
Concurrency Control

Instructor: Matei Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

Outline
What makes a schedule serializable?
Conflict serializability

Precedence graphs
Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation

Concurrency control + recovery
Beyond serializability
CS 245 2

Which Objects Do We Lock?

?

CS 245 3

Table A

Table B

...

Tuple A
Tuple B
Tuple C

...

Disk
block

A

Disk
block

B

...

DB DB DB

Idea: Multi-level locking

Example

CS 245 4

R1

t1
t2 t3 t4

Example

CS 245 5

R1

t1
t2 t3 t4

T1(IS)

T1(S)

Example

CS 245 6

R1

t1
t2 t3 t4

T1(IS)

T1(S)

, T2(S)

Example 2

CS 245 7

R1

t1
t2 t3 t4

T1(IS)

T1(S)

Example 2

CS 245 8

R1

t1
t2 t3 t4

T1(IS)

T1(S)

, T2(IX)

T2(X)

Example 3

CS 245 9

R1

t1
t2 t3 t4

T1(IS)

T1(S)

, T2(S), T3(IX)?

compat Requestor
IS IX S SIX X

IS
Holder IX

S
SIX

X

T T T T F
F
F
F
FFFFF

FFFT
FTFT
FFTT

CS 245 10

Multiple Granularity Locks

Parent Child can be locked
locked in by same transaction in

IS
IX
S
SIX
X

P

C

IS, S
IS, S, IX, X, SIX
none
X, IX, SIX
none

CS 245 11

Rules Within A Transaction

Multi-Granularity 2PL Rules
1. Follow multi-granularity compat function
2. Lock root of tree first, any mode
3. Node Q can be locked by Ti in S or IS only if

parent(Q) locked by Ti in IX or IS
4. Node Q can be locked by Ti in X, SIX, IX only if

parent(Q) locked by Ti in IX, SIX
5. Ti is two-phase
6. Ti can unlock node Q only if none of Q’s

children are locked by Ti

CS 245 12

Exercise:
Can T2 access object f2.2 in X mode? What
locks will T2 get?

CS 245 13

R1

t1
t2 t3 t4T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(IX)

T1(X)

Exercise:
Can T2 access object f2.2 in X mode? What
locks will T2 get?

CS 245 14

R1

t1
t2 t3 t4T1(X)

f2.1 f2.2 f3.1 f3.2

T1(IX)

Exercise:
Can T2 access object f3.1 in X mode? What
locks will T2 get?

CS 245 15

R1

t1
t2 t3 t4T1(S)

f2.1 f2.2 f3.1 f3.2

T1(IS)

Exercise:
Can T2 access object f2.2 in S mode? What
locks will T2 get?

CS 245 16

R1

t1
t2 t3 t4T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(SIX)

T1(X)

Exercise:
Can T2 access object f2.2 in X mode? What
locks will T2 get?

CS 245 17

R1

t1
t2 t3 t4T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(SIX)

T1(X)

Insert + Delete Operations

Insert

CS 245 18

A

Z
a

...

Changes to Locking Rules:

1. Get exclusive lock on A before deleting A

2. When Ti inserts an object A, Ti receives an
exclusive lock on A

CS 245 19

Still Have Problem: Phantoms

Example: relation R (id, name,…)
constraint: id is unique key
use tuple locking

R id name ….
o1 55 Smith
o2 75 Jones

CS 245 20

T1: Insert <12,Mary,…> into R
T2: Insert <12,Sam,…> into R

T1 T2
l-S1(o1) l-S2(o1)
l-S1(o2) l-S2(o2)
Check Constraint Check Constraint

Insert o3[12,Mary,..]
Insert o4[12,Sam,..]

... ...

CS 245 21

Solution

Use multiple granularity tree

Before insert of node N,
lock parent(N) in X mode

CS 245 22

R1

t1 t2 t3

Back to Example
T1: Insert<12,Mary> T2: Insert<12,Sam>

T1 T2
l-X1(R)

Check constraint
Insert<12,Mary>
U1(R)

l-X2(R)
Check constraint
Oops! id=12 already in R!

l-X2(R) delayed

CS 245 23

Instead of Locking R, Can Use
Index Nodes for Ranges

Example:

CS 245 24

...

...

...

R

Index
100<id≤200

Index
0<id≤100

id=2 id=5 id=107 id=109

How Is Locking Implemented
In Practice?
Every system is different (e.g., may not even
provide conflict serializable schedules)

But here is one (simplified) way ...

