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http://www.mmds.org/


 Often, our data can be represented by an         
𝑚-by-𝑛 matrix

 And this matrix can be closely approximated 
by the product of three matrices that share a 
small common dimension 𝑟
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 Compress / reduce dimensionality:

▪ 106 rows; 103 columns; no updates

▪ Random access to any cell(s); small error: OK
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Note: The above matrix is really “2-dimensional.” All rows 

can be reconstructed by scaling [1 1 1 0 0] or [0 0 0 1 1]

New 

representation

[1 0]

[2 0]

[1 0]

[5 0]

[0 2]

[0 3]

[0 1]



There are hidden, or latent factors, latent 
dimensions that – to a close approximation – 
explain why the values are as they appear in 
the data matrix
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The axes of these dimensions can be chosen by:

▪ The first dimension is the direction in which 
the points exhibit the greatest variance

▪ The second dimension is the direction, orthogonal to 
the first, in which points show the 2nd greatest variance

▪ And so on…, until you have enough dimensions that 
variance is really low
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 Q: What is rank of a matrix A?
 A: Number of linearly independent rows of A
 Cloud of points in 3D space:

▪ Think of point coordinates
as a matrix:

 We can rewrite coordinates more efficiently!
▪ Old basis vectors: [1 0 0] [0 1 0] [0 0 1]

▪ New basis vectors: [1 2 1] [-2 -3 1]

▪ Then A has new coordinates: [1 0], B: [0 1], C: [1 -1]
▪ Notice: We reduced the number of dimensions/coordinates!

1 row per point:

A

B

C 

A
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 Goal of dimensionality reduction is to 
discover the axes of data!

Rather than representing

every point with 2 coordinates

we represent each point with

1 coordinate (corresponding to

the position of the point on 

the red line).

By doing this we incur a bit of

error as the points do not 

exactly lie on the line
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 Gives a decomposition of any matrix into a 
product of three matrices:

 There are strong constraints on the form of each 
of these matrices
▪ Results in a unique decomposition

 From this decomposition, you can choose any 
number 𝑟 of intermediate concepts (latent factors) 
in a way that minimizes the reconstruction error
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 A: Input data matrix
▪ m x n matrix (e.g., m documents, n terms)

  U: Left singular vectors 
▪ m x r matrix  (m documents, r concepts)

  : Singular values
▪ r x r diagonal matrix (strength of each ‘concept’) 

(r : rank of the matrix A)
  V: Right singular vectors

▪ n x r matrix (n terms, r concepts)
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σi  … scalar

ui … vector

vi … vector

T

If we set 2 = 0, then the green
columns may as well not exist.



It is always possible to decompose a real 
matrix A into A = U  VT , where

 U, , V: unique
 U, V: column orthonormal

▪ UT U = I; VT V = I  (I: identity matrix)

▪ (Columns are orthogonal unit vectors)

 : diagonal

▪ Entries (singular values) are non-negative, 
and sorted in decreasing order (σ1  σ2  ...  0)
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Nice proof of uniqueness: https://www.cs.cornell.edu/courses/cs322/2008sp/stuff/TrefethenBau_Lec4_SVD.pdf

https://www.cs.cornell.edu/courses/cs322/2008sp/stuff/TrefethenBau_Lec4_SVD.pdf


 Consider a matrix. What does SVD do?
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1   1   1   0   0

3   3   3   0   0

4   4   4   0   0

5   5   5   0   0

0   2   0   4   4

0   0   0   5   5

0   1   0   2   2


m

n

U

VT

“Concepts” 
AKA Latent dimensions
AKA Latent factors

Ratings matrix where each column 
corresponds to a movie and each row 
to a user. First 4 users prefer SciFi, 
while others prefer Romance.



 A = U  VT - example: Users to Movies
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0   2   0   4   4

0   0   0   5   5

0   1   0   2   2

0.13   0.02  -0.01

0.41   0.07  -0.03

0.55   0.09  -0.04

0.68   0.11  -0.05

0.15  -0.59   0.65

0.07  -0.73  -0.67

0.07  -0.29   0.32

12.4  0     0

0       9.5  0

0       0     1.3

0.56   0.59  0.56   0.09    0.09

0.12  -0.02  0.12  -0.69  -0.69

0.40  -0.80  0.40   0.09    0.09

Romance



 A = U  VT - example: Users to Movies
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Romance-concept
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 A = U  VT - example:
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Romance-concept

