Graph Representation
Learning

Example: Link Prediction

SR
>
? Machine V4
Learning

Machine Learning in Networks

? ?
o
. ®, o ®
>
. Vach
- Leaa(;n:gg ‘
O o O

Node classification

Example: Node Classification

Pl e®’e
® ° : «* * eo®s o
a2 P) ORYD eCLON3
» K3
.PPP1‘R1GB. - ol
BCL11B 3
¢ © oo’y
° . NLGN4X 4 0 00 R
° a2 Hrszm [AR
o. A wrz',
e DRD¢ =5
ou e n® e
L] n ° o ..E A
: y ('..] . e ®RGS4. e
a SS' I I I e culs YP2681 2 R ” .
A W 4 3
" oo ge 2 %% 0% %7 Rone Discr®
= oBriNzA 8. @iel @i 0l oN* i
. . 2 ‘GP!:&A‘:)‘;D.3 .FES - =.o. ° oe®
LE N "5 s A ° X o Y 2 Mp‘ps
oZNFgOsA S a% | PPPICC 2, & . @ s "
K BONF S e Mo s ae NRGTee STAK
« c " CHRNATg o 0 N seee N SIS
] . L] rK)T.CHd .EPe\;R‘Kz ®.DCCAGE & e, » X
. o A% c&n“ SATB2 : DINBP1
; ® o » o A PTGIS | SN a
i CN‘N o ; x ;AKS # PRKD1 e o) *e oo COMT
B -s'gm AIPRAZE @A AKTS o ;puo§p:'3 e %o oL
il 4 g A e LA SNapo1_ @
7 S i1 SECEAs . 2 % .GR.MJ @ A 4
. ! ° B e @ %
Ko 74 CACNAIC L NAB2e i 2
: A
MANAS PRRG2 ; 7k A s
. 3 * CN
S ., TCF20 - ADBRA) A
2 > ,:-. DAOA A l'gw o Ayt .
MTHFR q P A . o
GIGYF2 " sMG6 At S\o2
© o, A L % — gy
. Yt ‘ e b2 W y .
Ch ‘e CACNAT1I s .
e o Sae ® A o JRN Ao'e
. ZNF536
RERE NFATC3 o®, Sl ‘
% i ® %rupre A .
- KDM2B o4l ® TMTCH A e >
= v A pr < A B » °
L N o ® . e P+ »
LR

CSMD1 o ®

e A I"RODH.
SOX2-07

A o o .

£
cHrRNAS Chnmz
“ o A °

L]
CHRNAS . o
.
@ * >
. GALNT10
A L]
@ e
o n
IGSF9B Cenpm
A A
- L] ®
e
.
TSNARE1 a
A MIR137HG
<« L A s
o @
IMMP2L
J Aborth
L J ° A

3 ° °
Cl1or31 zpppca
A -

C100rf32
o Ao

vwi
A

Image from: Ganapathiraju et al. 2016. Schizophrenia interactome with 504 novel

protein—protein interactions. Nature.

Jure Leskovec, Stanford C246: Mining Massive Datasets

https://www.nature.com/articles/npjschz201612?WT.feed_name=subjects_neuroscience
https://www.nature.com/articles/npjschz201612?WT.feed_name=subjects_neuroscience

Machine Learning Lifecycle

(Supervised) Machine Learning Lifecycle
requires feature engineering every
single time!

Raw Structured Leaming
Data Data Algorithm

t Automatically Downstream
EngMe®™g learn the features task

Jure Leskovec, Stanford C246: Mining Massive Datasets

Model

Feature Learning in Graphs

Goal: Efficient task-independent
feature learning for machine learning

in networks!
node vec
u >
. d
fru—->R N - Y
]Rd

Feature representation,
embedding

Why network embedding?

