Clustering
High Dimensional Data

High dim. data
- Locality sensitive hashing
- Clustering
- Dimensionality reduction

Graph data
- Community Detection
- Spam Detection

Infinite data
- Filtering
- Streams
- Web advertising
- Queries on streams

Machine learning
- Decision Trees
- Perceptron, kNN

Apps
- Recommender systems
- Association Rules
- Duplicate document detection

1/18/22
Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets
The Problem of Clustering

- Given a set of points, with a notion of distance between points, group the points into some number of clusters, so that
 - Members of the same cluster are close/similar to each other
 - Members of different clusters are dissimilar

- Usually:
 - Points are in a high-dimensional space
 - Similarity is defined using a distance measure
 - Euclidean, Cosine, Jaccard, edit distance, ...
Example: Clusters & Outliers
Clustering Problem: Galaxies

- A catalog of 2 billion “sky objects” represents objects by their radiation in 7 dimensions (frequency bands)
- **Problem**: Cluster similar objects, e.g., galaxies, nearby stars, quasars, etc.
- Sloan Digital Sky Survey
Intuitively: Music can be divided into categories, and customers prefer a few genres

- But what are categories really?

Represent a CD by a set of customers who bought it

- Similar CDs have similar sets of customers, and vice-versa
Space of all CDs:
- Think of a space with one dim. for each customer
 - Values in a dimension may be 0 or 1 only
 - A CD is a “point” in this space \((x_1, x_2, ..., x_d)\), where \(x_i = 1\) iff the \(i^{th}\) customer bought the CD
- For Amazon, the dimension is tens of millions

Task: Find clusters of similar CDs
Finding topics:

- Represent a document by a vector \((x_1, x_2, ..., x_k)\), where \(x_i = 1\) iff the \(i^{th}\) word (in some order) appears in the document.

- Documents with similar sets of words may be about the same topic.
We have a choice when we think of documents as sets of words or shingles:

- **as vectors**: Measure similarity by the **cosine distance**
- **as sets**: Measure similarity by the **Jaccard distance**
- **as points**: Measure similarity by **Euclidean distance**
Clustering is a hard problem!
Clustering in two dimensions looks easy
Clustering small amounts of data looks easy

Many applications involve not 2, but 10 or 10,000 dimensions

High-dimensional spaces look different:
Almost all pairs of points are very far from each other --> The Curse of Dimensionality!
Assume data lives in $[0,1]^d$

To capture a neighborhood which represents a fraction s of the hypercube volume, we need the edge length to be $s^{1/d}$

- $s = 0.1$, $d = 10$, $s^{1/d} = 0.8$
- $s = 0.01$, $d = 10$, $s^{1/d} = 0.63$
Neighborhoods are no longer local
All points are very far from each other
Points in high-dim space are isolated
- Volume of a hypercube with edge length $r=0.1$ is 0.1^d
- When d grows, it quickly becomes so small that the probability to capture points becomes very very small
Two group of methods:

- **Hierarchical:**
 - **Agglomerative** (bottom up):
 - Initially, each point is a cluster
 - Repeatedly combine the two “nearest” clusters into one
 - **Divisive** (top down):
 - Start with one cluster and recursively split it

- **Point assignment:**
 - Maintain a set of clusters
 - Points belong to the “nearest” cluster
Is the space Euclidean or non-Euclidean?

In Euclidean:
- Points are vectors of real numbers, i.e. coordinates
- It is possible to summarize a collection of points as their average. We call it centroid.
- Distance measure: L2 norm, L1 norm

In non-Euclidean:
- There is no notion of location, and centroid
- We summarize a collection of points differently
- Distance measures: Jaccard, Hamming, cosine
Does the data fit in memory or does it reside on disk?

