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Which Objects Do We Lock?

?
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Example 2
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Example 2
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Example 3
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Multiple Granularity Locks



Parent Child can be locked
locked in by same transaction in

IS
IX
S
SIX
X

P

C

IS, S
IS, S, IX, X, SIX
none
X, IX, SIX
none

CS 245 11

Rules Within A Transaction



Multi-Granularity 2PL Rules
1. Follow multi-granularity compat function
2. Lock root of tree first, any mode
3. Node Q can be locked by Ti in S or IS only if 

parent(Q) locked by Ti in IX or IS
4. Node Q can be locked by Ti in X, SIX, IX only if 

parent(Q) locked by Ti in IX, SIX
5. Ti is two-phase
6. Ti can unlock node Q only if none of Q’s      

children are locked by Ti
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Exercise:
Can T2 access object f2.2 in X mode? What 
locks will T2 get?
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Exercise:
Can T2 access object f2.2 in X mode? What 
locks will T2 get?
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Exercise:
Can T2 access object f3.1 in X mode? What 
locks will T2 get?
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Exercise:
Can T2 access object f2.2 in S mode? What 
locks will T2 get?
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Exercise:
Can T2 access object f2.2 in X mode? What 
locks will T2 get?
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Insert + Delete Operations

Insert
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Changes to Locking Rules:

1. Get exclusive lock on A before deleting A

2. When Ti inserts an object A, Ti receives an 
exclusive lock on A
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Still Have Problem: Phantoms

Example: relation R (id, name,…)
constraint: id is unique key
use tuple locking

R id name ….
o1 55 Smith
o2 75 Jones
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T1: Insert <12,Mary,…> into R
T2: Insert <12,Sam,…> into R

T1 T2
l-S1(o1) l-S2(o1)
l-S1(o2) l-S2(o2)
Check Constraint Check Constraint

Insert o3[12,Mary,..]
Insert o4[12,Sam,..]

... ...
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Solution

Use multiple granularity tree

Before insert of node N,
lock parent(N) in X mode
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Back to Example
T1: Insert<12,Mary> T2: Insert<12,Sam>

T1 T2
l-X1(R)

Check constraint
Insert<12,Mary>
U1(R)

l-X2(R)
Check constraint
Oops! id=12 already in R!

l-X2(R) delayed
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Instead of Locking R, Can Use 
Index Nodes for Ranges

Example:
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...

...

...

R

Index
100<id≤200

Index
0<id≤100

id=2 id=5 id=107 id=109



How Is Locking Implemented 
In Practice?
Every system is different (e.g., may not even 
provide conflict serializable schedules)

But here is one (simplified) way ...
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Sample Locking System

1. Don’t ask transactions to request/release 
locks: just get the weakest lock for each 
action they perform

2. Hold all locks until the transaction commits
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Sample Locking System

Under the hood: lock manager that keeps 
track of which objects are locked
» E.g. hash table

Also need good ways to block transactions 
until locks are available, and to find deadlocks
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» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
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Validation Approach
Transactions have 3 phases:

1. Read
» Read all DB values needed
» Write to temporary storage
» No locking

2. Validate
» Check whether schedule so far is serializable

3. Write
» If validate OK, write to DB
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Key Idea

Make validation atomic

If the validation order is T1, T2, T3, …, then 
resulting schedule will be conflict equivalent 
to Ss = T1, T2, T3, …
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Implementing Validation

System keeps track of two sets:

FIN = transactions that have finished phase 3
(write phase) and are all done

VAL = transactions that have successfully
finished phase 2 (validation)
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Example That Validation Must Prevent:

RS(T2)={B} RS(T3)={A,B}

WS(T2)={B,D}  WS(T3)={C}
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T2
finish

phase 3

Example That Validation Must Allow:

RS(T2)={B} RS(T3)={A,B}

WS(T2)={B,D}  WS(T3)={C}
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Another Thing Validation Must Prevent:

RS(T2)={A}     RS(T3)={A,B}

WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

finish
T2
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RS(T2)={A}     RS(T3)={A,B}

WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

finish
T2

BAD:  w3(D)  w2(D)
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Another Thing Validation Must Prevent:



RS(T2)={A}     RS(T3)={A,B}

WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

finish
T2
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Another Thing Validation Must Allow:



Validation Rules for Tj:

when Tj starts phase 1: 
ignore(Tj) ¬ FIN

at Tj Validation:
if Check(Tj) then 

VAL ¬ VAL ∪ {Tj}
do write phase
FIN ¬ FIN ∪ {Tj}
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Check(Tj)

for Ti Î VAL – ignore(Tj) do
if (WS(Ti) ∩ RS(Tj) ≠ ∅ or

(Ti Ï FIN and WS(Ti) ∩ WS(Tj) ≠ ∅))
then return false

return true
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Exercise

T: RS(T)={A,B}
WS(T)={A,C}

V: RS(V)={B}
WS(V)={D,E}

U: RS(U)={B}
WS(U)={D}

W: RS(W)={A,D}
WS(W)={A,C}

start
validate
finish
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Is Validation = 2PL?
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2PL
Val

2PL
Val

2PL
Val

Val
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S: w2(y) w1(x) w2(x)

Achievable with 2PL?