Task: We map each node in a network to a
point in a low-dimensional space

Distributed representation for nodes

Similarity of embedding between nodes indicates
their network similarity

Encode network information and generate node
representation

Latent Dimensions _
e Anomaly Detection

e Attribute Prediction
p >e Clustering
e Link Prediction

Adjacency Matrix

|v] d << |v]|

Jure Leskovec, Stanford C246: Mining Massive Datasets

Example Node Embedding

2D embedding of nodes of the Zachary’s
Karate Club network:

w
0.6F 2=
™ e 1! Y
. & = 0.8} uﬂlu g d ' -
a : | "' = 3
& ' n = . e . 10k w as 1
& . . - =
S . e ¥ = 4
*— .“ : — ® 121 g
° & _m LAt
- & ST
1Y
5 1.8

-1.0 —D5 0.0 0.5 1.0 1.5 2.0 2.5

Input Output

Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2014.

Jure Leskovec, Stanford C246: Mining Massive Datasets

https://arxiv.org/pdf/1403.6652.pdf

Embedding Nodes

Assume we have a graph G:
Vis the vertex set

A is the adjacency matrix (assume binary)

Jure Leskovec, Stanford C246: Mining Massive Datasets

Embedding Nodes

Goal is to encode nodes so that similarity in
the embedding space (e.g., dot product)
approximates similarity in the original

network
... . Zu
.............. ENC(U,)
\ e .Z’U
/\ Y encode nodes B
~ /N
\/ T e
ENC(v)
original network embedding space

Jure Leskovec, Stanford C246: Mining Massive Datasets

Embedding Nodes

.. : T
Goal: similarity(u,v) ~ z,, z,
in the original network Similarity of the embedding

original network embedding space

Learning Node Embeddings

Define an encoder (i.e., a mapping from
nodes to embeddings)

Define a node similarity function (i.e., a
measure of similarity in the original
network)

Optimize the parameters of the encoder
so that:

similarity(u, v) ~ z, 2,

in the original network Similarity of the embedding

Two Key Components

Encoder maps each node to a low-
dimenSional vector d-dimensional
ENC(U) =z, embedding
node in the input graph
Similarity function specifies how relationships

in vector space map to relationshipsin the
original network

similarity(u, v) ~ z, z,
Similarity of zand vin dot product between node

the original network embeddings

“Shallow” Encoding

Simplest encoding approach: encoder is just
an embedding-lookup

ENC(v) = Zv

Z Rd X |V| Matrix, each column is d-dim node
S embedding [whatwe learn!]

| V| Indicator vector, all zeroes
V & I except for a “1" at the position

that corresponds to node v

“Shallow” Encoding

Simplest encoding approach: encoder is just
an embedding-lookup

embedding vector for a

embedding specific node
matrix 8
Dimension/size
/ = ‘e of embeddings

L] |]
1l n

one column per node

Jure Leskovec, Stanford C246: Mining Massive Datasets

“Shallow” Encoding

Simplest encoding approach: encoder is
just an embedding-lookup

Each node is assighed a unique
embedding vector

Many methods: node2vec, DeepWalk, LINE

How to Define Node Similarity?

Key choice of methods is how they define node
similarity.

E.g., should two nodes have similar embeddings
if they...

are connected?

share neighbors?

have similar “structural roles”?
?

Random Walk Approaches to
Node Embeddings

https://arxiv.org/pdf/1403.6652.pdf
https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf

Random-walk Embeddings

Probability that u
ZTZ ~ and v co-occur on
u =v -
a random walk over
the network

z, ... embedding of node u

Random-walk Embeddings

Estimate probability of visiting node v on a
random walk starting from node u using
some random walk strategy R

Y
Pr(v|u)

Optimize embeddings to encode these
random walk statistics:

Similarity (here: dot product=cos(6))
encodes random walk “similarity”

Why Random Walks?

Expressivity: Flexible stochastic
definition of node similarity that
incorporates both local and higher-
order neighborhood information

Efficiency: Do not need to consider all
node pairs when training; only need to
consider pairs that co-occur on random
walks

Unsupervised Feature Learning

Intuition: Find embedding of nodes in
d-dimensional space so that node similarity is
preserved

Idea: Learn node embedding such that nearby
nodes are close together in the network

Given a node u, how do we define nearby
nodes?

