Mining Data Streams (Part 2)

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu

CS341 info session is on Thu 3/1 5pm in Gates415
More algorithms for streams:

1. Filtering a data stream: *Bloom filters*
 - Select elements with property x from stream

2. Counting distinct elements: *Flajolet-Martin*
 - Number of distinct elements in the last k elements of the stream

3. Estimating moments: *AMS method*
 - Estimate std. dev. of last k elements

4. Counting frequent items
(1) Filtering Data Streams
Each element of data stream is a tuple

Given a list of keys S

Determine which tuples of stream are in S

Obvious solution: Hash table

- But suppose we do not have enough memory to store all of S in a hash table
 - E.g., we might be processing millions of filters on the same stream
Applications

- **Example: Email spam filtering**
 - We know 1 billion “good” email addresses
 - Or, each user has a list of trusted addresses
 - If an email comes from one of these, it is **NOT** spam

- **Publish-subscribe systems**
 - You are collecting lots of messages (news articles)
 - People express interest in certain sets of keywords
 - Determine whether each message matches user’s interest

- **Content filtering:**
 - You want to make sure the user does not see the same ad multiple times
Given a set of keys S that we want to filter

- Create a **bit array** B of n bits, initially all **0s**
- Choose a **hash function** h with range $[0,n)$
- Hash each member of $s \in S$ to one of n buckets, and set that bit to **1**, i.e., $B[h(s)]=1$
- Hash each element a of the stream and output only those that hash to bit that was set to **1**
 - Output a if $B[h(a)] == 1$
First Cut Solution (2)

- Creates false positives but no false negatives
 - If the item is in S we surely output it, if not we may still output it.

Output the item since it may be in S. Item hashes to a bucket that at least one of the items in S hashed to.

Drop the item. It hashes to a bucket set to 0 so it is surely not in S.

Filter

Item

Hash func h

0010001011000

Bit array B
If the email address is in S, then it surely hashes to a bucket that has the big set to 1, so it always gets through (no false negatives)

Approximately $\frac{1}{8}$ of the bits are set to 1, so about $\frac{1}{8^{th}}$ of the addresses not in S get through to the output (false positives)

Actually, less than $\frac{1}{8^{th}}$, because more than one address might hash to the same bit
Analysis: Throwing Darts (1)

- More accurate analysis for the number of false positives

- Consider: If we throw \(m \) darts into \(n \) equally likely targets, what is the probability that a target gets at least one dart?

- In our case:
 - Targets = bits/buckets
 - Darts = hash values of items
Analysis: Throwing Darts (2)

- We have \(m \) darts, \(n \) targets
- What is the probability that a target gets at least one dart?

\[
1 - \left(1 - \frac{1}{n} \right) = 1 - e^{-m/n}
\]

- Probability some target \(X \) not hit by a dart
- Probability at least one dart hits target \(X \)
- Approximation is especially accurate when \(n \) is large

Equals \(1/e \) as \(n \rightarrow \infty \)
Analysis: Throwing Darts (3)

- Fraction of 1s in the array $B =$

 \[= \text{probability of false positive} = 1 - e^{-m/n} \]

- Example: 10^9 darts, $8 \cdot 10^9$ targets

 - Fraction of 1s in $B = 1 - e^{-1/8} = 0.1175$

 - Compare with our earlier estimate: $1/8 = 0.125$
Bloom Filter

- Consider: $|S| = m$, $|B| = n$
- Use k independent hash functions h_1, \ldots, h_k
- Initialization:
 - Set B to all 0s
 - Hash each element $s \in S$ using each hash function h_i, set $B[h_i(s)] = 1$ (for each $i = 1, \ldots, k$) (note: we have a single array B!)
- Run-time:
 - When a stream element with key x arrives
 - If $B[h_i(x)] = 1$ for all $i = 1, \ldots, k$ then declare that x is in S
 - That is, x hashes to a bucket set to 1 for every hash function $h_i(x)$
 - Otherwise discard the element x
What fraction of the bit vector B are 1s?