- In-memory clustering is more straightforward
 - Example: K-means

- Large-data clustering requires loading one batch of data at a time, cluster them in memory and keep summaries of clusters
 - Example: BFR, CURE
Hierarchical vs point-assignment

- Point assignment good when clusters are nice, convex shapes:

- Hierarchical can win when shapes are weird:
 - Note both clusters have essentially the same centroid.
Hierarchical Clustering
Hierarchical Clustering

- **Key operation:**
 Repeatedly merge two “nearest” clusters

- **Three important questions:**
 1) How to represent a cluster?
 2) How to determine the nearness of clusters?
 3) When to stop merging clusters?
Hierarchical Clustering: Euclidean

In Euclidean case:

1. **How to represent a cluster of many points?**
 - As we merge clusters, we represent the “location” of each cluster by its **centroid** = average of its (data)points

2. **How to determine the nearness of clusters?**
 - Measure cluster distances by distances of centroids
 - Merge two clusters with the shortest distance
Example: Hierarchical clustering

Data:
- o ... data point
- x ... centroid

Dendrogram
In non-Euclidean case:
- The only “locations” we can talk about are the points themselves. **There are three main approaches:**

(1) **How to represent a cluster of many points?**
1. pick a *clustroid* = point “closest” to other points
2,3. As the collection of points it is.

(2) **How to determine the nearness of clusters?**
1. Treat clustroid as if it were centroid
2. Various distance measures between points of two clusters
3. Various cohesion measures of the union of two clusters
Approach 1:

(1) How to represent a cluster:
- pick a *clustroid* = (data)point “*closest*” to other points

Possible meanings of “closest”:
- Smallest maximum distance to other points
- Smallest average distance to other points
- Smallest sum of squares of distances to other points
 - For distance metric d clustroid c of cluster C is
 $$\arg\min_c \sum_{x \in C} d(x, c)^2$$

(2) How to determine the nearness of clusters?
- Treat clustroid as if it were centroid
- **Centroid** is the avg. of all (data)points in the cluster.
 - This means centroid is an “artificial” point.

- **Clustroid** is an **existing** (data)point that is “closest” to all other points in the cluster.
Approach 2:

(1) How to represent a cluster? As the collection of points it is

(2) How to determine the nearness of clusters?

Define *inter-cluster distance*:
- Minimum of the distances between any two points, one from each cluster
- Average distance of all pairs of points, one from each cluster
Hierarchical Clustering: Non-Euclidean

Approach 3:

(1) How to represent a cluster? As the collection of points it is

(2) How to determine the nearness of clusters?
Define a notion of *cohesion*, and merge clusters whose union is most cohesive
Possible notions of cohesion (the smaller, the more cohesive):
- **diameter** of the merged cluster = maximum distance between points in the cluster
- **average distance** between points in the cluster
- **Density** of the merged cluster = divide by the number of points in the cluster by diameter or avg. distance
(3) When do we stop merging clusters?

- When some number k of clusters are found (assumes we know the number of clusters)
- When stopping criterion is met
 - Stop if diameter exceeds threshold
 - Stop if density is below some threshold
 - Stop if merging clusters yields a bad cluster
 - E.g., diameter suddenly jumps
- Keep merging until there is only 1 cluster left
It really depends on the shape of clusters. Which you may not know in advance.

Example: we’ll compare two approaches:

1. Merge clusters with smallest distance between centroids (or clustroids for non-Euclidean)
2. Merge clusters with the smallest distance between two points, one from each cluster
Case 1: Convex Clusters

- Centroid-based merging works well.
- But merger based on closest members might accidentally merge incorrectly.

A and B have closer centroids than A and C, but closest points are from A and C.

Data density
Case 2: Concentric Clusters

- Linking based on closest members works well
- But Centroid-based linking might cause errors
k-means Clustering
It is a problem formulation, not an algorithm.

Problem: Given Euclidean space/distance and \(k = \) number of clusters, find cluster centers that minimizes sum of squared distances from each point to its cluster center

Finding an exact solution is NP-hard.

The approximate solution is Lloyd’s algorithm or the k-means algorithm.
k–means Algorithm(s)

- Initialize clusters by picking k centers

Until convergence:

1. For each point, assign it to the cluster whose current centroid is the closest
2. After all points are assigned, update the centroids of the k clusters as average of datapoints within each cluster

Convergence means Points don’t move between clusters and centroids stabilize
Convergence of k-means heavily depends on the initial pick of centroids. It can perform arbitrarily bad.

- Different strategies for picking k centers:
 - Pick k datapoints at random
 - K-means ++
k-Means++

- **Basic idea:** Pick a small sample of points S, cluster them by any algorithm, and use the centroids as a seed.

- In k-means++, sample size $|S| = k$ times a factor that is logarithmic in the total number of points.

