Recommender Systems: Latent Factor Models

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu
The Netflix Prize

- **Training data**
 - 100 million ratings, 480,000 users, 17,770 movies
 - 6 years of data: 2000-2005

- **Test data**
 - Last few ratings of each user (2.8 million)
 - **Evaluation criterion:** Root Mean Square Error (RMSE) =
 \[\sqrt{\frac{1}{|R|} \sum_{(i,x) \in R} (\hat{r}_{xi} - r_{xi})^2} \]
 - Netflix’s system RMSE: 0.9514

- **Competition**
 - 2,700+ teams
 - $1 million prize for 10% improvement on Netflix
Competition Structure

- **Training Data**
 - 100 million ratings

- **Held-Out Data**
 - 3 million ratings
 - **Quiz Set:**
 - 1.5m ratings
 - Scores used in determining final winner
 - **Test Set:**
 - 1.5m ratings
 - Scores used in determining final winner

- Labels known publicly
- Labels only known to Netflix

9/26/19

Jure Leskovec, Stanford CS246: Mining Massive Datasets
The Netflix Utility Matrix R

Matrix R

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>480,000 users</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17,700 movies
Utility Matrix R: Evaluation

Matrix R

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **480,000 users**
- **17,700 movies**

Test Data Set

- Predicted rating \hat{r}_{xi}
- True rating of user x on item i r_{xi}

RMSE

$$RMSE = \frac{1}{|R|} \sqrt{\sum_{(i,x) \in R} (\hat{r}_{xi} - r_{xi})^2}$$

- **9/26/19**
- Jure Leskovec, Stanford CS246: Mining Massive Datasets
The winner of the Netflix Challenge

Multi-scale modeling of the data: Combine top level, “regional” modeling of the data, with a refined, local view:

- **Global:**
 - Overall deviations of users/movies
- **Factorization:**
 - Addressing “regional” effects
- **Collaborative filtering:**
 - Extract local patterns
Global:
- Mean movie rating: 3.7 stars
- The Sixth Sense is 0.5 stars above avg.
- Joe rates 0.2 stars below avg.

⇒ Baseline estimation:
Joe will rate The Sixth Sense 4 stars
- That is 4 = 3.7+0.5-0.2

Local neighborhood (CF/NN):
- Joe didn’t like related movie Signs

⇒ Final estimate:
Joe will rate The Sixth Sense 3.8 stars
Recap: Collaborative Filtering (CF)

- The earliest and the most popular collaborative filtering method
- Derive unknown ratings from those of “similar” movies (item-item variant)
- Define similarity measure s_{ij} of items i and j
- Select k-nearest neighbors, compute the rating
 - $N(i; x)$: items most similar to i that were rated by x

$$\hat{r}_{xi} = \frac{\sum_{j \in N(i; x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i; x)} s_{ij}}$$

s_{ij}... similarity of items i and j
r_{xj}... rating of user x on item j
$N(i; x)$... set of items similar to item i that were rated by x
In practice we get better estimates if we model deviations:

\[\hat{r}_{xi} = b_{xi} + \left(\sum_{j \in N(i;x)} \frac{S_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} S_{ij}} \right) \]

Baseline estimate for \(r_{xi} \)

\[b_{xi} = \mu + b_x + b_i \]

\(\mu \) = overall mean rating
\(b_x \) = rating deviation of user \(x \)
\(b_i \) = (avg. rating of movie \(i \)) – \(\mu \)

Problems/Issues:
1) Similarity measures are “arbitrary”
2) Pairwise similarities neglect interdependencies among users
3) Taking a weighted average can be restricting

Solution: Instead of \(s_{ij} \) use \(w_{ij} \) that we estimate directly from data
Idea: Interpolation Weights w_{ij}

- Use a **weighted sum** rather than **weighted avg.**:
 \[
 \hat{r}_{xi} = b_{xi} + \sum_{j \in \mathcal{N}(i; x)} w_{ij} (r_{xj} - b_{xj})
 \]

- A few notes:
 - $\mathcal{N}(i; x)$... set of movies rated by user x that are similar to movie i
 - w_{ij} is the **interpolation weight** (some real number)
 - Note, we allow: $\sum_{j \in \mathcal{N}(i; x)} w_{ij} \neq 1$
 - w_{ij} models interaction between pairs of movies (it does not depend on user x)
Idea: Interpolation Weights w_{ij}

- $\hat{r}_{xi} = b_{xi} + \sum_{j \in N(i,x)} w_{ij} (r_{xj} - b_{xj})$

- How to set w_{ij}?