- Throwing $k \cdot m$ darts at n targets
- So fraction of 1s is $(1 - e^{-km/n})$

But we have k independent hash functions and we only let the element x through if all k hash element x to a bucket of value 1

So, false positive probability $= (1 - e^{-km/n})^k$
m = 1 billion, n = 8 billion
- k = 1: \(1 - e^{-1/8}\) = 0.1175
- k = 2: \((1 - e^{-1/4})^2\) = 0.0493

What happens as we keep increasing k?

Optimal value of k: \(n/m \ln(2)\)
- In our case: Optimal k = 8 \ln(2) = 5.54 ≈ 6
- Error at k = 6: \((1 - e^{-3/4})^2\) = 0.0216

Optimal k: k which gives the lowest false positive probability
Bloom filters guarantee no false negatives, and use limited memory
- Great for pre-processing before more expensive checks

Suitable for hardware implementation
- Hash function computations can be parallelized

Is it better to have 1 big B or k small Bs?
- It is the same: \((1 - e^{-km/n})^k\) vs. \((1 - e^{-m/(n/k)})^k\)
- But keeping 1 big B is simpler
(2) Counting Distinct Elements
Counting Distinct Elements

- **Problem:**
 - Data stream consists of a universe of elements chosen from a set of size N
 - Maintain a count of the number of distinct elements seen so far

- **Obvious approach:**
 - Maintain the set of elements seen so far
 - That is, keep a hash table of all the distinct elements seen so far
How many different words are found among the Web pages being crawled at a site?
- Unusually low or high numbers could indicate artificial pages (spam?)

How many different Web pages does each customer request in a week?

How many distinct products have we sold in the last week?
Real problem: What if we do not have space to maintain the set of elements seen so far?

- Estimate the count in an unbiased way

- Accept that the count may have a little error, but limit the probability that the error is large
Flajolet-Martin Approach

- Pick a hash function \(h \) that maps each of the \(N \) elements to at least \(\log_2 N \) bits

- For each stream element \(a \), let \(r(a) \) be the number of trailing 0s in \(h(a) \)
 - \(r(a) = \) position of first 1 counting from the right
 - E.g., say \(h(a) = 12 \), then 12 is 1100 in binary, so \(r(a) = 2 \)

- Record \(R = \) the maximum \(r(a) \) seen
 - \(R = \max_a r(a) \), over all the items \(a \) seen so far

- Estimated number of distinct elements = \(2^R \)
Why It Works: Intuition

- **Very very rough and heuristic intuition why Flajolet-Martin works:**
 - \(h(a) \) hashes \(a \) with equal prob. to any of \(N \) values
 - Then \(h(a) \) is a sequence of \(\log_2 N \) bits, where \(2^{-r} \) fraction of all \(a \)s have a tail of \(r \) zeros
 - About 50% of \(a \)s hash to ***0
 - About 25% of \(a \)s hash to **00
 - So, if we saw the longest tail of \(r=2 \) (i.e., item hash ending *100) then we have probably seen about 4 distinct items so far
 - So, it takes to hash about \(2^r \) items before we see one with zero-suffix of length \(r \)
Now we show why Flajolet-Martin works

Formally, we will show that probability of finding a tail of \(r \) zeros:

- Goes to 1 if \(m \gg 2^r \)
- Goes to 0 if \(m \ll 2^r \)

where \(m \) is the number of distinct elements seen so far in the stream

Thus, \(2^R \) will almost always be around \(m! \)
What is the probability that a given $h(a)$ ends in at least r zeros? It is 2^{-r}

- $h(a)$ hashes elements uniformly at random
- Probability that a random number ends in at least r zeros is 2^{-r}

Then, the probability of NOT seeing a tail of length r among m elements:

\[
(1 - 2^{-r})^m
\]

Prob. all end in fewer than r zeros.
Prob. that given $h(a)$ ends in fewer than r zeros.
Why It Works: More formally

- **Note:** \((1 - 2^{-r})^m = (1 - 2^{-r})^{2r(m^{-2r})} \approx e^{-m2^{-r}} \)

- **Prob. of NOT finding a tail of length** \(r \) **is:**
 - If \(m << 2^r \), then prob. tends to 1
 - \((1 - 2^{-r})^m \approx e^{-m2^{-r}} = 1 \) as \(m/2^r \to 0 \)
 - So, the probability of finding a tail of length \(r \) tends to 0
 - If \(m >> 2^r \), then prob. tends to 0
 - \((1 - 2^{-r})^m \approx e^{-m2^{-r}} = 0 \) as \(m/2^r \to \infty \)
 - So, the probability of finding a tail of length \(r \) tends to 1