- **How to pick sample points:** Visit points in random order, but the probability of adding a point p to the sample is proportional to $D(p)^2$.
 - $D(p) = \text{distance between } p \text{ and the nearest already picked point.}$
Example: Assigning Clusters

Clusters after round 1

x … data point
☐ … centroid
Example: Assigning Clusters

- 'x' ... data point
- '...' centroid

Clusters after round 2
Example: Assigning Clusters

\[\text{x} \quad \text{… data point} \]

\[\square \quad \text{… centroid} \]

Clusters at the end
How to select k?

- Try different k, looking at the change in the average distance to centroid as k increases.
- Average falls rapidly until right k, then changes little.
Example: Picking \(k \)

Too few; many long distances to centroid
Example: Picking k

Just right; distances rather short
Example: Picking k

Too many; little improvement in average distance
Extension of k-means to large data

The BFR Algorithm
BFR Algorithm

- **BFR** [Bradley-Fayyad-Reina] is a variant of *k*-means designed to handle very large (disk-resident) data sets.

- **Assumes** that clusters are normally distributed around a centroid in a Euclidean space:
 - Standard deviations in different dimensions may vary
 - Clusters are axis-aligned ellipses

- Goal is to find cluster centroids; point assignment can be done in a second pass through the data.
Efficient way to summarize clusters: Want memory required $O(\text{clusters})$ and not $O(\text{data})$

IDEA: Rather than keeping points, BFR keeps summary statistics of groups of points

- 3 sets: Discard set, Compressed set, Retained set

Overview of the algorithm:

1. Initialize K clusters/centroids
2. Load in a bag of points from disk
3. Assign new points to one of the K original clusters, if they are within some distance threshold of the cluster
4. Cluster the remaining points, and create new clusters
5. Try to merge new clusters from step 4 with any of the existing clusters
6. Repeat steps 2-5 until all points are examined
Points are read from disk one main-memory-full at a time

Most points from previous memory loads are summarized by simple statistics

Step 1) From the initial load we select the initial k centroids by some sensible approach:

- Take k random points
- Take a small random sample and cluster optimally
- Take a sample; pick a random point, and then $k-1$ more points, each as far from the previously selected points as possible
Three Classes of Points

3 sets of points which we keep track of:

- **Discard set (DS):**
 - Points close enough to a centroid to be summarized

- **Compressed set (CS):**
 - Groups of points that are close together but not close to any existing centroid
 - These points are summarized, but not assigned to a cluster

- **Retained set (RS):**
 - Isolated points waiting to be assigned to a compressed set
A cluster. Its points are in the **DS**.

Compressed sets. Their points are in the **CS**.

The centroid

Points in the **RS**

Discard set (DS): Close enough to a centroid to be summarized

Compression set (CS): Summarized, but not assigned to a cluster

Retained set (RS): Isolated points, we store them as they are
For each cluster, the discard set (DS) is summarized by:

- The number of points, N
- The vector SUM, whose i^{th} component is the sum of the coordinates of the points in the i^{th} dimension
- The vector SUMSQ: i^{th} component = sum of squares of coordinates in i^{th} dimension
2d + 1 values represent any size cluster
- \(d \) = number of dimensions

Average in each dimension (the centroid) can be calculated as \(\text{SUM}_i / N \)
- \(\text{SUM}_i = i^{\text{th}} \) component of SUM

Variance of a cluster’s discard set in dimension \(i \) is: \((\text{SUMSQ}_i / N) - (\text{SUM}_i / N)^2 \)
- And standard deviation is the square root of that

Next step: Actual clustering

Note: Dropping the “axis-aligned” clusters assumption would require storing full covariance matrix to summarize the cluster. So, instead of \(\text{SUMSQ} \) being a \(d \)-dim vector, it would be a \(d \times d \) matrix, which is too big!
Steps 3-5) Processing “Memory-Load” of points:

- **Step 3)** Find those points that are “sufficiently close” to a cluster centroid and add those points to that cluster and the DS.
 - These points are so close to the centroid that they can be summarized and then discarded.

- **Step 4)** Use any in-memory clustering algorithm to cluster the remaining points and the old RS.
 - Clusters go to the CS; outlying points to the RS.

