A General Perspective on Graph Neural Networks

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
Mina Ghashami, Amazon
http://cs246.stanford.edu
Modern deep learning toolbox is designed for simple sequences & grids.
But networks are far more complex!

- Arbitrary size and complex topological structure (i.e., no spatial locality like grids)
- No fixed node ordering or reference point
- Often dynamic and have multimodal features
Graph Neural Networks
Join adjacency matrix and features
Feed them into a deep neural net:

Issues with this idea:
- \(O(|V|)\) parameters
- Not applicable to graphs of different sizes
- Sensitive to node ordering
Real-World Graphs

But our graphs look like this:

- There is no fixed notion of locality or sliding window on the graph
- Graph is permutation invariant

Credit: Stanford CS224W
Single Convolutional neural network (CNN) layer with 3x3 filter:

Idea: transform information at the neighbors and combine it:
- Transform “messages” h_i from neighbors: $W_i h_i$
- Add them up: $\sum_i W_i h_i$

Credit: Stanford CS224W
Idea: Node’s neighborhood defines a computation graph

Determine node computation graph
Propagate and transform information

Learn how to propagate information across the graph to compute node features

Credit: Stanford CS224W
Key idea: Generate node embeddings based on local network neighborhoods
Idea: Aggregate Neighbors

- **Intuition:** Nodes aggregate information from their neighbors using neural networks.

![Input Graph](image)

![Neural Networks Diagram](image)

Credit: Stanford CS224W
Intuition: Network neighborhood defines a computation graph

Every node defines a computation graph based on its neighborhood!
Deep Model: Many Layers

- Model can be of arbitrary depth:
 - Nodes have embeddings at each layer
 - Layer-0 embedding of node u is its input feature, x_u
 - Layer-k embedding gets information from nodes that are K hops away
Neighborhood aggregation: Key distinctions are in how different approaches aggregate information across the layers.

What is in the box?
Basic approach: Average information from neighbors and apply a neural network

(1) average messages from neighbors

(2) apply neural network
Assume we have a graph G:

- V is the vertex set
- A is the adjacency matrix (assume binary)
- $X \in \mathbb{R}^{m \times |V|}$ is a matrix of node features
- ν: a node in V; $N(\nu)$: the set of neighbors of ν.

Node features:

- Social networks: User profile, User image
- Biological networks: Gene expression profiles, gene functional information

When there is no node feature in the graph dataset:

- Indicator vectors (one-hot encoding of a node)
- Vector of constant 1: $[1, 1, \ldots, 1]$
Basic approach: Average neighbor messages and apply a neural network

\[h_v^{(l+1)} = \sigma(W_l \sum_{u \in N(v)} \frac{h_u^{(l)}}{|N(v)|}) + B_l h_v^{(l)}, \forall l \in \{0, ..., L - 1\} \]

Initial 0-th layer embeddings are equal to node features

Embedding after L layers of neighborhood aggregation

Total number of layers

Average of neighbor's previous layer embeddings

Non-linearity (e.g., ReLU)

Credit: Stanford CS224W
How do we train the model to generate embeddings?

Need to define a loss function on the embeddings

Credit: Stanford CS224W
We can feed these embeddings into any loss function and run SGD to train the weight parameters:

\[h_v^{(0)} = x_v \]
\[h_v^{(l+1)} = \sigma \left(W_l \sum_{u \in N(v)} \frac{h_u^{(l)}}{|N(v)|} + B_l h_v^{(l)} \right), \forall l \in \{0, \ldots, L - 1\} \]
\[z_v = h_v^{(L)} \]

Trainable weight matrices (i.e., what we learn)

Final node embedding

We can feed these embeddings into any loss function and run SGD to train the weight parameters

\(h_v^l \): the hidden representation of node \(v \) at layer \(l \)
- \(W_k \): weight matrix for neighborhood aggregation
- \(B_k \): weight matrix for transforming hidden vector of self

Credit: Stanford CS224W
Node embedding z_v is a function of input graph

Supervised setting: we want to minimize the loss \mathcal{L} (see also slide 15):

$$\min_\Theta \mathcal{L}(y, f(z_v))$$

- y: node label
- \mathcal{L} could be L2 if y is real number, or cross entropy if y is categorical
Directly train the model for a supervised task (e.g., node classification)

Safe or toxic drug?

Safe or toxic drug?

