2 Announcements

We will be releasing HW1 today
- It is due in 2 weeks (1/24 at 23:59pm)
- The homework is long
 - Requires proving theorems as well as coding
- Please start early

Recitation sessions:
- Spark Tutorial and Clinic:
 Today 4:30-5:50pm in Skilling Auditorium
Frequent Itemset Mining & Association Rules
Supermarket shelf management – Market-basket model:

- **Goal:** Identify items that are bought together by sufficiently many customers
- **Approach:** Process the sales data collected with barcode scanners to find dependencies among items
- **A classic rule:**
 - If someone buys diaper and milk, then he/she is likely to buy beer
 - Don’t be surprised if you find six-packs next to diapers!
The Market-Basket Model

- **A large set of items**
 - e.g., things sold in a supermarket

- **A large set of baskets**
 - Each basket is a small subset of items
 - e.g., the things one customer buys on one day

- **Discover association rules:**
 People who bought \{x,y,z\} tend to buy \{v,w\}
 - Example application: Amazon

Input:

<table>
<thead>
<tr>
<th>Basket</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Output:

Rules Discovered:
- \{Milk\} --> \{Coke\}
- \{Diaper, Milk\} --> \{Beer\}
More generally

- A general many-to-many mapping (association) between two kinds of things
 - But we ask about connections among “items”, not “baskets”
- Items and baskets are abstract:
 - For example:
 - Items/baskets can be products/shopping basket
 - Items/baskets can be words/documents
 - Items/baskets can be basepairs/genes
 - Items/baskets can be drugs/patients
Applications – (1)

- **Items** = products; **Baskets** = sets of products someone bought in one trip to the store
- **Real market baskets:** Chain stores keep TBs of data about what customers buy together
 - Tells how typical customers navigate stores, lets them position tempting items:
 - Apocryphal story of “diapers and beer” discovery
 - Used to position potato chips between diapers and beer to enhance sales of potato chips
- **Amazon’s ‘people who bought X also bought Y’**
Applications – (2)

- **Baskets** = sentences; **Items** = documents in which those sentences appear
 - Items that appear together too often could represent plagiarism
 - Notice items do not have to be “in” baskets

- **Baskets** = patients; **Items** = drugs & side-effects
 - Has been used to detect combinations of drugs that result in particular side-effects
 - **But requires extension:** Absence of an item needs to be observed as well as presence
First: Define

Frequent itemsets

Association rules:

Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets

Finding frequent pairs

A-Priori algorithm

PCY algorithm
Frequent Itemsets

- **Simplest question**: Find sets of items that appear together “frequently” in baskets.

- **Support** for itemset I: Number of baskets containing all items in I
 - (Often expressed as a fraction of the total number of baskets)

- Given a **support threshold s**, then sets of items that appear in at least s baskets are called **frequent itemsets**

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
<th>Support of {Beer, Bread} = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
<td></td>
</tr>
</tbody>
</table>
Items = \{milk, coke, pepsi, beer, juice\}

Support threshold = 3 baskets

\[B_1 = \{m, c, b\} \quad B_2 = \{m, p, j\}\]
\[B_3 = \{m, b\} \quad B_4 = \{c, j\}\]
\[B_5 = \{m, p, b\} \quad B_6 = \{m, c, b, j\}\]
\[B_7 = \{c, b, j\} \quad B_8 = \{b, c\}\]

Frequent itemsets: \{m\}, \{c\}, \{b\}, \{j\}, \{m,b\}, \{b,c\}, \{c,j\}.
Define: Association Rules:

- **Define: Association Rules:** If-then rules about the contents of baskets
- \(\{i_1, i_2, \ldots, i_k\} \rightarrow j \) means: “if a basket contains all of \(i_1, \ldots, i_k \) then it is **likely** to contain \(j \)”
- In practice there are many rules, want to find significant/interesting ones!
- **Confidence** of association rule is the probability of \(j \) given \(I = \{i_1, \ldots, i_k\} \)

\[
\text{conf}(I \rightarrow j) = \frac{\text{support}(I \cup j)}{\text{support}(I)}
\]
Interesting Association Rules

- Not all high-confidence rules are interesting
 - The rule $X \rightarrow \text{milk}$ may have high confidence for many itemsets X, because milk is just purchased very often (independent of X) and the confidence will be high

- Interest of an association rule $I \rightarrow j$:
 abs. difference between its confidence and the fraction of baskets that contain j

 \[
 \text{Interest}(I \rightarrow j) = |\text{conf}(I \rightarrow j) - \Pr[j]|
 \]