U is “user-to-concept” 
factor matrix

SciFi-concept
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 A = U  VT - example:
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SciFi

SciFi-concept

“strength” of the SciFi-concept
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 A = U  VT - example:
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SciFi-concept

V is “movie-to-concept”
factor matrix
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0.40  -0.80  0.40   0.09    0.09

Romance
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Movies, users and concepts:
 U: user-to-concept matrix

 V: movie-to-concept matrix

 : its diagonal elements: 
 ‘strength’ of each concept
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 Instead of using two coordinates (𝒙, 𝒚) to describe 
point positions, let’s use only one coordinate

 Point’s position is its location along vector 𝒗𝟏



 A = U  VT - example:
▪ U: “user-to-concept” matrix

▪ V: “movie-to-concept” matrix
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= x x

1   1   1   0   0

3   3   3   0   0

4   4   4   0   0

5   5   5   0   0

0   2   0   4   4

0   0   0   5   5

0   1   0   2   2

0.13   0.02  -0.01

0.41   0.07  -0.03

0.55   0.09  -0.04

0.68   0.11  -0.05

0.15  -0.59   0.65

0.07  -0.73  -0.67

0.07  -0.29   0.32

12.4  0     0

0       9.5  0

0       0     1.3

0.56   0.59  0.56   0.09    0.09

0.12  -0.02  0.12  -0.69  -0.69

0.40  -0.80  0.40   0.09    0.09



 A = U  VT - example:
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variance (‘spread’) 

on the v1 axis

= x x

1   1   1   0   0

3   3   3   0   0

4   4   4   0   0

5   5   5   0   0

0   2   0   4   4

0   0   0   5   5

0   1   0   2   2

0.13   0.02  -0.01

0.41   0.07  -0.03

0.55   0.09  -0.04

0.68   0.11  -0.05

0.15  -0.59   0.65

0.07  -0.73  -0.67

0.07  -0.29   0.32

12.4  0     0

0       9.5  0

0       0     1.3

0.56   0.59  0.56   0.09    0.09

0.12  -0.02  0.12  -0.69  -0.69

0.40  -0.80  0.40   0.09    0.09



A = U  VT - example:
 U   Gives the coordinates 

of the points in the 
projection axis
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1   1   1   0   0

3   3   3   0   0

4   4   4   0   0

5   5   5   0   0

0   2   0   4   4

0   0   0   5   5

0   1   0   2   2

1.61    0.19   -0.01

5.08    0.66   -0.03

6.82    0.85   -0.05

8.43    1.04   -0.06

1.86   -5.60    0.84

0.86   -6.93   -0.87

0.86   -2.75    0.41

Projection of users 

on the “Sci-Fi” axis 
U :



More details
 Q: How is dim. reduction done?
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= x x

1   1   1   0   0

3   3   3   0   0

4   4   4   0   0

5   5   5   0   0

0   2   0   4   4

0   0   0   5   5

0   1   0   2   2

0.13   0.02  -0.01

0.41   0.07  -0.03

0.55   0.09  -0.04

0.68   0.11  -0.05

0.15  -0.59   0.65

0.07  -0.73  -0.67

0.07  -0.29   0.32

12.4  0     0

0       9.5  0

0       0     1.3

0.56   0.59  0.56   0.09    0.09

0.12  -0.02  0.12  -0.69  -0.69

0.40  -0.80  0.40   0.09    0.09



More details
 Q: How exactly is dim. reduction done?
 A: Set smallest singular values to zero
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More details
 Q: How exactly is dim. reduction done?
 A: Set smallest singular values to zero
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More details
 Q: How exactly is dim. reduction done?
 A: Set smallest singular values to zero
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This is Rank 2 

approximation to A. 
We could  also do 
Rank 1 approx.

The larger the rank 
the more accurate 

the approximation.



More details
 Q: How exactly is dim. reduction done?
 A: Set smallest singular values to zero
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 x x

1   1   1   0   0

3   3   3   0   0

4   4   4   0   0

5   5   5   0   0

0   2   0   4   4

0   0   0   5   5

0   1   0   2   2

0.13   0.02

0.41   0.07

0.55   0.09

0.68   0.11

0.15  -0.59

0.07  -0.73

0.07  -0.29

12.4  0     

0       9.5  

0.56   0.59  0.56   0.09    0.09

0.12  -0.02  0.12  -0.69  -0.69

This is Rank 2 

approximation to A. 
We could  also do 
Rank 1 approx.

The larger the rank 
the more accurate 

the approximation.



