Concurrency Control

Instructor: Mateil Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

Outline

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
Concurrency control + recovery

Beyond serializability

Which Objects Do We Lock?

Table A Tuple A Disk
Tuple B block
Table B Tuple C A
Disk
: _ block
ldea: Multi-level locking

DB DB DB

CS 245

Example

Example

CCCCC

T1(1S)

Example

CCCCC

T1(1S), T2(S)

Example 2

CCCCC

T1(1S)

Example 2
() @

CCCCC

), T2(1X)

Example 3
T1(1S), T2(S), T3(1X)?

CCCCC

Multiple Granularity Locks

compat Requestor
S IX S SIX X

S| T| T | T | T]F

Holder IXI T|T|F|F|F
SITIEITIEIE

SIX\T | F|F|F|F

x| F|F|F|FI|F

Rules Within A Transaction

Parent Child can be locked
locked in| by same transaction in
1S IS, S

IX 1S, S, IX, X, SIX

SIX X, IX, SIX
X none

S none

Multi-Granularity 2PL Rules

1. Follow multi-granularity compat function

2. Lock root of tree first, any mode

3. Node Q can be locked by T, in S or IS only if
parent(Q) locked by T, in IX or IS

4. Node Q can be locked by T, in X, SIX, IX only if
parent(Q) locked by T, in IX, SIX

5. T,is two-phase

6. T, can unlock node Q only if none of Q’s
children are locked by T,

Exercise:

Can T, access object f, , in X mode? What
locks will T, get?

Exercise:

Can T, access object f, , in X mode? What
locks will T, get?

Exercise:

Can T, access object f; , in X mode? What
locks will T, get?

Exercise:

Can T, access object f, , iIn S mode? What
locks will T, get?

Exercise:

Can T, access object f, , in X mode? What
locks will T, get?

Insert + Delete Operations

ol — |nsert

Changes to Locking Rules:

1. Get exclusive lock on A before deleting A

2. When T, inserts an object A, T, receives an
exclusive lock on A

Still Have Problem: Phantoms

Example: relation R (id, name,...)
constraint: id is unique key
use tuple locking

R id name
04| 95 | Smith
0, | 75 |Jones

T,: Insert <12,Mary,...> into R
T,: Insert <12,Sam,...> into R

T1 T2

-S4(04) -S,(04)

-S4(05) -S,(05)

Check Constraint Check Constraint

Insert 05[12,Mary,..]
Insert 0,[12,Sam,..]

Solution

Use multiple granularity tree

Before insert of node N,
lock parent(N) in X mode @

Back to Example

T,4: Insert<12,Mary> T,: Insert<12,Sam>
T, T,
I-X41(R) ’

I-X5(R) «— delayed

Check constraint
Insert<12,Mary>
Us(R)
-X2(R)
Check constraint
Oops! id=12 already in R!

Instead of Locking R, Can Use
Index Nodes for Ranges

k
100<id<200

Example:

Index
0<id<100

How Is Locking Implemented
In Practice?

Every system is different (e.g., may not even
provide conflict serializable schedules)

But here is one (simplified) way ...

Sample Locking System

1. Don’t ask transactions to request/release
locks: just get the weakest lock for each

action they perform

2. Hold all locks until the transaction commits

locks

time

Sample Locking System

Under the hood: lock manager that keeps
track of which objects are locked

» E.9. hash table

Also need good ways to block transactions
until locks are available, and to find deadlocks

Outline

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
Concurrency control + recovery

Beyond serializability

Validation Approach

Transactions have 3 phases:

1. Read
» Read all DB values needed
» Write to temporary storage
» NO locking

2. Validate
» Check whether schedule so far is serializable

3. Write
» |f validate OK, write to DB

Key Idea

Make validation atomic

If the validation orderis T,, T,, T5, ..., then
resulting schedule will be conflict equivalent

toS, =T, T, T, ...