- Interesting rules are those with high positive or negative interest values (usually above 0.5)
Example: Confidence and Interest

\[B_1 = \{m, c, b\}, \quad B_2 = \{m, p, j\} \]
\[B_3 = \{m, b\}, \quad B_4 = \{c, j\} \]
\[B_5 = \{m, p, b\}, \quad B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\}, \quad B_8 = \{b, c\} \]

- **Association rule**: \(\{m, b\} \rightarrow c \)
 - **Support** = 2
 - **Confidence** = \(\frac{2}{4} = 0.5 \)
 - **Interest** = \(|0.5 - \frac{5}{8}| = \frac{1}{8} \)
 - Item \(c \) appears in \(\frac{5}{8} \) of the baskets
 - The rule is not very interesting!
Problem: Find all association rules with support $\geq s$ and confidence $\geq c$

- **Note:** Support of an association rule is the support of the set of items in the rule (left and right side)

- **Hard part:** Finding the frequent itemsets!

 - If $\{i_1, i_2, \ldots, i_k\} \rightarrow j$ has high support and confidence, then both $\{i_1, i_2, \ldots, i_k\}$ and $\{i_1, i_2, \ldots, i_k, j\}$ will be “frequent”

 \[
 \text{conf}(I \rightarrow j) = \frac{\text{support}(I \cup j)}{\text{support}(I)}
 \]
Mining Association Rules

- **Step 1:** Find all frequent itemsets \(I \)
 - (we will explain this next)
- **Step 2:** Rule generation
 - For every subset \(A \) of \(I \), generate a rule \(A \rightarrow I \setminus A \)
 - Since \(I \) is frequent, \(A \) is also frequent
 - **Variant 1:** Single pass to compute the rule confidence
 - \(\text{confidence}(A, B \rightarrow C, D) = \frac{\text{support}(A, B, C, D)}{\text{support}(A, B)} \)
 - **Variant 2:**
 - **Observation:** If \(A, B, C \rightarrow D \) is below confidence, so is \(A, B \rightarrow C, D \)
 - Can generate “bigger” rules from smaller ones!
 - **Output the rules above the confidence threshold**
Example

\[B_1 = \{m, c, b\} \quad B_2 = \{m, p, j\} \]
\[B_3 = \{m, c, b, n\} \quad B_4 = \{c, j\} \]
\[B_5 = \{m, p, b\} \quad B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \quad B_8 = \{b, c\} \]

- **Support threshold** \[s = 3 \], confidence \[c = 0.75 \]
- **Step 1) Find frequent itemsets:**
 - \{b,m\} \{b,c\} \{c,m\} \{c,j\} \{m,c,b\}
- **Step 2) Generate rules:**
 - \[b \rightarrow m: \text{c} = 4/6 \]
 - \[b \rightarrow c: \text{c} = 5/6 \]
 - \[b, c \rightarrow m: \text{c} = 3/5 \]
 - \[m \rightarrow b: \text{c} = 4/5 \]
 - \[b \rightarrow c, m: \text{c} = 3/6 \]
To reduce the number of rules, we can post-process them and only output:

- **Maximal frequent itemsets:**
 No immediate superset is frequent
 - Gives more pruning

or

- **Closed itemsets:**
 No immediate superset has the same support (> 0)
 - Stores not only frequent information, but exact supports/counts
Example: Maximal/Closed

<table>
<thead>
<tr>
<th></th>
<th>Support</th>
<th>Maximal(s=3)</th>
<th>Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>AB</td>
<td>4</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>AC</td>
<td>2</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>BC</td>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ABC</td>
<td>2</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- **Support**: Quantity of support.
- **Maximal(s=3)**: Determines if the itemset is maximal for support with a threshold of 3.
- **Closed**: Determines if the itemset is closed.

- **Frequent, but superset BC also frequent.**
- **Frequent, and its only superset, ABC, not freq.**
- **Superset BC has same support.**
- **Its only superset, ABC, has smaller support.**
Step 2: Finding Frequent Itemsets
Back to finding frequent itemsets

Typically, data is kept in flat files rather than in a database system:

- Stored on disk
- Stored basket-by-basket
- Baskets are small but we have many baskets and many items
 - Expand baskets into pairs, triples, etc. as you read baskets
 - Use k nested loops to generate all sets of size k

Note: We want to find frequent itemsets. To find them, we have to count them. To count them, we have to enumerate them.
The true cost of mining disk-resident data is usually the number of disk I/Os.