CS 245 25

Sample Locking System

1. Don’t ask transactions to request/release
locks: just get the weakest lock for each
action they perform

2. Hold all locks until the transaction commits

CS 245 26

#
locks

time

Sample Locking System

Under the hood: lock manager that keeps
track of which objects are locked
» E.g. hash table

Also need good ways to block transactions
until locks are available, and to find deadlocks

CS 245 27

Outline
What makes a schedule serializable?
Conflict serializability

Precedence graphs
Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation

Concurrency control + recovery
Beyond serializability
CS 245 28

Validation Approach
Transactions have 3 phases:

1. Read
» Read all DB values needed
» Write to temporary storage
» No locking

2. Validate
» Check whether schedule so far is serializable

3. Write
» If validate OK, write to DB

CS 245 29

Key Idea

Make validation atomic

If the validation order is T1, T2, T3, …, then
resulting schedule will be conflict equivalent
to Ss = T1, T2, T3, …

CS 245 30

Implementing Validation

System keeps track of two sets:

FIN = transactions that have finished phase 3
(write phase) and are all done

VAL = transactions that have successfully
finished phase 2 (validation)

CS 245 31

Example That Validation Must Prevent:

RS(T2)={B} RS(T3)={A,B}

WS(T2)={B,D} WS(T3)={C}

CS 245 32

time

T2
start

T2
validated

T3
validated

T3
start

Ç
≠ ∅

T2
finish

phase 3

Example That Validation Must Allow:

RS(T2)={B} RS(T3)={A,B}

WS(T2)={B,D} WS(T3)={C}

CS 245 33

time

T2
start

T2
validated

T3
validated

T3
start

Ç
≠ ∅

Another Thing Validation Must Prevent:

RS(T2)={A} RS(T3)={A,B}

WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

finish
T2

CS 245 34

RS(T2)={A} RS(T3)={A,B}

WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

finish
T2

BAD: w3(D) w2(D)

CS 245 35

Another Thing Validation Must Prevent:

RS(T2)={A} RS(T3)={A,B}

WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

finish
T2

CS 245 36

Another Thing Validation Must Allow:

Validation Rules for Tj:

when Tj starts phase 1:
ignore(Tj) ¬ FIN

at Tj Validation:
if Check(Tj) then

VAL ¬ VAL ∪ {Tj}
do write phase
FIN ¬ FIN ∪ {Tj}

CS 245 37

Check(Tj)

for Ti Î VAL – ignore(Tj) do
if (WS(Ti) ∩ RS(Tj) ≠ ∅ or

(Ti Ï FIN and WS(Ti) ∩ WS(Tj) ≠ ∅))
then return false

return true

CS 245 38

Exercise

T: RS(T)={A,B}
WS(T)={A,C}

V: RS(V)={B}
WS(V)={D,E}

U: RS(U)={B}
WS(U)={D}

W: RS(W)={A,D}
WS(W)={A,C}

start
validate
finish

CS 245 39

Is Validation = 2PL?

CS 245 40

2PL
Val

2PL
Val

2PL
Val

Val
2PL

S: w2(y) w1(x) w2(x)

Achievable with 2PL?

Achievable with validation?

CS 245 41

S: w2(y) w1(x) w2(x)

S can be achieved with 2PL:
l2(y) w2 (y) l1(x) w1(x) u1(x) l2(x) w2(x) u2(x) u2(y)

S cannot be achieved by validation:
The validation point of T2, val2, must occur before w2(y)
since transactions do not write to the database until after
validation. Because of the conflict on x, val1 < val2, so we
must have something like:

S: val1 val2 w2(y) w1(x) w2(x)

With the validation protocol, the writes of T2 should not
start until T1 is all done with writes, which is not the case.

CS 245 42

Validation Subset of 2PL?
Possible proof (Check!):
» Let S be validation schedule
» For each T in S insert lock/unlocks, get S’:

• At T start: request read locks for all of RS(T)
• At T validation: request write locks for WS(T);

release read locks for read-only objects
• At T end: release all write locks

» Clearly transactions well-formed and 2PL
» Must show S’ is legal (next slide)

CS 245 43

Say S’ not legal (due to w-r conflict):
S’: ... l1(x) w2(x) r1(x) val1 u1(x) ...
» At val1: T2 not in Ignore(T1); T2 in VAL
» T1 does not validate: WS(T2) Ç RS(T1) ¹ Æ
» contradiction!

Say S’ not legal (due to w-w conflict):
S’: ... val1 l1(x) w2(x) w1(x) u1(x) ...
» Say T2 validates first (proof similar if T1 validates first)
» At val1: T2 not in Ignore(T1); T2 in VAL
» T1 does not validate:

T2 Ï FIN AND WS(T1) Ç WS(T2) ¹ Æ)
» contradiction!

CS 245 44

Validation Subset of 2PL?

Is Validation = 2PL?

CS 245 45

2PL
Val

2PL
Val

2PL
Val

Val
2PL

When to Use Validation?