Implementing Validation

System keeps track of two sets:

FIN = transactions that have finished phase 3
(write phase) and are all done

VAL = transactions that have successfully
finished phase 2 (validation)

Example That Validation Must Prevent:

RS(T2)={B} | RS(T5)={AB} #0
/
WS(T,)={B,D} WS(T3)=C}

T2

T2 T3
l start

l validated validated

T3
l start

time

Example That Validation Must Allow:

RS(T2)={B} | RS(T5)={AB} #0
/
WS(T,)={B,D} WS(T3)=C}

T2 T2 T3

start validated validated

time

Another Thing Validation Must Prevent:
RS(T2)={A} RS(T3)={A,B}
WS(T,)={D,E} WS(T;)={C,D}

T2 J T3

validated validated

finish .
To time

Another Thing Validation Must Prevent:
RS(T2)={A} RS(T3)={A,B}

WS(T,)={D.,E} WS(T;)={C,D;}

T2
validated valldated

flnlsh
time

BAD: W3() w,(D)

Another Thing Validation Must Allow:
RS(T2)={A} RS(T3)={AB}

WS(T,)={D.,E} WS(T;)={C,D;}

T2 T3

validated validated

time

Validation Rules for Tj:

when T, starts phase 1
ignore(T;) «<— FIN

at T; Validation:
if Check(T;) then
VAL <~ VAL U {T}}

do write phase
FIN < FIN U {T;}

Check(T;)

for T, € VAL —ignore(T;) do
if (WS(T;) N RS(T;) # @ or
(T; ¢ FIN and WS(T;) N WS(T)) # 0))
then return false
return true

Exercise

U: RS(U)={B}

A start
P validate
s finish

RS(W)={A,D}

WS(U)={D} NF{A,C}

s

T RS(T)={A,B}
WS(T)={A,C}

RS(V)={B}
WS(V)={D,E}

Is Validation = 2PL?

00000

S: wy(y) wq(x) wy(x)

Achievable with 2PL?

Achievable with validation?

S: wy(y) wq(x) wy(x)

S can be achieved with 2PL.:
I(y) W2 (y) 11(X) wq(X) Ug(X) 12(X) Wa(X) Ua(X) Ux(y)

S cannot be achieved by validation:

The validation point of T,, val,, must occur before w,(y)
since transactions do not write to the database until after
validation. Because of the conflict on x, val, < val,, so we
must have something like:

S: val; val, wy(y) wq(X) wy(X)

With the validation protocol, the writes of T, should not
start until T, is all done with writes, which is not the case.

Validation Subset of 2PL?

Possible proof (Check!):
» Let S be validation schedule

» For each T in S insert lock/unlocks, get S’:
« At T start: request read locks for all of RS(T)

« At T validation: request write locks for WS(T);
release read locks for read-only objects

« At T end: release all write locks
» Clearly transactions well-formed and 2PL

» Must show S’ is legal (next slide)

Validation Subset of 2PL?

Say S’ not legal (due to w-r conflict):

S M(x) w2(x) r1(x) vall u1(x) ...
» At vall: T2 not in Ignore(T1); T2 in VAL
» T1 does not validate: WS(T2) n RS(T1) # &
» contradiction!

Say S’ not legal (due to w-w conflict):
S...ovall1(x) w2(x) wl(x) ul(x) ...
» Say T2 validates first (proof similar if T1 validates first)
» At vall: T2 not in Ignore(T1); T2 in VAL

» T1 does not validate:
T2 ¢ FIN AND WS(T1) n WS(T2) = &)

» contradiction!

Is Validation = 2PL?

<

00000

When to Use Validation?