E.g., a drug-drug interaction network
Directly train the model for a supervised task (e.g., node classification)

- Use cross entropy loss (slide 16)

\[
\mathcal{L} = \sum_{v \in V} y_v \log(\sigma(z_v^T \theta)) + (1 - y_v) \log(1 - \sigma(z_v^T \theta))
\]
Designing a GNN

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu
A General GNN Framework (1)

GNN Layer = Message + Aggregation
• Different instantiations under this perspective
• GCN, GraphSAGE, GAT, ...

GNN Layer 1
(1) Message
(2) Aggregation
A General GNN Framework (2)

Connect GNN layers into a GNN
- Stack layers sequentially
- Ways of adding skip connections

(3) Layer connectivity

INPUT GRAPH

TARGET NODE

GNN Layer 1

GNN Layer 2
A General GNN Framework (3)

Idea: Raw input graph ≠ computational graph
- Graph feature augmentation
- Graph structure augmentation

(4) Graph augmentation
How do we train a GNN

- Supervised/Unsupervised objectives
- Node/Edge/Graph level objectives
A General GNN Framework (5)

(5) Learning objective

(2) Aggregation

(1) Message

(3) Layer connectivity

GNN Layer 1

GNN Layer 2

(4) Graph augmentation
A Single Layer of a GNN
A GNN Layer

GNN Layer = Message + Aggregation
- Different instantiations under this perspective
- GCN, GraphSAGE, GAT, ...

(1) Message
(2) Aggregation

Jure Leskovec & Mina Ghashami. *Design Space of Graph Neural Networks*, NeurIPS 2020
A Single GNN Layer

- Idea of a GNN Layer:
 - Compress a set of vectors into a single vector
 - Two step process:
 - (1) Message
 - (2) Aggregation

Output node embedding $h_v^{(l)}$

Input node embedding $h_v^{(l-1)}$, $h_{u \in N(v)}^{(l-1)}$
(from node itself + neighboring nodes)
(1) Message computation

- **Message function:** \(m_u^{(l)} = \text{MSG}^{(l)}(h_u^{(l-1)}) \)
 - **Intuition:** Each node will create a message, which will be sent to other nodes later
 - **Example:** A Linear layer \(m_u^{(l)} = W^{(l)}h_u^{(l-1)} \)
 - Multiply node features with weight matrix \(W^{(l)} \)

(2) Aggregation

Jure Leskovec & Mina Ghashami, Stanford University
(2) Aggregation

Intuition: Each node will aggregate the messages from node \(v \)'s neighbors

\[
h_v^{(l)} = \text{AGG}^{(l)} \left(\left\{ m_u^{(l)}, u \in N(v) \right\} \right)
\]

Example: Sum(·), Mean(·) or Max(·) aggregator

\[
h_v^{(l)} = \text{Sum}(\{ m_u^{(l)}, u \in N(v) \})
\]
Message Aggregation: Issue

- **Issue:** Information from node v itself **could get lost**
 - Computation of $h_v^{(l)}$ does not directly depend on $h_v^{(l-1)}$

- **Solution:** Include $h_v^{(l-1)}$ when computing $h_v^{(l)}$
 - **(1) Message:** compute message from node v itself
 - Usually, a **different message computation** will be performed

 \[
 m_u^{(l)} = W^{(l)}h_u^{(l-1)} \quad \quad m_v^{(l)} = B^{(l)}h_v^{(l-1)}
 \]

 - **(2) Aggregation:** After aggregating from neighbors, we can aggregate the message from node v itself
 - Via **concatenation or summation**

Then aggregate from node itself

\[
h_v^{(l)} = \text{CONCAT} \left(\text{AGG} \left(\{ m_u^{(l)} , u \in N(v) \} \right) , m_v^{(l)} \right)
\]

First aggregate from neighbors
A Single GNN Layer

- **Putting things together:**
 - (1) **Message:** each node computes a message
 \[
 m_u^{(l)} = MSG^{(l)} \left(h_u^{(l-1)} \right), \quad u \in \{N(v) \cup v\}
 \]
 - (2) **Aggregation:** aggregate messages from neighbors
 \[
 h_v^{(l)} = AGG^{(l)} \left(\{m_u^{(l)}, u \in N(v)\}, m_v^{(l)} \right)
 \]
 - **Nonlinearity (activation):** Adds expressiveness
 - Often written as \(\sigma(\cdot):\) ReLU(\(\cdot\)), Sigmoid(\(\cdot\)), ...
 - Can be added to message or aggregation
Classical GNN Layers: GCN (1)