More details
 Q: How exactly is dim. reduction done?
 A: Set smallest singular values to zero
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1   1   1   0   0

3   3   3   0   0

4   4   4   0   0

5   5   5   0   0

0   2   0   4   4

0   0   0   5   5

0   1   0   2   2

0.92  0.95   0.92   0.01   0.01

 2.91  3.01   2.91  -0.01  -0.01

 3.90  4.04   3.90   0.01   0.01

 4.82  5.00   4.82   0.03   0.03

 0.70  0.53   0.70  4.11   4.11

-0.69  1.34  -0.69 4.78   4.78

 0.32  0.23   0.32   2.01   2.01

Reconstruction Error is quantified by the Frobenius norm:

ǁMǁF = Σij Mij
2 ǁA-BǁF =  Σij (Aij-Bij)

2

is “small”

This is Rank 2 

approximation to A. 
We could  also do 
Rank 1 approx.

The larger the rank 
the more accurate 

the approximation

Reconstructed 

data matrix B



 Fact: SVD gives ‘best’ axis to project on:
▪ ‘best’ = minimizing the sum of reconstruction errors
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A U

Sigma

VT
=

B U

Sigma

VT

=

B is best approximation of  A:

𝐴 − 𝐵 𝐹 = 

𝑖𝑗

𝐴𝑖𝑗 − 𝐵𝑖𝑗
2



 Theorem:
Let A = U  VT and B = U S VT where 
S = diagonal rxr matrix with si=σi (i=1…k) else si=0
then B is a best rank(B)=k approx. to A

What do we mean by “best”:
▪ B is a solution to minB ǁA-BǁF  where rank(B)=k

Σ
𝜎11

𝜎𝑟𝑟

𝐴 − 𝐵 𝐹 = 

𝑖𝑗

𝐴𝑖𝑗 − 𝐵𝑖𝑗
2
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Refer to the MMDS book for a proof.



 SVD: A= U  VT: unique
▪ U: user-to-concept factors
▪ V: movie-to-concept factors
▪  : strength of each concept

 Q: So what’s a good value for 𝒓 (# of latent factors)?
 Let the energy of a set of singular values be the sum of 

their squares.
 Pick r so the retained singular values have at least 90% 

of the total energy.

 Back to our example:
▪ With singular values 12.4, 9.5, and 1.3, total energy = 245.7  

▪ If we drop 1.3, whose square is only 1.7, we are left with 
energy 244, or over 99% of the total
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 How do we actually compute SVD?

 First we need a method for finding the principal 
eigenvalue (the largest one) and the 
corresponding eigenvector of a symmetric matrix
▪ 𝑀 is symmetric if 𝑚𝑖𝑗 =  𝑚𝑗𝑖 for all 𝑖 and 𝑗

 Method:
▪ Start with any “guess eigenvector” 𝒙0

▪ Construct 𝒙𝑘+1 =
𝑀𝒙𝒌

| 𝑀𝒙𝒌 |
   for 𝑘 =  0, 1, …

▪ || … || denotes the Frobenius norm

▪ Stop when consecutive 𝒙𝑘 show little change
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M =
1 2

2    3
x0 =

1

1

Mx0

||Mx0||
= 

3

5
/34 = 

0.51

0.86
= x1

Mx1

||Mx1||
= 

2.23

3.60
/17.93 = 

0.53

0.85
= x2
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…..



 Once you have the principal eigenvector 𝒙, you 
find its eigenvalue  by  =  𝒙𝑇𝑀𝒙.

▪ In proof: We know 𝒙 =  𝑀𝒙 if  is the eigenvalue; 
multiply both sides by 𝒙𝑇 on the left.

▪ Since 𝒙𝑇𝒙 =  1 we have  =  𝒙𝑇𝑀𝒙

 Example: If we take xT = [0.53, 0.85], then 

  =

37

][[ ][0.53 0.85]
1 2
2     3

0.53
0.85

= 4.25
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 Eliminate the portion of the matrix 𝑀 that can 
be generated by the first eigenpair,  and 𝒙:

𝑀∗: =  𝑀 – 𝜆 𝑥 𝑥𝑇

 Recursively find the principal eigenpair for 𝑀∗, 
eliminate the effect of that pair, and so on

 Example:

38

M* = [ ] -0.19 0.09
0.09  0.07

– 4.25 [ ]0.53
0.85

[0.53 0.85]
1 2
2     3

= [ ]
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 Start by supposing 𝑨 =  𝑼𝑽𝑻