In practice, association-rule algorithms read the data in passes – all baskets read in turn.

We measure the cost by the number of passes an algorithm makes over the data.
For many frequent-itemset algorithms, **main-memory** is the critical resource

- As we read baskets, we need to count something, e.g., occurrences of pairs of items
- The number of different things we can count is limited by main memory
- Swapping counts in/out is a disaster
Finding Frequent Pairs

- The hardest problem often turns out to be finding the frequent **pairs** of items \(\{i_1, i_2\} \)
 - **Why?** Freq. pairs are common, freq. triples are rare
 - **Why?** Probability of being frequent drops exponentially with size; number of sets grows more slowly with size

- **Let’s first concentrate on pairs, then extend to larger sets**

- **The approach:**
 - We always need to generate all the itemsets
 - But we would only like to count (keep track) of those itemsets that in the end turn out to be frequent
Naïve Algorithm

- Naïve approach to finding frequent pairs
- Read file once, counting in main memory the occurrences of each pair:
 - From each basket of n items, generate its $\frac{n(n-1)}{2}$ pairs by two nested loops
- **Fails if (#items)2 exceeds main memory**
 - **Remember:** #items can be 100K (Wal-Mart) or 10B (Web pages)
 - Suppose 10^5 items, counts are 4-byte integers
 - Number of pairs of items: $10^5(10^5-1)/2 \approx 5*10^9$
 - Therefore, $2*10^{10}$ (20 gigabytes) of memory is needed
Goal: Count the number of occurrences of each pair of items (i,j):

- **Approach 1:** Count all pairs using a matrix
- **Approach 2:** Keep a table of triples \([i, j, c] = \) “the count of the pair of items \(\{i, j\} \) is \(c \).”
 - If integers and item ids are 4 bytes, we need approximately 12 bytes for pairs with count > 0
 - Plus some additional overhead for the hashtable
Comparing the 2 Approaches

Triangular Matrix
- 4 bytes per pair
- Item i
- Item j

Triples
- 12 per occurring pair
Comparing the two approaches

- **Approach 1: Triangular Matrix**
 - \(n = \) total number of items
 - Count pair of items \(\{i, j\} \) only if \(i < j \)
 - Keep pair counts in lexicographic order:
 - \(\{1,2\}, \{1,3\},..., \{1,n\}, \{2,3\}, \{2,4\},...,\{2,n\}, \{3,4\},... \)
 - Pair \(\{i, j\} \) is at position: \([n(n - 1) - (n - i)(n - i + 1)]/2 + (j - i)\)
 - Total number of pairs \(n(n - 1)/2 \); total bytes = \(O(n^2) \)
 - **Triangular Matrix** requires 4 bytes per pair

- **Approach 2** uses **12 bytes** per occurring pair
 (but only for pairs with count > 0)

- Approach 2 beats Approach 1 if less than **1/3** of possible pairs actually occur
Approach 1: Triangular Matrix

- **n** = total number items
- Count pair of items \{i, j\} only if \(i < j\)
- Keep pair counts in lexicographic order:
 - \{1, 2\}, \{1, 3\}, …, \{1, n\}, \{2, 3\}, \{2, 4\}, …, \{2, n\}, \{3, 4\}, …
- Pair \{i, j\} is at position: \[\frac{n(n-1)}{2} - (n - i)(n - i + 1)/2 + (j - i)\]
- Total number of pairs \(n(n-1)/2\); total bytes = \(O(n^2)\)

- Triangular Matrix requires 4 bytes per pair

Approach 2

- Uses 12 bytes per occurring pair (but only for pairs with count > 0)
- Approach 2 beats Approach 1 if less than \(1/3\) of possible pairs actually occur

Problem is if we have too many items so the pairs do not fit into memory.

Can we do better?
A-Priori Algorithm

- Monotonicity of “Frequent”
- Notion of Candidate Pairs
- Extension to Larger Itemsets
A two-pass approach called A-Priori limits the need for main memory

Key idea: monotonicity
- If a set of items \(I \) appears at least \(s \) times, so does every subset \(J \) of \(I \)

Contrapositive for pairs:
If item \(i \) does not appear in \(s \) baskets, then no pair including \(i \) can appear in \(s \) baskets

So, how does A-Priori find freq. pairs?
Pass 1: Read baskets and count in main memory the # of occurrences of each individual item
- Requires only memory proportional to #items