(1) Graph Convolutional Networks (GCN)

\[h^{(l)}_v = \sigma \left(W^{(l)} \sum_{u \in N(v)} \frac{h^{(l-1)}_u}{|N(v)|} \right) \]

How to write this as Message + Aggregation?

\[h^{(l)}_v = \sigma \left(\sum_{u \in N(v)} W^{(l)} \frac{h^{(l-1)}_u}{|N(v)|} \right) \]

Message

Aggregation

Jure Leskovec & Mina Ghashami, Stanford University
Classical GNN Layers: GCN (2)

(1) Graph Convolutional Networks (GCN)

\[h^{(l)}_v = \sigma \left(\sum_{u \in N(v)} W^{(l)} \frac{h^{(l-1)}_u}{|N(v)|} \right) \]

- Message:
 - Each Neighbor: \(m^{(l)}_u = \frac{1}{|N(v)|} W^{(l)} h^{(l-1)}_u \)

- Aggregation:
 - Sum over messages from neighbors, then apply activation
 \[h^{(l)}_v = \sigma \left(\text{Sum} \left(\left\{ m^{(l)}_u, u \in N(v) \right\} \right) \right) \]

Normalized by node degree
(In the GCN paper they use a slightly different normalization)
(2) GraphSAGE

\[h_v^{(l)} = \sigma \left(W^{(l)} \cdot \text{CONCAT} \left(h_v^{(l-1)}, \text{AGG} \left(\{ h_u^{(l-1)} , \forall u \in N(v) \} \right) \right) \right) \]

- How to write this as Message + Aggregation?

 - **Message** is computed within the \(\text{AGG}(\cdot) \)

 - **Two-stage aggregation**

 - **Stage 1:** Aggregate from node neighbors
 \[h_{N(v)}^{(l)} \leftarrow \text{AGG} \left(\{ h_u^{(l-1)} , \forall u \in N(v) \} \right) \]

 - **Stage 2:** Further aggregate over the node itself
 \[h_v^{(l)} \leftarrow \sigma \left(W^{(l)} \cdot \text{CONCAT}(h_v^{(l-1)}, h_{N(v)}^{(l)}) \right) \]
GraphSAGE Neighbor Aggregation

- **Mean**: Take a weighted average of neighbors

\[
AGG = \frac{\sum_{u \in N(v)} h_u^{(l-1)}}{|N(v)|}
\]

- **Pool**: Transform neighbor vectors and apply symmetric vector function Mean(·) or Max(·)

\[
AGG = \text{Mean}\left(\{\text{MLP}(h_u^{(l-1)}), \forall u \in N(v)\}\right)
\]
GraphSAGE: L2 Normalization

\(\ell_2 \) Normalization:

- **Optional:** Apply \(\ell_2 \) normalization to \(h_v^{(l)} \) at every layer

\[
h_v^{(l)} \leftarrow \frac{h_v^{(l)}}{\|h_v^{(l)}\|_2} \quad \forall v \in V \text{ where } \|u\|_2 = \sqrt{\sum_i u_i^2} \text{ (}\ell_2\text{-norm)}
\]

- Without \(\ell_2 \) normalization, the embedding vectors have different scales (\(\ell_2 \)-norm) for vectors
- In some cases (not always), normalization of embedding results in performance improvement
- After \(\ell_2 \) normalization, all vectors will have the same \(\ell_2 \)-norm
(3) Graph Attention Networks

\[h^{(l)}_v = \sigma \left(\sum_{u \in N(v)} \alpha_{vu} W^{(l)} h^{(l-1)}_u \right) \]

Attention weights

In GCN / GraphSAGE

- \(\alpha_{vu} = \frac{1}{|N(v)|} \) is the \textbf{weighting factor (importance)} of node \(u \)'s message to node \(v \)
- \(\Rightarrow \alpha_{vu} \) is defined \textbf{explicitly} based on the structural properties of the graph (node degree)
- \(\Rightarrow \) All neighbors \(u \in N(v) \) are equally important to node \(v \)
Can we do better than simple neighborhood aggregation?

Can we let weighting factors α_{vu} to be learned?