- Thus, \(2^R \) will almost always be around \(m! \)
Why It Doesn’t Work

- **E[2^R]** is actually infinite
 - Probability halves when \(R \rightarrow R+1 \), but value doubles
- Workaround involves using many hash functions \(h_i \) and getting many samples of \(R_i \)
- How are samples \(R_i \) combined?
 - Average? What if one very large value \(2^{R_i} \)?
 - Median? All estimates are a power of 2
- **Solution:**
 - Partition your samples into small groups
 - Take the median of groups
 - Then take the average of the medians
(3) Computing Moments
Suppose a stream has elements chosen from a set A of N values

Let m_i be the number of times value i occurs in the stream

The k^{th} moment is

$$\sum_{i \in A} (m_i)^k$$

This is the same way as moments are defined in statistics. But there we many times “center” the moment by subtracting the mean.
Special Cases

\[\sum_{i \in A} (m_i)^k \]

- **0th moment** = number of distinct elements
 - The problem just considered
- **1st moment** = count of the numbers of elements = length of the stream
 - Easy to compute
- **2nd moment** = *surprise number S* = a measure of how uneven the distribution is
Moments

- Third Moment is Skew:

- Fourth moment: Kurtosis
 - peakedness (width of peak), tail weight, and lack of shoulders (distribution primarily peak and tails, not in between).
Example: Surprise Number

- Stream of length 100
- 11 distinct values

Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9
Surprise $S = 910$

Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1
Surprise $S = 8,110$
AMS Method

- AMS method works for all moments
- Gives an unbiased estimate
- We will just concentrate on the 2nd moment S
- We pick and keep track of many variables X:
 - For each variable X we store $X.el$ and $X.val$
 - $X.el$ corresponds to the item i
 - $X.val$ corresponds to the count m_i of item i
 - Note this requires a count in main memory, so number of Xs is limited
- Our goal is to compute $S = \sum_i m_i^2$
One Random Variable (X)

How to set $X.val$ and $X.el$?

- Assume stream has length n (we relax this later)
- Pick some random time t ($t<n$) to start, so that any time is equally likely
- Let at time t the stream have item i. We set $X.el = i$
- Then we maintain count c ($X.val = c$) of the number of is in the stream starting from the chosen time t

Then the estimate of the 2nd moment ($\sum_i m_i^2$) is:

$$S = f(X) = n (2 \cdot c - 1)$$

- Note, we will keep track of multiple Xs, $(X_1, X_2, \ldots X_k)$ and our final estimate will be $S = \frac{1}{k} \sum_j^k f(X_j)$
Expectation Analysis

- **2nd moment** is $S = \sum_i m_i^2$
- c_t ... number of times item at time t appears from time t onwards ($c_1=m_a$, $c_2=m_a-1$, $c_3=m_b$)
- $E[f(X)] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t - 1) = \frac{1}{n} \sum_i n \left(1 + 3 + 5 + \cdots + 2m_i - 1\right)$

- m_i ... total count of item i in the stream (we are assuming stream has length n)
- Group times by the value seen
- Time t when the last i is seen ($c_t=1$)
- Time t when the penultimate i is seen ($c_t=2$)
- Time t when the first i is seen ($c_t=m_i$)
Expectation Analysis

- $E[f(X)] = \frac{1}{n} \sum \sum_{i} n (1 + 3 + 5 + \cdots + 2m_i - 1)$
 - Little side calculation: $(1 + 3 + 5 + \cdots + 2m_i - 1) = \sum_{i=1}^{m_i} (2i - 1) = 2 \frac{m_i(m_i+1)}{2} - m_i = (m_i)^2$

- Then $E[f(X)] = \frac{1}{n} \sum \sum_{i} n (m_i)^2$

- So, $E[f(X)] = \sum_i (m_i)^2 = S$

- We have the second moment (in expectation)!
Higher-Order Moments

- For estimating k^{th} moment we essentially use the same algorithm but change the estimate:
 - For $k=2$ we used $n \cdot (2 \cdot c - 1)$
 - For $k=3$ we use: $n \cdot (3 \cdot c^2 - 3c + 1)$ (where $c=X.val$)

