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Example: Link Prediction
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Node classification



Example: Node Classification
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Image from: Ganapathiraju et al. 2016. Schizophrenia interactome with 504 novel

protein—protein interactions. Nature.
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https://www.nature.com/articles/npjschz201612?WT.feed_name=subjects_neuroscience
https://www.nature.com/articles/npjschz201612?WT.feed_name=subjects_neuroscience

Machine Learning Lifecycle

(Supervised) Machine Learning Lifecycle
requires feature engineering every
single time!

Raw Structured Leaming
Data Data Algorithm

t Automatically Downstream
EngMe®™g learn the features task

Jure Leskovec, Stanford C246: Mining Massive Datasets
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Feature Learning in Graphs

Goal: Efficient task-independent
feature learning for machine learning

in networks!
node vec
u >
. d
fru—->R N - Y
]Rd

Feature representation,
embedding



Why network embedding?

Task: We map each node in a network to a
point in a low-dimensional space

Distributed representation for nodes

Similarity of embedding between nodes indicates
their network similarity

Encode network information and generate node
representation

Latent Dimensions _
e Anomaly Detection

e Attribute Prediction
p >e Clustering
e Link Prediction

Adjacency Matrix

|v] d << |v]|
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Example Node Embedding

2D embedding of nodes of the Zachary’s
Karate Club network:
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Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2014.
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https://arxiv.org/pdf/1403.6652.pdf

Embedding Nodes



Assume we have a graph G:
Vis the vertex set

A is the adjacency matrix (assume binary)

Jure Leskovec, Stanford C246: Mining Massive Datasets



Embedding Nodes

Goal is to encode nodes so that similarity in
the embedding space (e.g., dot product)
approximates similarity in the original

network
............................................... . Zu
.............. ENC(U,)
\ e .Z’U
/\ Y encode nodes B
~ /N
\/ T e
ENC(v)
original network embedding space
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Embedding Nodes

.. : T
Goal: similarity(u,v) ~ z,, z,
in the original network Similarity of the embedding

original network embedding space



Learning Node Embeddings

Define an encoder (i.e., a mapping from
nodes to embeddings)

Define a node similarity function (i.e., a
measure of similarity in the original
network)

Optimize the parameters of the encoder
so that:

similarity(u, v) ~ z, 2,

in the original network Similarity of the embedding



Two Key Components

Encoder maps each node to a low-
dimenSional vector d-dimensional
ENC(U) =z,  embedding
node in the input graph
Similarity function specifies how relationships

in vector space map to relationshipsin the
original network

similarity(u, v) ~ z, z,
Similarity of zand vin dot product between node

the original network embeddings



“Shallow” Encoding

Simplest encoding approach: encoder is just
an embedding-lookup

ENC(v) = Zv

Z Rd X |V| Matrix, each column is d-dim node
S embedding [whatwe learn!]

| V| Indicator vector, all zeroes
V & I except for a “1" at the position

that corresponds to node v



“Shallow” Encoding

Simplest encoding approach: encoder is just
an embedding-lookup

embedding vector for a

embedding specific node
matrix 8
Dimension/size
/ = ‘e of embeddings

L] | ]
1l n

one column per node
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“Shallow” Encoding

Simplest encoding approach: encoder is
just an embedding-lookup

Each node is assighed a unique
embedding vector

Many methods: node2vec, DeepWalk, LINE



How to Define Node Similarity?

Key choice of methods is how they define node
similarity.

E.g., should two nodes have similar embeddings
if they...

are connected?

share neighbors?

have similar “structural roles”?
?



Random Walk Approaches to
Node Embeddings


https://arxiv.org/pdf/1403.6652.pdf
https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf

Random-walk Embeddings

Probability that u
ZTZ ~ and v co-occur on
u =v -
a random walk over
the network

z, ... embedding of node u



Random-walk Embeddings

Estimate probability of visiting node v on a
random walk starting from node u using
some random walk strategy R

Y
Pr(v|u)

Optimize embeddings to encode these
random walk statistics:

Similarity (here: dot product=cos(6))
encodes random walk “similarity”




Why Random Walks?

Expressivity: Flexible stochastic
definition of node similarity that
incorporates both local and higher-
order neighborhood information

Efficiency: Do not need to consider all
node pairs when training; only need to
consider pairs that co-occur on random
walks



Unsupervised Feature Learning

Intuition: Find embedding of nodes in
d-dimensional space so that node similarity is
preserved

Idea: Learn node embedding such that nearby
nodes are close together in the network

Given a node u, how do we define nearby
nodes?