 - Remember, error metric is: $\frac{1}{|R|} \sqrt{\sum_{(i,x) \in R} (\hat{r}_{xi} - r_{xi})^2}$

 or equivalently $\text{SSE}: \sum_{(i,x) \in R} (\hat{r}_{xi} - r_{xi})^2$

- Find w_{ij} that minimize SSE on training data!

 - Models relationships between item i and its neighbors j

 - w_{ij} can be learned/estimated based on x and all other users that rated i

 Why is this a good idea?
Goal: Make good recommendations

- Quantify goodness using RMSE:
 Lower RMSE \Rightarrow better recommendations

- Want to make good recommendations on items that user has not yet seen. Can’t really do this!

- Let’s set build a system such that it works well on known (user, item) ratings
 And hope the system will also predict well the unknown ratings
Recommendations via Optimization

- **Idea:** Let’s set values \(w \) such that they work well on known (user, item) ratings
- **How to find such values \(w \)?**
- **Idea:** Define an objective function and solve the optimization problem

- Find \(w_{ij} \) that minimize \(\text{SSE} \) on training data!

\[
J(w) = \sum_{x, i \in R} \left(\left[b_{xi} + \sum_{j \in N(i; x)} w_{ij} (r_{xj} - b_{xj}) \right] - r_{xi} \right)^2
\]

- Think of \(w \) as a vector of numbers
A simple way to minimize a function $f(x)$:

- Compute the derivative $\nabla f(x)$
- Start at some point y and evaluate $\nabla f(y)$
- Make a step in the reverse direction of the gradient: $y = y - \nabla f(y)$
- Repeat until convergence
We have the optimization problem, now what?

- **Gradient descent:**
 - Iterate until convergence: \(\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} J \)

where \(\nabla_{\mathbf{w}} J \) is the gradient (derivative evaluated on data):

\[
\nabla_{\mathbf{w}} J = \left[\frac{\partial J(\mathbf{w})}{\partial w_{ij}} \right] = 2 \sum_{x, i \in R} \left(\left[b_{xi} + \sum_{k \in N(i; x)} w_{ik} (r_{xk} - b_{xk}) \right] - r_{xi} \right) (r_{xj} - b_{xj})
\]

for \(j \in \{N(i; x), \forall i, \forall x\} \)

else \(\frac{\partial J(\mathbf{w})}{\partial w_{ij}} = 0 \)

- **Note:** We fix movie \(i \), go over all \(r_{x_i} \), for every movie \(j \in N(i; x) \), we compute \(\frac{\partial J(\mathbf{w})}{\partial w_{ij}} \)

while \(|w_{new} - w_{old}| > \varepsilon \):

\[
\begin{align*}
w_{old} &= w_{new} \\
w_{new} &= w_{old} - \eta \cdot \nabla w_{old}
\end{align*}
\]
Interpolation Weights

- So far: $\hat{r}_{xi} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj})$
 - Weights w_{ij} derived based on their roles; **no use of an arbitrary similarity measure** ($w_{ij} \neq s_{ij}$)
 - Explicitly account for interrelationships among the neighboring movies

- Next: Latent factor model
 - Extract “regional” correlations
Performance of Various Methods

- Global average: 1.1296
- User average: 1.0651
- Movie average: 1.0533
- Netflix: 0.9514
- Basic Collaborative filtering: 0.94
- CF+Biases+learned weights: 0.91
- Grand Prize: 0.8563
Latent Factor Models (e.g., SVD)