Items that appear ≥ s times are the frequent items

Pass 2: Read baskets again and keep track of the count of only those pairs where both elements are frequent (from Pass 1)
- Requires memory proportional to square of frequent items only (for counts)
- Plus a list of the frequent items (so you know what must be counted)
Main-Memory: Picture of A-Priori

Item counts

Frequent items

Counts of pairs of frequent items (candidate pairs)

Pass 1

Pass 2

Green box represents the amount of available main memory. Smaller boxes represent how the memory is used.
You can use the triangular matrix method with $n = \text{number of frequent items}$
- May save space compared with storing triples
- **Trick:** re-number frequent items 1, 2, ... and keep a table relating new numbers to original item numbers
For each k, we construct two sets of k-tuples (sets of size k):

- $C_k = \text{candidate } k\text{-tuples} = \text{those that might be frequent sets (support } \geq s) \text{ based on information from the pass for } k-1$
- $L_k = \text{the set of truly frequent } k\text{-tuples}$
Hypothetical steps of the A-Priori algorithm

- $C_1 = \{ \{b\} \{c\} \{j\} \{m\} \{n\} \{p\} \}$
- Count the support of itemsets in C_1
- Prune non-frequent. We get: $L_1 = \{ b, c, j, m \}$
- Generate $C_2 = \{ \{b,c\} \{b,j\} \{b,m\} \{c,j\} \{c,m\} \{j,m\} \}$
- Count the support of itemsets in C_2
- Prune non-frequent. $L_2 = \{ \{b,m\} \{b,c\} \{c,m\} \{c,j\}\}$
- Generate $C_3 = \{ \{b,c,m\} \{b,c,j\} \{b,m,j\} \{c,m,j\} \}$
- Count the support of itemsets in C_3
- Prune non-frequent. $L_3 = \{ \{b,c,m\}\}$

Note here we generate new candidates by generating C_k from L_{k-1} and L_1. But that one can be more careful with candidate generation. For example, in C_3 we know $\{b,m,j\}$ cannot be frequent since $\{m,j\}$ is not frequent.
A-Priori for All Frequent Itemsets

- One pass for each k (itemset size)
- Needs room in main memory to count each candidate k-tuple
- For typical market-basket data and reasonable support (e.g., 1%), $k = 2$ requires the most memory

Many possible extensions:

- Association rules with intervals:
 - For example: Men over 65 have 2 cars

- Association rules when items are in a taxonomy
 - Bread, Butter \rightarrow FruitJam
 - BakedGoods, MilkProduct \rightarrow PreservedGoods

- Lower the support s as itemset gets bigger
PCY (Park-Chen-Yu) Algorithm

- Improvement to A-Priori
- Exploits Empty Memory on First Pass
- Frequent Buckets
Observation:
In pass 1 of A-Priori, most memory is idle
- We store only individual item counts
- Can we use the idle memory to reduce memory required in pass 2?

Pass 1 of PCY: In addition to item counts, maintain a hash table with as many buckets as fit in memory
- Keep a count for each bucket into which pairs of items are hashed
 - For each bucket just keep the count, not the actual pairs that hash to the bucket!

Note: Bucket ≠ Basket
FOR (each basket) :
 FOR (each item in the basket) :
 add 1 to item’s count;
 FOR (each pair of items) :
 hash the pair to a bucket;
 add 1 to the count for that bucket;

- **Few things to note:**
 - Pairs of items need to be generated from the input file; they are not present in the file
 - We are not just interested in the presence of a pair, but we need to see whether it is present at least \(s \) (support) times
Observations about Buckets

- **Observation**: If a bucket contains a frequent pair, then the bucket is surely frequent.
- However, even without any frequent pair, a bucket can still be frequent 😞
 - So, we cannot use the hash to eliminate any member (pair) of a “frequent” bucket.
- But, for a bucket with total count less than \(s \), none of its pairs can be frequent 😊
 - Pairs that hash to this bucket can be eliminated as candidates (even if the pair consists of 2 frequent items).