Validation performs better than locking when:
» Conflicts are rare
» System resources are plentiful
» Have tight latency constraints

CS 245 46

Outline
What makes a schedule serializable?
Conflict serializability

Precedence graphs
Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation

Concurrency control + recovery
Beyond serializability
CS 245 48

Example: Tj Ti

wj(A)
ri(A)

Commit Ti

Abort Tj

Concurrency Control & Recovery

…
…

… …
…

…

CS 245 49

Non-persistent commit (bad!)
avoided by
recoverable
schedules

Example: Tj Ti

wj(A)
ri(A)
wi(B)

Abort Tj
[Commit Ti]

…
…

…

…
…

…

CS 245 50

Concurrency Control & Recovery

Cascading rollback (bad!)
avoided by
avoids-cascading
-rollback (ACR)
schedules

Core Problem

Schedule is conflict serializable

Tj Ti

But not recoverable

CS 245 51

To Resolve This

Need to mark the “final” decision for each
transaction in our schedules:
» Commit decision: system guarantees

transaction will or has completed
» Abort decision: system guarantees

transaction will or has been rolled back

CS 245 52

Model This as 2 New Actions:

ci = transaction Ti commits

ai = transaction Ti aborts

CS 245 53

...
...

...
...

Tj Ti

wj(A)
ri(A)

ci ¬ can we commit here?

Back to Example

CS 245 54

Definition
Ti reads from Tj in S (Tj ÞS Ti) if:

1. wj(A) <S ri(A)

2. aj <S r(A) (<S: does not precede)

3. If wj(A) <S wk(A) <S ri(A) then ak <S ri(A)

CS 245 55

Definition

Schedule S is recoverable if

whenever Tj ÞS Ti and j ¹ i and ci Î S

then cj <S ci

CS 245 56

Notes

In all transactions, reads and writes must
precede commits or aborts
ó If ci Î Ti, then ri(A) < ai, wi(A) < ai

ó If ai Î Ti, then ri(A) < ai, wi(A) < ai

Also, just one of ci, ai per transaction

CS 245 57

How to Achieve Recoverable
Schedules?

CS 245 58

With 2PL, Hold Write Locks
Until Commit (“Strict 2PL”)

Tj Ti

Wj(A)

Cj

uj(A)
ri(A)

CS 245 59

...
...

...
...

...
...

With Validation, No Change!

Each transaction’s validation point is its
commit point, and only write after

CS 245 60

Definitions
S is recoverable if each transaction commits
only after all transactions from which it read
have committed

S avoids cascading rollback if each
transaction may read only those values
written by committed transactions

S is strict if each transaction may read and
write only items previously written by
committed transactions (≡ strict 2PL)
CS 245 61

Relationship of Recoverable,
ACR & Strict Schedules

Avoids cascading rollback

Recoverable

ACR

Strict

Serial

CS 245 62

Examples
Recoverable:

w1(A) w1(B) w2(A) r2(B) c1 c2

Avoids Cascading Rollback:
w1(A) w1(B) w2(A) c1 r2(B) c2

Strict:
w1(A) w1(B) c1 w2(A) r2(B) c2

CS 245 63

Recoverability & Serializability

Every strict schedule is serializable

Proof: equivalent to serial schedule based on
the order of commit points
» Only read/write from previously committed

transactions

CS 245 64

Recoverability & Serializability

CS 245 65

CS 245

Outline
What makes a schedule serializable?
Conflict serializability

Precedence graphs
Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation

Concurrency control + recovery
Beyond serializability

66

Weaker Isolation Levels

Dirty reads: Let transactions read values
written by other uncommitted transactions
» Equivalent to having long-duration write locks,

but no read locks

Read committed: Can only read values from
committed transactions, but they may change
» Equivalent to having long-duration write locks

(X) and short-duration read locks (S)

CS 245 67

Weaker Isolation Levels

Repeatable reads: Can only read values from
committed transactions, and each value will be
the same if read again
» Equivalent to having long-duration read &

write locks (X/S) but not table locks for insert

Remaining problem: phantoms!

CS 245 68

Weaker Isolation Levels

Snapshot isolation: Each transaction sees a
consistent snapshot of the whole DB (as if we
saved all committed values when it began)
» Often implemented with multi-version

concurrency control (MVCC)

Still has some anomalies! Example?

CS 245 69

Weaker Isolation Levels

Snapshot isolation: Each transaction sees a
consistent snapshot of the whole DB (as if we
saved all committed values when it began)
» Often implemented with multi-version

concurrency control (MVCC)

Write skew anomaly: txns write different values
» Constraint: A+B ≥ 0
» T1: read A, B; if A+B ≥ 1, subtract 1 from A
» T2: read A, B; if A+B ≥ 1, subtract 1 from B
» Problem: what if we started with A=1, B=0?

CS 245 70

Interesting Fact

Oracle calls their snapshot isolation level
“serializable”, and doesn’t provide serializable

Many other systems provide snapshot
isolation as an option
» MySQL, PostgreSQL, MongoDB, SQL Server

CS 245 71