The Color Purple
Sense and Sensibility
The Princess Diaries

Serious
Amadeus

Geared towards females

Braveheart
Ocean’s 11
The Lion King

Funny

Geared towards males

Lethal Weapon
Independence Day
Dumb and Dumber
"SVD" on Netflix data: \(R \approx Q \cdot P^T \)

For now let’s assume we can approximate the rating matrix \(R \) as a product of “thin” \(Q \cdot P^T \)

- \(R \) has missing entries but let’s ignore that for now!
 - Basically, we want the reconstruction error to be small on known ratings and we don’t care about the values on the missing ones.
How to estimate the missing rating of user x for item i?

$$\hat{r}_{xi} = q_i \cdot p_x$$

$$= \sum_f q_{if} \cdot p_{xf}$$

$q_i = \text{row } i \text{ of } Q$

$p_x = \text{column } x \text{ of } P^T$
Ratings as Products of Factors

How to estimate the missing rating of user x for item i?

$$\hat{r}_{xi} = q_i \cdot p_x$$

$$= \sum_f q_{if} \cdot p_{xf}$$

$q_i = \text{row } i \text{ of } Q$

$p_x = \text{column } x \text{ of } P^T$
Ratings as Products of Factors

- How to estimate the missing rating of user \(x \) for item \(i \)?

\[
\hat{r}_{xi} = q_i \cdot p_x = \sum_f q_{if} \cdot p_{xf}
\]

\(q_i \) = row \(i \) of \(Q \)

\(p_x \) = column \(x \) of \(P^T \)
Latent Factor Models

The Color Purple
Amadeus
The Lion King

The Princess Diaries

Serious
Geared towards females

Sense and Sensibility

Geared towards males

9/26/19
Jure Leskovec, Stanford CS246: Mining Massive Datasets
Latent Factor Models

Factor 1: Geared towards males vs. Geared towards females

Factor 2: Serious vs. Funny

The Color Purple
The Princess Diaries
The Lion King
Independence Day
Sense and Sensibility
Ocean’s 11
Dumb and Dumber
Lethal Weapon
Amadeus
Braveheart

9/26/19
Recap: SVD

- Remember SVD:
 - A: Input data matrix
 - U: Left singular vectors
 - V: Right singular vectors
 - Σ: Singular values

- So in our case:
 “SVD” on Netflix data: $R \approx Q \cdot P^T$
 $A = R, \quad Q = U, \quad P^T = \Sigma \cdot V^T$
 $\hat{r}_{xi} = q_i \cdot p_x$
We already know that SVD gives minimum reconstruction error (Sum of Squared Errors):

$$\min_{U, V, \Sigma} \sum_{ij \in A} (A_{ij} - [U\Sigma V^T]_{ij})^2$$

Note two things:

- **SSE** and **RMSE** are monotonically related:
 - $RMSE = \frac{1}{c} \sqrt{SSE}$
 - **Great news:** SVD is minimizing RMSE!

- **Complication:** The sum in SVD error term is over all entries (no-rating is interpreted as zero-rating).
 - But our R has missing entries!
Latent Factor Models

- SVD isn’t defined when entries are missing!
- Use specialized methods to find P, Q

\[
\min_{P,Q} \sum_{(i,x) \in R} \left(r_{xi} - q_i \cdot px \right)^2
\]
\[
\hat{r}_{xi} = q_i \cdot px
\]

- Note:
 - We don’t require cols of P, Q to be orthogonal/unit length
 - P, Q map users/movies to a latent space
 - This was the most popular model among Netflix contestants
Finding the Latent Factors
Our goal is to find P and Q such that:

$$\min_{P,Q} \sum_{(i,x) \in R} (r_{xi} - q_i \cdot p_x)^2$$

Latent Factor Models

- Users
- Items
- Factors
- $P^T Q$

9/26/19
Jure Leskovec, Stanford CS246: Mining Massive Datasets
Want to minimize SSE for unseen test data

Idea: Minimize SSE on **training data**

- Want large k (# of factors) to capture all the signals
- But, SSE on **test data** begins to rise for $k > 2$