- **Pass 2**:
 Only count pairs that hash to frequent buckets.
Replace the buckets by a bit-vector:
- 1 means the bucket count exceeded the support s (call it a frequent bucket); 0 means it did not

4-byte integer counts are replaced by bits, so the bit-vector requires 1/32 of memory

Also, decide which items are frequent and list them for the second pass
PCY Algorithm – Pass 2

- Count all pairs \(\{i, j\} \) that meet the conditions for being a candidate pair:
 1. Both \(i \) and \(j \) are frequent items
 2. The pair \(\{i, j\} \) hashes to a bucket whose bit in the bit vector is 1 (i.e., a frequent bucket)

- Both conditions are necessary for the pair to have a chance of being frequent
Main-Memory: Picture of PCY

- **Hash table for pairs**
- **Item counts**
- **Frequent items**
- **Bitmap**
- Counts of candidate pairs

- **Pass 1**
- **Pass 2**
More Extensions to A-Priori

- The MMDS book covers several other extensions beyond the PCY idea: “Multistage” and “Multihash”

- For reading on your own, Sect. 6.4 of MMDS

- **Recommended video** (starting about 10:10): https://www.youtube.com/watch?v=AGAkNiQnbjY
Frequent Itemsets in ≤ 2 Passes

- Simple Algorithm
- Savasere-Omiecinski-Navathe (SON) Algorithm
- Toivonen’s Algorithm
Frequent Itemsets in ≤ 2 Passes

- A-Priori, PCY, etc., take k passes to find frequent itemsets of size k

- Can we use fewer passes?

- Use 2 or fewer passes for all sizes, but may miss some frequent itemsets
 - Random sampling
 - Do not sneer; “random sample” is often a cure for the problem of having too large a dataset.
 - SON (Savasere, Omiecinski, and Navathe)
 - Toivonen
Random Sampling (1)

- Take a random sample of the market baskets

- Run a-priori or one of its improvements in main memory
 - So we don’t pay for disk I/O each time we increase the size of itemsets
 - Reduce support threshold proportionally to match the sample size
 - Example: if your sample is 1/100 of the baskets, use $s/100$ as your support threshold instead of s.

Copy of sample baskets

Main memory

Space for counts
Random Sampling (2)

- **To avoid false positives:** Optionally, verify that the candidate pairs are truly frequent in the entire data set by a second pass.

- **But you don’t catch sets frequent in the whole but not in the sample:**
 - Smaller threshold, e.g., $s/125$, helps catch more truly frequent itemsets.
 - But requires more space.
SON Algorithm – (1)

- **SON Algorithm**: Repeatedly read small subsets of the baskets into main memory and run an in-memory algorithm to find all frequent itemsets
 - **Note**: we are not sampling, but processing the entire file in memory-sized chunks

- An itemset becomes a **candidate** if it is found to be frequent in *any* one or more subsets of the baskets.
SON Algorithm – (2)

- On a **second pass**, count all the candidate itemsets and determine which are frequent in the entire set

- **Key “monotonicity” idea:** An itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset
Pass 1:

- Start with a random sample, but lower the threshold slightly for the sample:
 - Example: if the sample is 1% of the baskets, use $s/125$ as the support threshold rather than $s/100$
- Find frequent itemsets in the sample
- Add to the itemsets that are frequent in the sample the **negative border** of these itemsets:
 - Negative border: An itemset is in the negative border if it is not frequent in the sample, but *all* its immediate subsets are
 - Immediate subset = “delete exactly one element”
Example: Negative Border

- \{A,B,C,D\} is in the negative border if and only if:
 1. It is not frequent in the sample, but
 2. All of \{A,B,C\}, \{B,C,D\}, \{A,C,D\}, and \{A,B,D\} are.
Toivonen’s Algorithm

- **Pass 1:**
 - Start with the random sample, but lower the threshold slightly for the subset
 - Add to the itemsets that are frequent in the sample the **negative border** of these itemsets

- **Pass 2:**
 - Count all **candidate frequent itemsets from the first pass**, and also count sets in their **negative border**

- If no itemset from the negative border turns out to be frequent, then we found **all** the frequent itemsets.
 - What if we find that something in the negative border is frequent?
 - We must start over again with another sample!
 - Try to choose the support threshold so the probability of failure is low, while the number of itemsets checked on the second pass fits in main-memory.
We broke through the negative border. How far does the problem go?

Frequent Itemsets from Sample

Negative Border

singleton

doubleton

tripleton
- Skipped the def of maximal sets etc
- 2 min over
Theorem:

- If there is an itemset S that is frequent in full data, but not frequent in the sample, then the negative border contains at least one itemset that is frequent in the whole.

Proof by contradiction:

- Suppose not; i.e.;
 1. There is an itemset S frequent in the full data but not frequent in the sample, and
 2. Nothing in the negative border is frequent in the full data
- Let T be a smallest subset of S that is not frequent in the sample (but every subset of T is)
- T is frequent in the whole (S is frequent + monotonicity).
- But then T is in the negative border (contradiction)