Goal: Specify arbitrary importance to different neighbors of each node in the graph

Idea: Compute embedding $h_v^{(l)}$ of each node in the graph following an attention strategy:
- Nodes attend over their neighborhoods’ message
- Implicitly specifying different weights to different nodes in a neighborhood
Attention Mechanism (1)

- Let α_{vu} be computed as a byproduct of an attention mechanism a:
 - (1) Let a compute **attention coefficients** e_{vu} across pairs of nodes u, v based on their messages:
 $$ e_{vu} = a(W^{(l)}h_u^{(l-1)}, W^{(l)}h_v^{(l-1)}) $$
 - e_{vu} indicates the importance of u’s message to node v

$$
\begin{align*}
 e_{AB} &= a(W^{(l)}h_A^{(l-1)}, W^{(l)}h_B^{(l-1)})
\end{align*}
$$

Jure Leskovec & Mina Ghashami, Stanford University
Attention Mechanism (2)

- **Normalize** e_{vu} into the **final attention weight** α_{vu}
 - Use the **softmax** function, so that $\sum_{u \in N(v)} \alpha_{vu} = 1$:
 $$
 \alpha_{vu} = \frac{\exp(e_{vu})}{\sum_{k \in N(v)} \exp(e_{vk})}
 $$

- **Weighted sum** based on the **final attention weight** α_{vu}
 $$
 h_v^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} W^{(l)} h_u^{(l-1)})
 $$

Weighted sum using α_{AB}, α_{AC}, α_{AD}:
$$
 h_A^{(l)} = \sigma(\alpha_{AB} W^{(l)} h_B^{(l-1)} + \alpha_{AC} W^{(l)} h_C^{(l-1)} + \alpha_{AD} W^{(l)} h_D^{(l-1)})
 $$

Jure Leskovec & Mina Ghashami, Stanford University
What is the form of attention mechanism \(a \)?

- The approach is agnostic to the choice of \(a \)
 - E.g., use a simple single-layer neural network
 - \(a \) have trainable parameters (weights in the Linear layer)

\[
e_{AB} = a \left(W^{(l)} h_A^{(l-1)}, W^{(l)} h_B^{(l-1)} \right) \\
= \text{Linear} \left(\text{Concat} \left(W^{(l)} h_A^{(l-1)}, W^{(l)} h_B^{(l-1)} \right) \right)
\]

- Parameters of \(a \) are trained jointly:
 - Learn the parameters together with weight matrices (i.e., other parameter of the neural net \(W^{(l)} \)) in an end-to-end fashion
Multi-head attention: Stabilizes the learning process of attention mechanism

Create multiple attention scores (each replica with a different set of parameters):

\[
\begin{align*}
 h_v^{(l)}[1] &= \sigma \left(\sum_{u \in N(v)} \alpha_{vu}^1 W^{(l)} h_u^{(l-1)} \right) \\
 h_v^{(l)}[2] &= \sigma \left(\sum_{u \in N(v)} \alpha_{vu}^2 W^{(l)} h_u^{(l-1)} \right) \\
 h_v^{(l)}[3] &= \sigma \left(\sum_{u \in N(v)} \alpha_{vu}^3 W^{(l)} h_u^{(l-1)} \right)
\end{align*}
\]

Outputs are aggregated:

- By concatenation or summation

\[
 h_v^{(l)} = \text{AGG}(h_v^{(l)}[1], h_v^{(l)}[2], h_v^{(l)}[3])
\]
Benefits of Attention Mechanism

- **Key benefit:** Allows for (implicitly) specifying different importance values (α_{vu}) to different neighbors

- **Computationally efficient:**
 - Computation of attentional coefficients can be parallelized across all edges of the graph
 - Aggregation may be parallelized across all nodes

- **Storage efficient:**
 - Sparse matrix operations do not require more than $O(V + E)$ entries to be stored
 - **Fixed** number of parameters, irrespective of graph size

- **Localized:**
 - Only attends over local network neighborhoods

- **Inductive capability:**
 - It is a shared edge-wise mechanism
 - It does not depend on the global graph structure
Apply activation to i-th dimension of embedding x

- **Rectified linear unit (ReLU)**
 \[
 \text{ReLU}(x_i) = \max(x_i, 0)
 \]
 - Most commonly used

- **Sigmoid**
 \[
 \sigma(x_i) = \frac{1}{1 + e^{-x_i}}
 \]
 - Used only when you want to restrict the range of your embeddings

- **Parametric ReLU**
 \[
 \text{PReLU}(x_i) = \max(x_i, 0) + a_i \min(x_i, 0)
 \]
 - a_i is a trainable parameter
 - Empirically performs better than ReLU
Graph Manipulation in GNNs
General GNN Framework