Nr(u) ... neighbourhood of u obtained by some
strategy R

eskovec, Stanford C246: Mining Massive Datasets

Feature Learning as Optimization

Given G = (V,E)
Our goal is to learn a mapping z: u — R%

Log-likelihood objective:

max z log P(Nx(w)| z,)
Z
uev
where Ny (u) is neighborhood of node u

Given node u, we want to learn feature
representations predictive of nodes in its
neighborhood Ny (u)

Random Walk Optimization

Run short fixed-length random walks
starting from each node on the graph using
some strategy R

For each node u collect Ny (u), the multiset”
of nodes visited on random walks starting
from u

Optimize embeddings according to: Given
node u, predict its neighbors Ny (u)

max 2 log P(Nx ()] 2,)

uev

*Ng (u) can have repeat elements smce nodes can be visited multiple times on random walks
skovec, Stanford C Mining Massive Da

Random Walk Optimization

max) logP(Ng(w)] z,)

uev
Assumption: Conditional likelihood factorizes

over the set of neighbors:

logP(Ne(w)|z,) =) logP(z,] z,)

VENR(U)
Softmax parametrization:
exp (Zy-Zu) We nant node v o be
P(Zv |Zu) — ZnEV exp(zn-zu) most similar to node u

(out of all nodes n).
Intuition: ¥, exp(x;) =
max exp (x;)

l

Random Walk Optimization

Putting it all together:
-

s _bg(z exp(z, z,))

ueV veNRg(u)

Optimizing random walk embeddings =

Finding node embeddings z that minimize L

Random Walk Optimization

L=y % _log(z exp(z, Zv))

=
CXPl\Z,, Z
ucV veNg(u) nev p(u n)

Nested sum over nodes gives
O(]V|%) complexity!

Random Walk Optimization

L=y % _10g<2 exp(z, Zy) >

=
EXP\Z,, Z
uecV veENR(u) neV p(u n)

Negative Sampling

Why is the approximationvalid?
Technically, this is a differentobjective.

SOIUtion: Negatlve Samphng But Negative Sampling is a form of Noise

Contrastive Estimation (NCE) which
approx. maximizes the log probability of
softmax.
T New formulation correspondsto using a
eXp (Zu Z’U) logistic regression (sigmoid func.) to

log

distinguish the target node v from nodes

E nev eXp (Z;Lr Zn) 1;1- sampled from background distribution
)
L More at
https://arxiv.org/pdf/1402.3722.pdf

~log(o(z]7.) = 3 log(o (2] 2,,)),ns ~ Py

sigmoid function random distribution over
(makes each term a “probability” a” nOdeS

between 0 and 1)

Instead of normalizing w.r.t. all nodes, just
normalize against k random “negative samples” n;

Jure Leskovec, Stanford C246: Mining Massive Datasets

https://arxiv.org/pdf/1402.3722.pdf

Negative Sampling

random distribution
over all nodes

| (exp(z, z,))
0g
D ney €Xp(z, Zy)
k

~ log(o(z, 2,)) — Z log(o(z, zy,)), i ~ Py
i=1
= Sample k negative nodes proportional to degree

"= Two considerations for k (# negative samples):
1. Higher k gives more robust estimates

2. Higher k correspondsto higher prior on negative events

In practice k =5-20

Jure Leskovec, Stanford C246: Mining Massive Datasets

Random Walks: Stepping Back

Run short fixed-length random walks starting from
each node on the graph using some strategy K.

For each node u collect N,(u), the multiset of
nodes visited on random walks starting from u

Optimize embeddings using Stochastic Gradient
Descent:

L = Z Z log U‘Zu))

uc€V veNR(u)

How should we randomly walk?

= So far we have described how to optimize
embeddings given random walk statistics

= What strategies should we use to run these
random walks?
» Simplestidea: Just run fixed-length, unbiased

random walks starting from each node (i.e.,
DeepWalk from Perozzi et al., 2013).

= The issue is that such notion of similarity is too constrained

" How can we generalize this?