This is a classical example of **overfitting**: With too much freedom (too many free parameters) the model starts fitting noise

- That is, the model fits too well the training data and is thus **not generalizing** well to unseen test data
Dealing with Missing Entries

- To solve overfitting we introduce regularization:
 - Allow rich model where there is sufficient data
 - Shrink aggressively where data is scarce

\[
\min_{P,Q} \sum_{\text{training}} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_x \|p_x\|^2 + \lambda_2 \sum_i \|q_i\|^2 \right]
\]

\(\lambda_1, \lambda_2 \ldots \) user set regularization parameters

Note: We do not care about the “raw” value of the objective function, but we care about \(P,Q\) that achieve the minimum of the objective.
The Effect of Regularization

<table>
<thead>
<tr>
<th>Serious</th>
<th>Funny</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Color Purple</td>
<td>(\text{Sense and Sensibility})</td>
</tr>
<tr>
<td>The Princess Diaries</td>
<td>The Lion King</td>
</tr>
<tr>
<td>Braveheart</td>
<td>Lethal Weapon</td>
</tr>
<tr>
<td>Geared towards males</td>
<td>Geared towards females</td>
</tr>
</tbody>
</table>

\[
\min_{P,Q} \sum_{i \in \text{training}} (r_{xi} - q_i p_x)^2 + \lambda \left[\sum_x \|p_x\|^2 + \sum_t \|q_t\|^2 \right]
\]

\[
\min_{\text{factors}} \text{“error”} + \lambda \text{“length”}
\]

9/26/19

Jure Leskovec, Stanford CS246: Mining Massive Datasets
The Effect of Regularization

The Color Purple
Sense and Sensibility
The Princess Diaries

The Lion King
The Lion King

Braveheart
Lethal Weapon
Ocean’s 11

Dumb and Dumber

\[
\min_{P,Q} \sum_{i} (r_{xi} - q_i p_x)^2 + \lambda \left[\sum_{x} \|p_x\|^2 + \sum_{l} \|q_l\|^2 \right]
\]

\[
\min_{\text{factors}} \text{“error”} + \lambda \text{“length”}
\]
The Effect of Regularization

```
min \sum_{\text{training}} (r_{xi} - q_i p_x)^2 + \lambda \left( \sum_x \|p_x\|^2 + \sum_i \|q_i\|^2 \right)

min_{\text{factors}} \text{“error”} + \lambda \text{“length”}
```
The Effect of Regularization

\[\min_{P,Q} \sum_{i \in \text{training}} (r_{xi} - q_i p_x)^2 + \lambda \left[\sum_x \|p_x\|^2 + \sum_l \|q_l\|^2 \right] \]

\[\min_{\text{factors}} \text{“error”} + \lambda \text{“length”} \]
Stochastic Gradient Descent

- Want to find matrices P and Q:
 \[
 \min_{P,Q} \sum_{(x,i) \in \text{training}} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_x \|p_x\|^2 + \lambda_2 \sum_i \|q_i\|^2 \right]
 \]

- **Gradient descent:**
 - Initialize P and Q (using SVD, pretend missing ratings are 0)
 - Do gradient descent:
 - $P \leftarrow P - \eta \cdot \nabla P$
 - $Q \leftarrow Q - \eta \cdot \nabla Q$
 - where ∇Q is gradient/derivative of matrix Q:
 \[
 \nabla Q = [\nabla q_{if}] \quad \text{and} \quad \nabla q_{if} = \sum_{x} -2(r_{xi} - q_i p_x) p_{xf} + 2\lambda_2 q_{if}
 \]
 - Here q_{if} is entry f of row q_i of matrix Q
 - **Observation:** Computing gradients is slow!
Gradient Descent (GD) vs. Stochastic GD

Observation: \(\nabla Q = [\nabla q_{if}] \) where

\[
\nabla q_{if} = \sum_{x,i} -2(r_{xi} - q_{if}p_{xf})p_{xf} + 2\lambda q_{if} = \sum_{x,i} \nabla Q(r_{xi})
\]