Achievable with validation? 
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S: w2(y) w1(x) w2(x)

S can be achieved with 2PL:
l2(y) w2 (y) l1(x) w1(x) u1(x) l2(x) w2(x) u2(x) u2(y)

S cannot be achieved by validation:
The validation point of T2, val2, must occur before w2(y) 
since transactions do not write to the database until after 
validation. Because of the conflict on x, val1 < val2, so we 
must have something like:

S:  val1 val2 w2(y)  w1(x)  w2(x)

With the validation protocol, the writes of T2 should not 
start until T1 is all done with writes, which is not the case. 
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Validation Subset of 2PL?
Possible proof (Check!):
» Let S be validation schedule
» For each T in S insert lock/unlocks, get S’:

• At T start: request read locks for all of RS(T)
• At T validation: request write locks for WS(T);

release read locks for read-only objects
• At T end: release all write locks

» Clearly transactions well-formed and 2PL
» Must show S’ is legal (next slide)
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Say S’ not legal (due to w-r conflict):
S’: ... l1(x)     w2(x)  r1(x)   val1 u1(x) ...
» At val1: T2 not in Ignore(T1); T2 in VAL
» T1 does not validate: WS(T2) Ç RS(T1) ¹ Æ
» contradiction!

Say S’ not legal (due to w-w conflict):
S’: ... val1 l1(x)     w2(x)  w1(x)   u1(x) ...
» Say T2 validates first (proof similar if T1 validates first)
» At val1: T2 not in Ignore(T1); T2 in VAL
» T1 does not validate:

T2 Ï FIN  AND WS(T1) Ç WS(T2) ¹ Æ)
» contradiction!
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Validation Subset of 2PL?



Is Validation = 2PL?
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When to Use Validation?

Validation performs better than locking when:
» Conflicts are rare
» System resources are plentiful
» Have tight latency constraints
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Example: Tj Ti

wj(A)
ri(A)

Commit Ti

Abort Tj

Concurrency Control & Recovery

…
…

… …
…

…
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Non-persistent commit (bad!)
avoided by
recoverable
schedules



Example: Tj Ti

wj(A)
ri(A)
wi(B)

Abort Tj
[Commit Ti]

…
…

…

…
…

…
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Concurrency Control & Recovery

Cascading rollback (bad!)
avoided by
avoids-cascading
-rollback (ACR)
schedules



Core Problem

Schedule is conflict serializable

Tj Ti

But not recoverable
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To Resolve This

Need to mark the “final” decision for each 
transaction in our schedules:
» Commit decision: system guarantees 

transaction will or has completed
» Abort decision: system guarantees 

transaction will or has been rolled back
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Model This as 2 New Actions:

ci = transaction Ti commits

ai = transaction Ti aborts

CS 245 53



...
...

...
...

Tj Ti

wj(A)
ri(A)

ci ¬ can we commit here?

Back to Example
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Definition
Ti reads from Tj in S (Tj ÞS Ti) if:

1. wj(A) <S ri(A)

2.  aj <S r(A)        (<S: does not precede)

3. If wj(A) <S wk(A) <S ri(A) then ak <S ri(A) 
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Definition

Schedule S is recoverable if 

whenever Tj ÞS Ti and  j ¹ i and ci Î S

then cj <S ci

CS 245 56



Notes

In all transactions, reads and writes must 
precede commits or aborts
ó If ci Î Ti, then ri(A) < ai, wi(A) < ai

ó If ai Î Ti, then ri(A) < ai, wi(A) < ai

Also, just one of ci, ai per transaction
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How to Achieve Recoverable 
Schedules?
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With 2PL, Hold Write Locks 
Until Commit (“Strict 2PL”)

Tj Ti

Wj(A)

Cj

uj(A)
ri(A)
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With Validation, No Change!

Each transaction’s validation point is its 
commit point, and only write after
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Definitions
S is recoverable if each transaction commits 
only after all transactions from which it read 
have committed

S avoids cascading rollback if each 
transaction may read only those values 
written by committed transactions

S is strict if each transaction may read and 
write only items previously written by 
committed transactions (≡ strict 2PL)
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Relationship of Recoverable, 
ACR & Strict Schedules

Avoids cascading rollback

Recoverable

ACR

Strict

Serial
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Examples
Recoverable:

w1(A) w1(B) w2(A) r2(B) c1 c2

Avoids Cascading Rollback:
w1(A) w1(B) w2(A) c1  r2(B) c2

Strict:
w1(A) w1(B) c1 w2(A) r2(B) c2
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Recoverability & Serializability

Every strict schedule is serializable

Proof: equivalent to serial schedule based on 
the order of commit points
» Only read/write from previously committed 

transactions
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Recoverability & Serializability
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Weaker Isolation Levels

Dirty reads: Let transactions read values 
written by other uncommitted transactions
» Equivalent to having long-duration write locks, 

but no read locks

Read committed: Can only read values from 
committed transactions, but they may change
» Equivalent to having long-duration write locks 

(X) and short-duration read locks (S)
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Weaker Isolation Levels

Repeatable reads: Can only read values from 
committed transactions, and each value will be 
the same if read again
» Equivalent to having long-duration read & 

write locks (X/S) but not table locks for insert

Remaining problem: phantoms!
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Weaker Isolation Levels

Snapshot isolation: Each transaction sees a 
consistent snapshot of the whole DB (as if we 
saved all committed values when it began)
» Often implemented with multi-version

concurrency control (MVCC)

Still has some anomalies! Example?
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Weaker Isolation Levels

Snapshot isolation: Each transaction sees a 
consistent snapshot of the whole DB (as if we 
saved all committed values when it began)
» Often implemented with multi-version

concurrency control (MVCC)

Write skew anomaly: txns write different values
» Constraint: A+B ≥ 0
» T1: read A, B; if A+B ≥ 1, subtract 1 from A
» T2: read A, B; if A+B ≥ 1, subtract 1 from B
» Problem: what if we started with A=1, B=0?
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Interesting Fact

Oracle calls their snapshot isolation level 
“serializable”, and doesn’t provide serializable

Many other systems provide snapshot 
isolation as an option
» MySQL, PostgreSQL, MongoDB, SQL Server
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