 𝐴𝑇 =  (𝑈𝑉𝑇)𝑇 =  (𝑉𝑇)𝑇𝑇𝑈𝑇 =  𝑉𝑈𝑇

▪ Why? (1) Rule for transpose of a product; (2) the 
transpose of the transpose and the transpose of a 
diagonal matrix are both the identity functions

 𝑨𝑻𝑨 =  𝑽𝑼𝑻𝑼𝑽𝑻 = 𝑽𝟐𝑽𝑻

▪ Why? 𝑈 is orthonormal, so 𝑈𝑇𝑈 is an identity matrix

▪ Also note that 2 is a diagonal matrix whose 𝑖-th 
element is the square of the 𝑖-th element of 

 𝑨𝑻𝑨𝑽 =  𝑽𝟐𝑽𝑻𝑽 =  𝑽𝟐

▪ Why? 𝑉 is also orthonormal
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 Since 𝑨𝑻𝑨 =  𝑽𝟐𝑽𝑻 
→ 𝑨𝑻𝑨𝑽 = 𝑽𝟐 

▪ Note that therefore the 𝑖-th column of 𝑉 is an 
eigenvector of 𝐴𝑇𝐴, and its eigenvalue is the 𝑖-th 
element of 2

 Thus, we can find 𝑉 and  by finding the 
eigenpairs for 𝐴𝑇𝐴

▪ Once we have the eigenvalues in 2, we can find the 
singular values by taking the square root of these 
eigenvalues

 Symmetric argument, 𝐴𝐴𝑇gives us 𝑈
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 To compute the full SVD using specialized 
methods:
▪ O(nm2) or O(n2m) (whichever is less)

 But:
▪ Less work, if we just want singular values

▪ or if we want the first k singular vectors

▪ or if the matrix is sparse

 Implemented in linear algebra packages like
▪ LINPACK, Matlab, SPlus, Mathematica ...
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 Q: Find users that like ‘Matrix’
 A: Map query into a ‘concept space’ – how?
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x x
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1   1   1   0   0

3   3   3   0   0

4   4   4   0   0

5   5   5   0   0

0   2   0   4   4

0   0   0   5   5

0   1   0   2   2

0.13   0.02  -0.01

0.41   0.07  -0.03

0.55   0.09  -0.04

0.68   0.11  -0.05

0.15  -0.59   0.65

0.07  -0.73  -0.67

0.07  -0.29   0.32

12.4  0     0

0       9.5  0

0       0     1.3

0.56   0.59  0.56   0.09    0.09

0.12  -0.02  0.12  -0.69  -0.69

0.40  -0.80  0.40   0.09    0.09



 Q: Find users that like ‘Matrix’
 A: Map query into a ‘concept space’ – how?
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 Q: Find users that like ‘Matrix’
 A: Map query into a ‘concept space’ – how?
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Inner product  with each 
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Compactly, we have:
qconcept = q V

E.g.:
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movie-to-concept
 factors (V)

=

SciFi-concept
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q =

0.56   0.12

0.59  -0.02

0.56   0.12

0.09  -0.69

0.09  -0.69

x 2.8      0.6



 How would the user d that rated 
(‘Alien’, ‘Serenity’) be handled?
dconcept = d V

E.g.:
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movie-to-concept
 factors (V)

=

SciFi-concept
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d =

0.56   0.12

0.59  -0.02

0.56   0.12

0.09  -0.69

0.09  -0.69

x 5.2      0.4



 Observation: User d that rated (‘Alien’, 
‘Serenity’) will be similar to user q that 
rated (‘Matrix’), although d and q have 
zero ratings in common!
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Zero ratings in common Similarity > 0

2.8      0.6

5.2      0.4



+ Optimal low-rank approximation
in terms of Frobenius norm

- Interpretability problem:
▪ A singular vector specifies a linear 

combination of all input columns or rows
- Lack of sparsity:

▪ Singular vectors are dense!
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=

U



VT





 It is common for the matrix 𝐴 that we wish to 
decompose to be very sparse

 But 𝑈 and 𝑉 from a SVD decomposition will 
not be sparse

 CUR decomposition solves this problem by 
using only (randomly chosen) rows and 
columns of 𝐴
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 Goal: Express 𝑨 as a product of matrices 𝑪, 𝑼, 𝑹
 Make ǁ𝑨 − 𝑪 · 𝑼 · 𝑹ǁ𝑭 small
 “Constraints” on 𝑪 and 𝑹:
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A C U R