- Here \(q_{if} \) is entry \(f \) of row \(q_i \) of matrix \(Q \)

\[Q \leftarrow Q - \eta \nabla Q = Q - \eta \left[\sum_{x,i} \nabla Q(r_{xi}) \right] \]

Idea: Instead of evaluating gradient over all ratings evaluate it for each individual rating and make a step

- **GD:** \(Q \leftarrow Q - \eta \left[\sum r_{xi} \nabla Q(r_{xi}) \right] \)
- **SGD:** \(Q \leftarrow Q - \mu \nabla Q(r_{xi}) \)

Faster convergence!

- Need more steps but each step is computed much faster
Convergence of GD vs. SGD

- **GD** improves the value of the objective function at every step.
- **SGD** improves the value but in a "noisy" way.
- **GD** takes fewer steps to converge but each step takes much longer to compute.
- In practice, **SGD** is much faster!
Stochastic Gradient Descent

- **Stochastic gradient descent:**
 - Initialize P and Q (using SVD, pretend missing ratings are 0)
 - Then iterate over the ratings (multiple times if necessary) and update factors:

 For each r_{xi}:
 - $\varepsilon_{xi} = 2(r_{xi} - q_i \cdot p_x)$ (derivative of the “error”)
 - $q_i \leftarrow q_i + \mu_1 (\varepsilon_{xi} p_x - 2\lambda_2 q_i)$ (update equation)
 - $p_x \leftarrow p_x + \mu_2 (\varepsilon_{xi} q_i - 2\lambda_1 p_x)$ (update equation)

- **Two For loops:**
 - For until convergence:
 - For each r_{xi}
 - Compute gradient, do a “step” as above

 μ … learning rate
Extending Latent Factor Model to Include Biases
Modeling Biases and Interactions

User bias
- μ = overall mean rating
- $b_x = \text{bias of user } x$
- $b_i = \text{bias of movie } i$

Movie bias

User-movie interaction
- Characterizes the matching between users and movies
- Attracts most research in the field
- Benefits from algorithmic and mathematical innovations

Baseline predictor
- Separates users and movies
- Benefits from insights into user’s behavior
- Among the main practical contributions of the competition
We have expectations on the rating by user x of movie i, even without estimating x’s attitude towards movies like i

- Rating scale of user x
- Values of other ratings user gave recently (day-specific mood, anchoring, multi-user accounts)
- (Recent) popularity of movie i
- Selection bias; related to number of ratings user gave on the same day (“frequency”)
Putting It All Together

\[r_{xi} = \mu + b_x + b_i + q_i \cdot p_x \]

- **Overall mean rating**
- **Bias for user \(x\)**
- **Bias for movie \(i\)**
- **User-Movie interaction**

Example:

- **Mean rating:** \(\mu = 3.7\)
- **You are a critical reviewer:** your mean rating is 1 star lower than the mean: \(b_x = -1\)
- **Star Wars gets a mean rating of 0.5 higher than average movie:** \(b_i = +0.5\)
- **Predicted rating for you on Star Wars:**
 \[= 3.7 - 1 + 0.5 = 3.2 \]
Fitting the New Model

- **Solve:**

\[
\min_{Q,P} \sum_{(x,i) \in R} \left(r_{xi} - (\mu + b_x + b_i + q_i p_x) \right)^2
\]

goodness of fit

\[
+ \left(\lambda_1 \sum_i \| q_i \|^2 + \lambda_2 \sum_x \| p_x \|^2 + \lambda_3 \sum_x \| b_x \|^2 + \lambda_4 \sum_i \| b_i \|^2 \right)
\]

\(\lambda \) is selected via grid-search on a validation set

- **Stochastic gradient decent to find parameters**

 - **Note:** Both biases \(b_x, b_i \) as well as interactions \(q_i, p_x \) are treated as parameters (and we learn them)
Performance of Various Methods

- Global average: 1.1296
- User average: 1.0651
- Movie average: 1.0533
- Netflix: 0.9514