Jure Leskovec, Stanford C246: Mining Massive Datasets

https://arxiv.org/abs/1403.6652

Overview of node2vec

Goal: Embed nodes with similar network
neighborhoods close in the feature space

We frame this goal as prediction-task independent
maximum likelihood optimization problem

Key observation: Flexible notion of network
neighborhood Ny (u) of node u leads to rich node
embeddings

Develop biased 2" order random walk R to
generate network neighborhood N (1) of node u

Stanford C246: Mining Massive Datasets

node2vec: Biased Walks

Idea: use flexible, biased random walks that can
trade off between and views of the
network (Grover and Leskovec, 2016).

https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf

node2vec: Biased Walks

Two classic strategies to define a neighborhood
Nr(u) of a given node u:

Walk of length 3 (N, (u) of size 3):
Npps(u) = { 51,5,,53} Local microscopic view

Npre(u) = {s,,s:,5,} Global macroscopicview

Interpolating BFS and DFS

Biased fixed-length random walk R that given a
node u generates neighborhood N (u)
Two parameters:
Return parameter p:
Return back to the previous node

In-out parameter q:

Moving outwards (DFS) vs. spreading (BFS)
Intuitively, g is the “ratio” of BFS vs. DFS

Jure Leskovec, Stanford C246: Mining Massive Datasets

Biased Random Walks

Biased 2"%-order random walks explore network
neighborhoods:

Rnd. walk just traversed edge (s{,w) and is now at w
Insight: Neighbors of w can only be:

Samedistance to s

Backto sq

Idea: Remember where that walk came from

Biased Random Walks

Walker came over edge (s, w) and is at w.
Where to go next?

1/p,1/q,1 are
unnormalized
probabilities

p, @ model transition probabilities

p ... return parameter
q ... “walk away” parameter

Biased Random Walks

Walker came over edge (s;, w) and is at w.

Where to go next?

Targett Prob. Dist. (sq,t)

si||[1/p]| ©
w — 82 1 1
s;11/q| 2
s,|1/q] 2
Unnormalized
BFS-like walk: Low value of p e

on distance from s,

DFS-like walk: Low value of g
N (u) are the nodes visited by the biased walk

Jure Leskovec, Stanford C246: Mining Massive Datasets

node2vec algorithm

1) Compute random walk probabilities

2) Simulate r random walks of length [starting
from each node u

3) Optimize the node2vec objective using
Stochastic Gradient Descent

Linear-time complexity.
All 3 steps are individually parallelizable

BFS vs. DFS

BFS: DFES:
Micro-view of Macro-view of
neighbourhood neighbourhood

Experiments: Micro vs. Macro

Small network of interactions of characters in a
novel:

&8 .'..:.: 53 OO; iy
: ® o e, ® .'.' :]D :} O @ o 0 °
@00 0% - ° % 000 0e%°
g, ® i.. ... e (@] DOD. ...
e ® .'.. L ... o DDDQOO ...
‘.‘- 005 e
0% '«
p=1, q=2 p=1,g=0.5
Microscopic view of the Macroscopic view of the

network neighbourhood network neighbourhood

Node2vec: Incomplete Network

Q
3 o O
c C
G ®©
: 5
L ‘=
@ 0.10- 8_0.107
o
(D)
Qo >
= =
3] O
'_5 ©
O 005 &J 0.05
E ol
0.00- ! ! ! ! ! : 0.00- ! ! ! ! ! :
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Fraction of missing edges Fraction of additional edges

How does predictive performance change as we
randomly remove a fraction of edges (left)
randomly add a fraction of edges (right)

Jure Leskovec, Stanford C246: Mining Massive Datasets

Other random walk ideas

(not covered in detailed here but for your reference)

Different kinds of biased random walks:
Based on node attributes (Dong et al., 2017).
Based on a learned weights (Abu-El-Haija et al., 2017)

Alternative optimization schemes:

Directly optimize based on 1-hop and 2-hop random walk
probabilities (as in LINE from Tang et al. 2015).