Discard set (DS): Close enough to a centroid to be summarized.
Compression set (CS): Summarized, but not assigned to a cluster.
Retained set (RS): Isolated points.
The “Memory-Load” of Points

Steps 3-5) Processing “Memory-Load” of points:

- **Step 5) DS set:** Adjust statistics of the clusters to account for the new points
 - Add N_s, SUM_s, $SUMSQ_s$
 - Consider merging compressed sets in the DS

- **If this is the last round,** merge all compressed sets in the CS and all RS points into their nearest cluster

Discard set (DS): Close enough to a centroid to be summarized.
Compression set (CS): Summarized, but not assigned to a cluster
Retained set (RS): Isolated points
Summary: BFR

A cluster. Its points are in the **DS**.

Compressed sets. Their points are in the **CS**.

Discard set (DS): Close enough to a centroid to be summarized
Compression set (CS): Summarized, but not assigned to a cluster
Retained set (RS): Isolated points
Q1) How do we decide if a point is “close enough” to a cluster that we will add the point to that cluster?

Q2) How do we decide whether two compressed sets (CS) deserve to be combined into one?
Q1) We need a way to decide whether to put a new point into a cluster (and discard)

BFR suggests two ways:
- The *Mahalanobis distance* is less than a threshold
- High likelihood of the point belonging to currently nearest centroid
Mahalanobis Distance

- Normalized Euclidean distance from centroid

For a given point \((x_1, ..., x_d)\) and a given centroid \((c_1, ..., c_d)\)

1. Normalize in each dimension: \(y_i = (x_i - c_i) / \sigma_i\)
2. Take sum of the squares of the \(y_i\)
3. Take the square root

\[
d(x, c) = \sqrt{\sum_{i=1}^{d} \left(\frac{x_i - c_i}{\sigma_i} \right)^2}
\]

\(\sigma_i\) … standard deviation of points in the cluster in the \(i^{th}\) dimension
If clusters are normally distributed in d dimensions, then after transformation, one standard deviation $= \sqrt{d}$

- i.e., 68% of the points of the cluster will have a Mahalanobis distance $< \sqrt{d}$

Accept a point for a cluster if its M.D. is $<$ some threshold, e.g. 2 standard deviations
Euclidean vs. Mahalanobis distance

Contours of equidistant points from the origin

Uniformly distributed points, Euclidean distance

Normally distributed points, Euclidean distance

Normally distributed points, Mahalanobis distance
Q2) Should 2 CS clusters be combined?

- Compute the variance of the combined subcluster
 - N, SUM, and $SUMSQ$ allow us to make that calculation quickly

- Combine if the combined variance is below some threshold

- Many alternatives: Treat dimensions differently, consider density
The CURE Algorithm

Extension of k-means to clusters of arbitrary shapes
CURE Algorithm

- **CURE (Clustering Using REpresentatives):**
 - Assumes a Euclidean distance
 - No assumption about shape of clusters
 - No need to be normally distributed in each dimension
 - No need to have fixed axis
 - Instead of centroid, uses a collection of representative points to represent clusters
 - Assumes k=number of clusters is given

- **In contrast, BFR and k-means assume:**
 - clusters are normally distributed in each dimension
 - Axes are fixed – ellipses at an angle are not OK
Example: Stanford Salaries
Starting CURE

2 Pass algorithm. Pass 1:

- Pick a random sample of data and cluster them in main memory using hierarchical clustering
 - merge two clusters when they have close pair of points

- Pick representative points from each cluster
 - For each cluster, pick a sample of points, as dispersed as possible
 - move representatives a fraction of distance e.g. 20% toward the centroid of the cluster
 - Merge clusters with the closest pair of representatives
Example: Initial Clusters

salary

age
Example: Pick Dispersed Points

Pick (say) 4 remote points for each cluster.
Example: Pick Dispersed Points

Move points (say) 20% toward the centroid.
Pass 2:
- Now, rescan the whole dataset and visit each point p in the data set
- **Place it in the “closest cluster”**
 - Normal definition of “closest”:
 Find the closest representative point to p and assign it to representative’s cluster
Intuition:

- If initial sample is *large* enough, some of the representatives will be on the *boundary* of clusters
 - Moving them towards centroid, move them inside

- A large, dispersed cluster will have larger moves as opposed to a small, dense cluster
 - Favors a small, dense cluster that is near a larger dispersed cluster
Clustering: Given a set of points, with a notion of distance between points, group the points into some number of clusters

Algorithms:

- Agglomerative hierarchical clustering:
 - Centroid and clustroid
- k-means:
 - Initialization, picking k
- BFR
- CURE