Basic Collaborative filtering: 0.94
Collaborative filtering++: 0.91
Latent factors: 0.90
Latent factors+Biases: 0.89

Grand Prize: 0.8563
The Netflix Challenge: 2006-09
Temporal Biases Of Users

- Sudden rise in the average movie rating (early 2004)
 - Improvements in Netflix
 - GUI improvements
 - Meaning of rating changed
- Movie age
 - Users prefer new movies without any reasons
 - Older movies are just inherently better than newer ones

[Y. Koren, Collaborative filtering with temporal dynamics, KDD '09]
Temporal Biases & Factors

- **Original model:**
 \[r_{xi} = \mu + b_x + b_i + q_i \cdot p_x \]

- **Add time dependence to biases:**
 \[r_{xi} = \mu + b_x(t) + b_i(t) + q_i \cdot p_x \]
 - Make parameters \(b_x \) and \(b_i \) to depend on time
 - (1) Parameterize time-dependence by linear trends
 - (2) Each bin corresponds to 10 consecutive weeks
 \[b_i(t) = b_i + b_{i,\text{Bin}(t)} \]

- **Add temporal dependence to factors**
 - \(p_x(t) \) ... user preference vector on day \(t \)

Y. Koren, Collaborative filtering with temporal dynamics, KDD ’09
Performance of Various Methods

- Global average: 1.1296
- User average: 1.0651
- Movie average: 1.0533
- Netflix: 0.9514

Basic Collaborative filtering: 0.94
Collaborative filtering++: 0.91
Latent factors: 0.90
Latent factors+Biases: 0.89
Latent factors+Biases+Time: 0.876

Grand Prize: 0.8563

Still no prize! 😞
Getting desperate.
Try a “kitchen sink” approach!
The big picture
Solution of BellKor's Pragmatic Chaos

All developed CF models
- BRISMF
- MF1
- NSVDD
- Movie KNN
- V
- KNN+time
- NSVD1
- SVD-AUF
- Movie KNN
- User KNN
- Classif.
- ModeKNN
- 1...5
- Asym.
- 1/2/3
- SBRAMF
- SVD-Time
- RBM
- day
- Split RBM
- E
- FRBM
- BK3
- 3K4
- 3K1
- BK2
- BK5-SVD++
- GTE
- Integrated M.
- RBM
- MF2
- DRBM
- SVD++
- ISVD2
- SVDNN

Latent User and Movie Features

Probe Blending

Probe Blending

approx. 500 predictors

Linear Blend 10.09% improvement

200 blends

30 blends
Standing on June 26th 2009

June 26th submission triggers 30-day “last call”
- **Ensemble team formed**
 - Group of other teams on leaderboard forms a new team
 - Relies on combining their models
 - Quickly also get a qualifying score over 10%

- **BellKor**
 - Continue to get small improvements in their scores
 - Realize they are in direct competition with team **Ensemble**

- **Strategy**
 - Both teams carefully monitoring the leader board
 - Only sure way to check for improvement is to submit a set of predictions
 - This alerts the other team of your latest score
24 Hours from the Deadline

- **Submissions limited to 1 a day**
 - Only 1 final submission could be made in the last 24h

- **24 hours before deadline...**
 - *BellKor* team member in Austria notices (by chance) that *Ensemble* posts a score that is slightly better than *BellKor’s*

- **Frantic last 24 hours for both teams**
 - Much computer time on final optimization
 - Carefully calibrated to end about an hour before deadline

- **Final submissions**
 - *BellKor* submits a little early (on purpose), 40 mins before deadline
 - *Ensemble* submits their final entry 20 mins later
 -and everyone waits....
Leaderboard