Nr(u) ... neighbourhood of u obtained by some
strategy R

eskovec, Stanford C246: Mining Massive Datasets



Feature Learning as Optimization

Given G = (V,E)
Our goal is to learn a mapping z: u — R%

Log-likelihood objective:

max z log P(Nx(w)| z,)
Z
uev
where Ny (u) is neighborhood of node u

Given node u, we want to learn feature
representations predictive of nodes in its
neighborhood Ny (u)



Random Walk Optimization

Run short fixed-length random walks
starting from each node on the graph using
some strategy R

For each node u collect Ny (u), the multiset”
of nodes visited on random walks starting
from u

Optimize embeddings according to: Given
node u, predict its neighbors Ny (u)

max 2 log P(Nx ()] 2,)

uev

*Ng (u) can have repeat elements smce nodes can be visited multiple times on random walks
skovec, Stanford C Mining Massive Da



Random Walk Optimization

max ) logP(Ng(w)] z,)

uev
Assumption: Conditional likelihood factorizes

over the set of neighbors:

logP(Ne(w)|z,) = ) logP(z,] z,)

VENR(U)
Softmax parametrization:
exp (Zy-Zu) We nant node v o be
P(Zv |Zu) — ZnEV exp(zn-zu) most similar to node u

(out of all nodes n).
Intuition: ¥, exp(x;) =
max exp (x;)

l



Random Walk Optimization

Putting it all together:
-

s _bg(z exp(z, z, ) )

ueV veNRg(u)

Optimizing random walk embeddings =

Finding node embeddings z that minimize L



Random Walk Optimization

L=y % _log(z exp(z, Zv) )

=
CXPl\Z,, Z
ucV veNg(u) nev p( u n)

Nested sum over nodes gives
O(]V|%) complexity!



Random Walk Optimization

L=y % _10g<2 exp(z, Zy) >

=
EXP\Z,, Z
uecV veENR(u) neV p( u n)



Negative Sampling

Why is the approximationvalid?
Technically, this is a differentobjective.

SOIUtion: Negatlve Samphng But Negative Sampling is a form of Noise

Contrastive Estimation (NCE) which
approx. maximizes the log probability of
softmax.
T New formulation correspondsto using a
eXp (Zu Z’U ) logistic regression (sigmoid func.) to

log

distinguish the target node v from nodes

E nev eXp (Z;Lr Zn ) 1;1- sampled from background distribution
)
L More at
https://arxiv.org/pdf/1402.3722.pdf

~log(o(z]7.) = 3 log(o (2] 2,,)),ns ~ Py

sigmoid function random distribution over
(makes each term a “probability” a” nOdeS

between 0 and 1)

Instead of normalizing w.r.t. all nodes, just
normalize against k random “negative samples” n;

Jure Leskovec, Stanford C246: Mining Massive Datasets


https://arxiv.org/pdf/1402.3722.pdf

Negative Sampling

random distribution
over all nodes

| ( exp(z, z,) )
0g
D ney €Xp(z, Zy)
k

~ log(o(z, 2,)) — Z log(o(z, zy,)), i ~ Py
i=1
= Sample k negative nodes proportional to degree

"= Two considerations for k (# negative samples):
1. Higher k gives more robust estimates

2. Higher k correspondsto higher prior on negative events

In practice k =5-20

Jure Leskovec, Stanford C246: Mining Massive Datasets



Random Walks: Stepping Back

Run short fixed-length random walks starting from
each node on the graph using some strategy K.

For each node u collect N,(u), the multiset of
nodes visited on random walks starting from u

Optimize embeddings using Stochastic Gradient
Descent:

L = Z Z log U‘Zu))

uc€V veNR(u)



How should we randomly walk?

= So far we have described how to optimize
embeddings given random walk statistics

= What strategies should we use to run these
random walks?
» Simplestidea: Just run fixed-length, unbiased

random walks starting from each node (i.e.,
DeepWalk from Perozzi et al., 2013).

= The issue is that such notion of similarity is too constrained

" How can we generalize this?