Network preprocessing techniques:

Run random walks on modified versions of the original
network (e.g., Ribeiro et al. 2017’s struct2vec, Chen et al.

2016’s HARP).

Jure Leskovec, Stanford C246: Mining Massive Datasets

https://ericdongyx.github.io/papers/KDD17-dong-chawla-swami-metapath2vec.pdf
https://arxiv.org/abs/1710.09599
https://arxiv.org/abs/1503.03578
https://arxiv.org/pdf/1704.03165.pdf
https://arxiv.org/abs/1706.07845
https://arxiv.org/abs/1706.07845

How to Use Embeddings

How to use embeddings z; of nodes:

Clustering/community detection: Cluster
nodes/points based on z;

Node classification: Predict label f (z;) of node i

based on z;

Link prediction: Predict edge (i,) based on f(z;, z;)
Where we can: concatenate, avg, product, or take a
difference between the embeddings:

Concatenate: f(z;,z;)= g(|z;,z;])

Hadamard: f(z;,2;)= g(z; * z;) (per coordinate product)
Sum/Avg:f(zi,zj)= gz + z;)

Distance: f(z;, ;)= g(||z; — zl12)

Jure Leskovec, Stanford C246: Mining Massive Datasets

Basic idea: Embed nodes so that similarities
in embedding space reflect node similarities
in the original network.

Different notions of node similarity:
Adjacency-based (i.e., similar if connected)
Multi-hop similarity definitions.

Random walk approaches (covered today)

Jure Leskovec, Stanford C246: Mining Massive Datasets

So what method should | use..?
No one method wins in all cases....

E.g., node2vec performs better on node classification
while multi-hop methods perform better on link
prediction (Goyal and Ferrara, 2017 survey)

Random walk approaches are generally more
efficient

In general: Must choose def’'n of node
similarity that matches your application!

Jure Leskovec, Stanford C246: Mining Massive Datasets

https://arxiv.org/abs/1705.02801

	Slide 1: Graph Representation Learning
	Slide 2: Example: Link Prediction
	Slide 3: Machine Learning in Networks
	Slide 4: Example: Node Classification
	Slide 5: Machine Learning Lifecycle
	Slide 6: Feature Learning in Graphs
	Slide 7: Why network embedding?
	Slide 8: Example Node Embedding
	Slide 9: Embedding Nodes
	Slide 10: Setup
	Slide 11: Embedding Nodes
	Slide 12: Embedding Nodes
	Slide 13: Learning Node Embeddings
	Slide 14: Two Key Components
	Slide 15: “Shallow” Encoding
	Slide 16: “Shallow” Encoding
	Slide 17: “Shallow” Encoding
	Slide 18: How to Define Node Similarity?
	Slide 19: Random Walk Approaches to Node Embeddings
	Slide 20: Random-walk Embeddings
	Slide 21: Random-walk Embeddings
	Slide 22: Why Random Walks?
	Slide 23: Unsupervised Feature Learning
	Slide 24: Feature Learning as Optimization
	Slide 25: Random Walk Optimization
	Slide 26: Random Walk Optimization
	Slide 28: Random Walk Optimization
	Slide 29: Random Walk Optimization
	Slide 30: Random Walk Optimization
	Slide 31: Negative Sampling
	Slide 32: Negative Sampling
	Slide 33: Random Walks: Stepping Back
	Slide 34: How should we randomly walk?
	Slide 35: Overview of node2vec
	Slide 36: node2vec: Biased Walks
	Slide 37: node2vec: Biased Walks
	Slide 38: Interpolating BFS and DFS
	Slide 39: Biased Random Walks
	Slide 40: Biased Random Walks
	Slide 41: Biased Random Walks
	Slide 42: node2vec algorithm
	Slide 43: BFS vs. DFS
	Slide 44: Experiments: Micro vs. Macro
	Slide 45: Node2vec: Incomplete Network
	Slide 46: Other random walk ideas
	Slide 47: How to Use Embeddings
	Slide 48: Summary
	Slide 49: Summary