<table>
<thead>
<tr>
<th>Rank</th>
<th>Team Name</th>
<th>Best Test Score</th>
<th>% Improvement</th>
<th>Best Submit Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BellKor's Pragmatic Chaos</td>
<td>0.8557</td>
<td>10.06</td>
<td>2009-07-26 18:18:28</td>
</tr>
<tr>
<td>2</td>
<td>The Ensemble</td>
<td>0.8667</td>
<td>10.06</td>
<td>2009-07-26 18:38:22</td>
</tr>
<tr>
<td>3</td>
<td>Grand Prize Team</td>
<td>0.8667</td>
<td>10.06</td>
<td>2009-07-26 18:38:22</td>
</tr>
<tr>
<td>4</td>
<td>Opera Solutions and Vandelay United</td>
<td>0.8688</td>
<td>9.84</td>
<td>2009-07-10 01:12:31</td>
</tr>
<tr>
<td>5</td>
<td>Vandelay Industries</td>
<td>0.8691</td>
<td>9.81</td>
<td>2009-07-10 00:32:20</td>
</tr>
<tr>
<td>6</td>
<td>PragmaticTheory</td>
<td>0.8694</td>
<td>9.77</td>
<td>2009-06-24 12:06:56</td>
</tr>
<tr>
<td>7</td>
<td>BellKor in BigChaos</td>
<td>0.8601</td>
<td>9.70</td>
<td>2009-05-13 08:14:09</td>
</tr>
<tr>
<td>8</td>
<td>Dace</td>
<td>0.8612</td>
<td>9.59</td>
<td>2009-07-24 17:18:43</td>
</tr>
<tr>
<td>9</td>
<td>Feeds2</td>
<td>0.8622</td>
<td>9.48</td>
<td>2009-07-12 13:11:51</td>
</tr>
<tr>
<td>10</td>
<td>BigChaos</td>
<td>0.8623</td>
<td>9.47</td>
<td>2009-07-24 00:34:07</td>
</tr>
<tr>
<td>11</td>
<td>Opera Solutions</td>
<td>0.8623</td>
<td>9.47</td>
<td>2009-07-26 17:19:11</td>
</tr>
<tr>
<td>12</td>
<td>BellKor</td>
<td>0.8624</td>
<td>9.46</td>
<td>2009-07-26 17:19:11</td>
</tr>
</tbody>
</table>

Progress Prize 2008 - RMSE = 0.8627 - Winning Team: BellKor in BigChaos

<table>
<thead>
<tr>
<th>Rank</th>
<th>User Name</th>
<th>Best Test Score</th>
<th>% Improvement</th>
<th>Best Submit Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>xiangliang</td>
<td>0.8642</td>
<td>9.27</td>
<td>2009-07-15 14:53:22</td>
</tr>
<tr>
<td>14</td>
<td>Gravity</td>
<td>0.8643</td>
<td>9.26</td>
<td>2009-04-22 18:31:32</td>
</tr>
<tr>
<td>15</td>
<td>Cos</td>
<td>0.8651</td>
<td>9.18</td>
<td>2009-06-21 19:24:53</td>
</tr>
<tr>
<td>16</td>
<td>Invisible Ideas</td>
<td>0.8633</td>
<td>9.15</td>
<td>2009-07-15 15:53:04</td>
</tr>
<tr>
<td>17</td>
<td>Just a guy in a garage</td>
<td>0.8662</td>
<td>9.06</td>
<td>2009-05-24 10:02:54</td>
</tr>
<tr>
<td>18</td>
<td>J Dennis Su</td>
<td>0.8666</td>
<td>9.02</td>
<td>2009-03-07 17:16:17</td>
</tr>
<tr>
<td>19</td>
<td>Craig Carmichael</td>
<td>0.8666</td>
<td>9.02</td>
<td>2009-07-25 16:00:34</td>
</tr>
<tr>
<td>20</td>
<td>acmehill</td>
<td>0.8668</td>
<td>9.00</td>
<td>2009-03-21 16:20:50</td>
</tr>
</tbody>
</table>
Million $ Awarded Sept 21st 2009
What’s the moral of the story?

Submit early! 😊
Acknowledgments

- Some slides and plots borrowed from Yehuda Koren, Robert Bell and Padhraic Smyth

 Further reading:

 - Y. Koren, Collaborative filtering with temporal dynamics, KDD ’09