Jure Leskovec, Stanford C246: Mining Massive Datasets


https://arxiv.org/abs/1403.6652

Overview of node2vec

Goal: Embed nodes with similar network
neighborhoods close in the feature space

We frame this goal as prediction-task independent
maximum likelihood optimization problem

Key observation: Flexible notion of network
neighborhood Ny (u) of node u leads to rich node
embeddings

Develop biased 2" order random walk R to
generate network neighborhood N (1) of node u

Stanford C246: Mining Massive Datasets



node2vec: Biased Walks

Idea: use flexible, biased random walks that can
trade off between and views of the
network (Grover and Leskovec, 2016).



https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf

node2vec: Biased Walks

Two classic strategies to define a neighborhood
Nr(u) of a given node u:

Walk of length 3 (N, (u) of size 3):
Npps(u) = { 51,5,,53} Local microscopic view

Npre(u) = {s,,s:,5,} Global macroscopicview



Interpolating BFS and DFS

Biased fixed-length random walk R that given a
node u generates neighborhood N (u)
Two parameters:
Return parameter p:
Return back to the previous node

In-out parameter q:

Moving outwards (DFS) vs. spreading (BFS)
Intuitively, g is the “ratio” of BFS vs. DFS

Jure Leskovec, Stanford C246: Mining Massive Datasets



Biased Random Walks

Biased 2"%-order random walks explore network
neighborhoods:

Rnd. walk just traversed edge (s{,w) and is now at w
Insight: Neighbors of w can only be:

Samedistance to s

Backto sq

Idea: Remember where that walk came from



Biased Random Walks

Walker came over edge (s, w) and is at w.
Where to go next?

1/p,1/q,1 are
unnormalized
probabilities

p, @ model transition probabilities

p ... return parameter
q ... “walk away” parameter



Biased Random Walks

Walker came over edge (s;, w) and is at w.

Where to go next?

Targett Prob. Dist. (sq,t)

si||[1/p]| ©
w — 82 1 1
s;11/q| 2
s,|1/q] 2
Unnormalized
BFS-like walk: Low value of p e

on distance from s,

DFS-like walk: Low value of g
N (u) are the nodes visited by the biased walk

Jure Leskovec, Stanford C246: Mining Massive Datasets



node2vec algorithm

1) Compute random walk probabilities

2) Simulate r random walks of length [ starting
from each node u

3) Optimize the node2vec objective using
Stochastic Gradient Descent

Linear-time complexity.
All 3 steps are individually parallelizable



BFS vs. DFS

BFS: DFES:
Micro-view of Macro-view of
neighbourhood neighbourhood



Experiments: Micro vs. Macro

Small network of interactions of characters in a
novel:
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Node2vec: Incomplete Network
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How does predictive performance change as we
randomly remove a fraction of edges (left)
randomly add a fraction of edges (right)
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Other random walk ideas

(not covered in detailed here but for your reference)

Different kinds of biased random walks:
Based on node attributes (Dong et al., 2017).
Based on a learned weights (Abu-El-Haija et al., 2017)

Alternative optimization schemes:

Directly optimize based on 1-hop and 2-hop random walk
probabilities (as in LINE from Tang et al. 2015).

Network preprocessing techniques:

Run random walks on modified versions of the original
network (e.g., Ribeiro et al. 2017’s struct2vec, Chen et al.

2016’s HARP).

Jure Leskovec, Stanford C246: Mining Massive Datasets


https://ericdongyx.github.io/papers/KDD17-dong-chawla-swami-metapath2vec.pdf
https://arxiv.org/abs/1710.09599
https://arxiv.org/abs/1503.03578
https://arxiv.org/pdf/1704.03165.pdf
https://arxiv.org/abs/1706.07845
https://arxiv.org/abs/1706.07845

How to Use Embeddings

How to use embeddings z; of nodes:

Clustering/community detection: Cluster
nodes/points based on z;

Node classification: Predict label f (z;) of node i

based on z;

Link prediction: Predict edge (i, ) based on f(z;, z;)
Where we can: concatenate, avg, product, or take a
difference between the embeddings:

Concatenate: f(z;,z;)= g(|z;,z;])

Hadamard: f(z;,2;)= g(z; * z;) (per coordinate product)
Sum/Avg:f(zi,zj)= gz + z;)

Distance: f(z;, ;)= g(||z; — zl12)

Jure Leskovec, Stanford C246: Mining Massive Datasets



Basic idea: Embed nodes so that similarities
in embedding space reflect node similarities
in the original network.

Different notions of node similarity:
Adjacency-based (i.e., similar if connected)
Multi-hop similarity definitions.

Random walk approaches (covered today)

Jure Leskovec, Stanford C246: Mining Massive Datasets



So what method should | use..?
No one method wins in all cases....

E.g., node2vec performs better on node classification
while multi-hop methods perform better on link
prediction (Goyal and Ferrara, 2017 survey)

Random walk approaches are generally more
efficient

In general: Must choose def’'n of node
similarity that matches your application!

Jure Leskovec, Stanford C246: Mining Massive Datasets


https://arxiv.org/abs/1705.02801
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