Validation performs better than locking when:
» Conflicts are rare
» System resources are plentiful
» Have tight latency constraints

Outline

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
Concurrency control + recovery

Beyond serializability

Concurrency Control & Recovery

Example: T; T,
WJ'(A) ;
r(A)
Commit T,
Abort T,
avoided by
Non-persistent commit (bad!) recoverable

schedules

CS 245 49

Concurrency Control & Recovery

Example: T; T
W;(A) :
ri(A)
w;(B)
Abort T,
[Commit T]
avoided by

Cascasing rllback o) g

CS 245 schedules 50

Core Problem

Schedule is conflict serializable

TJ _’Ti

But not recoverable

To Resolve This

Need to mark the “final” decision for each
transaction in our schedules:

» Commit decision: system guarantees
transaction will or has completed

» Abort decision: system guarantees
transaction will or has been rolled back

Model This as 2 New Actions:

c, = transaction T, commits

a; = transaction T, aborts

Back to Example

C, <— can we commit here?

Definition

T.

reads from T;in S (T; =g T)) if:
1. w(A) <s 1(A
2. & %S r(A) (%S: does not precede)

3. If W(A) <g W,(A) <g I|(A) then a, <g r(A)

Definition

Schedule S is recoverable if

whenever T, =g T; and jziandc e S

then ¢, <g ¢

Notes

In all transactions, reads and writes must
precede commits or aborts

& Ifc e T, thenr(A) <a, wi(A) <a
< Ifa e T, thenr(A) <a, w,(A) <a,

Also, just one of ¢, a, per transaction

How to Achieve Recoverable
Schedules?

With 2PL, Hold Write Locks
Until Commit (“Strict 2PL”’)

With Validation, No Change!

Each transaction’s validation point is its
commit point, and only write after

Definitions

S is recoverable if each transaction commits
only after all transactions from which it read
have committed

S avoids cascading rollback if each
transaction may read only those values
written by committed transactions

S is strict if each transaction may read and
write only items previously written by
committed transactions (= strict 2PL)

Relationship of Recoverable,
ACR & Strict Schedules

Recoverable

ACR

Strict

Serial

Examples

Recoverable:
w4(A) wy(B) wy(A) rx(B) ¢4 ¢,

Avoids Cascading Rollback:
w4(A) wy(B) wy(A) c; 1(B) ¢,

Strict:
w4(A) wy(B) cq w,(A) ry(B) ¢,

Recoverability & Serializability

Every strict schedule is serializable

Proof: equivalent to serial schedule based on
the order of commit points

» Only read/write from previously committed
transactions

Recoverability & Serializability

Serializable
Strict
ACR
Recoverable

Outline

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
Concurrency control + recovery

Beyond serializability

Weaker Isolation Levels

Dirty reads: Let transactions read values
written by other uncommitted transactions

» Equivalent to having long-duration write locks,
but no read locks

Read committed: Can only read values from
committed transactions, but they may change

» Equivalent to having long-duration write locks
(X) and short-duration read locks (S)

Weaker Isolation Levels

Repeatable reads: Can only read values from
committed transactions, and each value will be
the same if read again

» Equivalent to having long-duration read &
write locks (X/S) but not table locks for insert

Remaining problem: phantoms!

Weaker Isolation Levels

Snapshot isolation: Each transaction sees a
consistent snapshot of the whole DB (as if we
saved all committed values when it began)

» Often implemented with multi-version
concurrency control (MVCC)

Still has some anomalies! Example?

Weaker Isolation Levels

Snapshot isolation: Each transaction sees a
consistent snapshot of the whole DB (as if we
saved all committed values when it began)

» Often implemented with multi-version
concurrency control (MVCC)

Write skew anomaly: txns write different values
» Constraint: A+B =0
» T4.read A, B; if A+B = 1, subtract 1 from A
» To. read A, B; if A+B = 1, subtract 1 from B
» Problem: what if we started with A=1, B=0?

Interesting Fact

Oracle calls their snapshot isolation level
“serializable”, and doesn’t provide serializable

Many other systems provide snapshot
isolation as an option
» MySQL, PostgreSQL, MongoDB, SQL Server

