

S
SIX

X

T T T T F
F
F
F
FFFFF

FFFT
FTFT
FFTT

CS 245 82

Multiple Granularity Locks

compat Requester
IS IX S SIX X

IS
Holder IX

S
SIX

X

T T T T F
F
F
F
FFFFF

FFFT
FTFT
FFTT

CS 245 83

Multiple Granularity Locks