Frobenius norm:

ǁXǁF =  Σij Xij
2



 Goal: Express 𝑨 as a product of matrices 𝑪, 𝑼, 𝑹
 Make ǁ𝑨 − 𝑪 · 𝑼 · 𝑹ǁ𝑭 small
 “Constraints” on 𝑪 and 𝑹:
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Pseudo-inverse of 
the intersection of 𝑪 and 𝑹

A C U R

Frobenius norm:

ǁXǁF =  Σij Xij
2



 Let 𝑾 be the “intersection” of sampled columns 
𝑪 and rows 𝑹

 Def: W+ is the pseudoinverse

▪ Let SVD of 𝑾 =  𝑿 𝒁 𝒀𝑇

▪ Then: 𝑾
+

 =  𝒀 𝒁+𝑿𝑇

▪ +: reciprocals of non-zero singular values: +
ii = ii

 Let: U = 𝒀 (𝒁+)𝟐𝑿𝑇
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Why the intersection? These are high magnitude numbers

Why pseudoinverse works?

𝑊 =  𝑋 𝑍 𝑌𝑇  
then 𝑊−1  

= 𝑌𝑇 −1  
𝑍−1 𝑋−1

Due to orthonormality: 𝑋−1 = 𝑋𝑇,  𝑌−1 = 𝑌𝑇

Since Z is diagonal Z−1 =  1/𝑍𝑖𝑖

Thus, if W is nonsingular, pseudoinverse is the true inverse

A W=

columns, C

ro
w

s
, 

R

intersection



 To decrease the expected error between 𝐴 and its 
decomposition, we must pick rows and columns in 
a nonuniform manner

 The importance of a row or column of 𝐴 is the 
square of its Frobenius norm

▪ That is, the sum of the squares of its elements.

 When picking rows and columns, the probabilities 
must be proportional to importance

 Example: [3,4,5] has importance 50, and [3,0,1] has 
importance 10, so pick the first 5 times as often as the 
second
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 Sampling columns (similarly for rows):

1/20/22 Jure Leskovec, Stanford CS246: Mining Massive Datasets 56

Note this is a randomized algorithm, same 

column can be sampled more than once



 Rough and imprecise intuition behind CUR
▪ CUR is more likely to pick points away from the origin

▪ Assuming smooth data with no outliers these are the 
directions of maximum variation

 Example: Assume we have 2 clouds at an angle
▪ SVD dimensions are orthogonal and thus will be in the 

middle of the two clouds

▪ CUR will find the two clouds (but will be redundant)
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Singular vector
Actual column



 For example:

▪ Select 𝒄 =  𝑶
𝒌 𝒍𝒐𝒈 𝒌

𝜺𝟐  columns of A using 

ColumnSelect algorithm (slide 56)

▪ Select 𝒓 =  𝑶
𝒌 𝒍𝒐𝒈 𝒌

𝜺𝟐  rows of A using 

RowSelect algorithm (slide 56)

▪ Set 𝑼 = 𝒀 (𝒁+)𝟐𝑿𝑇

 Then: 𝐴 − 𝐶𝑈𝑅
𝐹

≤ 2 + 𝜀 𝐴 − 𝐴𝐾 𝐹

    with probability 98%
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In practice: Pick 4k cols/rows for a “rank-k” approximation

SVD errorCUR error



+ Easy interpretation
• Since the basis vectors are actual 

columns and rows
+ Sparse basis

• Since the basis vectors are actual 
columns and rows

- Duplicate columns and rows
• Columns of large norms will be sampled many 

times
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Singular vector
Actual column
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SVD:   A = U  VT

Huge but sparse Big and dense

CUR:   A = C U R

Huge but sparse Big but sparse

dense but small

sparse and small



 DBLP bibliographic data

▪ Author-to-conference big sparse matrix

▪ Aij: Number of papers published by author i at 
conference j

▪ 428K authors (rows), 3659 conferences (columns)

▪ Very sparse

 Want to reduce dimensionality

▪ How much time does it take?

▪ What is the reconstruction error?

▪ How much space do we need?
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 Accuracy: 
▪ 1 – relative sum squared errors

 Space ratio: 
▪ #output matrix entries / #input matrix entries

 CPU time
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SVD

CUR

CUR no duplicates

SVD

CUR

CUR no dup

Sun, Faloutsos: Less is More: Compact Matrix Decomposition for Large Sparse Graphs , SDM ’07.

CUR

SVD
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