Idea: Raw input graph ≠ computational graph

• Graph feature augmentation
• Graph structure manipulation

(4) Graph manipulation
Why Manipulate Graphs

Our assumption so far has been
- Raw input graph = computational graph

Reasons for breaking this assumption
- Feature level:
 - The input graph lacks features → feature augmentation
- Structure level:
 - The graph is too sparse → inefficient message passing
 - The graph is too dense → message passing is too costly
 - The graph is too large → cannot fit the computational graph into a GPU
- It’s just unlikely that the input graph happens to be the optimal computation graph for embeddings
Graph Manipulation Approaches

- **Graph Feature manipulation**
 - The input graph lacks features \rightarrow feature augmentation

- **Graph Structure manipulation**
 - The graph is too sparse \rightarrow Add virtual nodes / edges
 - The graph is too dense \rightarrow Sample neighbors when doing message passing
 - The graph is too large \rightarrow Sample subgraphs to compute embeddings
 - Will cover later in lecture: Scaling up GNNs
Why do we need feature augmentation?

- **(1) Input graph does not have node features**
 - This is common when we only have the adj. matrix
- **Standard approaches:**
- **a) Assign constant values to nodes**
Why do we need feature augmentation?

- **(1) Input graph does not have node features**
 - This is common when we only have the adj. matrix

- **Standard approaches:**
 - b) Assign unique IDs to nodes
 - These IDs are converted into **one-hot vectors**

Diagram:

- **INPUT GRAPH**
 - Nodes labeled A, B, C, D, E, F
 - Edges connecting the nodes

- **Example:**
 - Node with ID = 5
 - One-hot vector:

 \[
 [0, 0, 0, 0, 1, 0] \]

- **Total number of IDs = 6**

Jure Leskovec & Mina Ghashami, Stanford University
Feature Augmentation on Graphs

- **Feature augmentation: constant vs. one-hot**

<table>
<thead>
<tr>
<th></th>
<th>Constant node feature</th>
<th>One-hot node feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expressive power</td>
<td>Medium. All the nodes are identical, but GNN can still learn from the graph structure</td>
<td>High. Each node has a unique ID, so node-specific information can be stored</td>
</tr>
<tr>
<td>Inductive learning</td>
<td>High. Simple to generalize to new nodes: we assign constant feature to them, then apply our GNN</td>
<td>Low. Cannot generalize to new nodes: new nodes introduce new IDs, GNN doesn’t know how to embed unseen IDs</td>
</tr>
<tr>
<td>Computational cost</td>
<td>Low. Only 1 dimensional feature</td>
<td>High. $O(</td>
</tr>
<tr>
<td>Use cases</td>
<td>Any graph, inductive settings (generalize to new nodes)</td>
<td>Small graph, transductive settings (no new nodes)</td>
</tr>
</tbody>
</table>
Why do we need feature augmentation?

- (2) Certain features can help GNN learning
- Other commonly used augmented features:
 - Node degree
 - PageRank
 - Clustering coefficient
 - ...
- Any useful graph statistics can be used!
Motivation: Augment sparse graphs

(1) Add virtual edges

- Common approach: Connect 2-hop neighbors via virtual edges
- Intuition: Instead of using adj. matrix A for GNN computation, use $A + A^2$

Use cases: Bipartite graphs

- Author-to-papers (they authored)
- 2-hop virtual edges make an author-author collaboration graph
Add Virtual Nodes / Edges

- **Motivation:** Augment sparse graphs
- **(2) Add virtual nodes**
 - The virtual node will connect to all the nodes in the graph
 - Suppose in a sparse graph, two nodes have shortest path distance of 10
 - After adding the virtual node, all the nodes will have a distance of 2
 - Node A – Virtual node – Node B
 - **Benefits:** Greatly improves message passing in sparse graphs
- Previously:
 - All the nodes are used for message passing

- New idea: (Randomly) sample a node’s neighborhood for message passing
For example, we can randomly choose 2 neighbors to pass messages

- Only nodes B and D will pass message to A
Next time when we compute the embeddings, we can sample different neighbors

- Only nodes C and D will pass message to A
In expectation, we can get embeddings similar to the case where all the neighbors are used

- **Benefits**: greatly reduce computational cost
- And in practice it works great!
Recap: A general perspective for GNNs

- GNN Layer:
 - Transformation + Aggregation
 - Classic GNN layers: GCN, GraphSAGE, GAT

- Layer connectivity:
 - Deciding number of layers
 - Skip connections

- Graph Manipulation:
 - Feature augmentation
 - Structure manipulation