- Why?
 - For $k=2$: Remember we had $(1 + 3 + 5 + \cdots + 2m_i - 1)$ and we showed terms $2c-1$ (for $c=1,...,m$) sum to m^2
 - $\sum_{c=1}^{m} 2c - 1 = \sum_{c=1}^{m} c^2 - \sum_{c=1}^{m} (c - 1)^2 = m^2$
 - So: $2c - 1 = c^2 - (c - 1)^2$
 - For $k=3$: $c^3 - (c-1)^3 = 3c^2 - 3c + 1$
 - Generally: Estimate $= n \cdot (c^k - (c - 1)^k)$
Combining Samples

- In practice:
 - Compute $f(X) = n(2c - 1)$ for as many variables X as you can fit in memory
 - Average them in groups
 - Take median of averages

- Problem: Streams never end
 - We assumed there was a number n, the number of positions in the stream
 - But real streams go on forever, so n is a variable – the number of inputs seen so far
Streams Never End: Fixups

1. The variables X have n as a factor – keep n separately; just hold the count in X

2. Suppose we can only store k counts. We must throw some Xs out as time goes on:

 Objective: Each starting time t is selected with probability k/n

 Solution: (fixed-size sampling!)
 - Choose the first k times for k variables
 - When the n^{th} element arrives ($n > k$), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables X out, with equal probability
New Problem: Given a stream, which items appear more than \(s \) times in the window?

Possible solution: Think of the stream of baskets as one binary stream per item

- \(1 = \) item present; \(0 = \) not present
- Use **DGIM** to estimate counts of \(1 \)s for all items

At least 1 of size 16. Partially beyond window.
Extensions

- In principle, you could count frequent pairs or even larger sets the same way
 - **One stream per itemset**

- **Drawbacks:**
 - Only approximate
 - **Number of itemsets is way too big**
Exponentially decaying windows: A heuristic for selecting likely frequent item(sets)

- What are “currently” most popular movies?
 - Instead of computing the raw count in last N elements
 - Compute a smooth aggregation over the whole stream

- If stream is a_1, a_2, \ldots and we are taking the sum of the stream, take the answer at time t to be:
 \[
 \sum_{i=1}^{t} a_i (1 - c)^{t-i}
 \]
 - c is a constant, presumably tiny, like 10^{-6} or 10^{-9}

- When new a_{t+1} arrives:
 Multiply current sum by $(1-c)$ and add a_{t+1}
Example: Counting Items

- If each a_i is an “item” we can compute the characteristic function of each possible item x as an Exponentially Decaying Window
 - That is: $\sum_{i=1}^{t} \delta_i \cdot (1 - c)^{t-i}$
 where $\delta_i = 1$ if $a_i = x$, and 0 otherwise
 - Imagine that for each item x we have a binary stream (1 if x appears, 0 if x does not appear)
 - New item x arrives:
 - Multiply all counts by $(1-c)$
 - Add $+1$ to count for element x

- Call this sum the “weight” of item x
- **Important property:** Sum over all weights
 \[\sum_t (1 - c)^t \] is \(\frac{1}{1 - (1 - c)} = \frac{1}{c}\)
Example: Counting Items

- What are “currently” most popular movies?
- Suppose we want to find movies of weight > 1/2
 - Important property: Sum over all weights
 \[\sum_t (1 - c)^t \text{ is } \frac{1}{1 - (1 - c)} = \frac{1}{c} \]
 - Thus:
 - There cannot be more than \(\frac{2}{c} \) movies with weight of 1/2 or more
- So, \(\frac{2}{c} \) is a limit on the number of movies being counted at any time
Extension to Itemsets

- Count (some) itemsets in an E.D.W.
 - What are currently “hot” itemsets?
 - **Problem:** Too many itemsets to keep counts of all of them in memory

- **When a basket B comes in:**
 - Multiply all counts by \((1-c)\)
 - For uncounted items in \(B\), create new count
 - Add 1 to count of any item in \(B\) and to any **itemset** contained in \(B\) that is already being counted
 - Drop counts < \(\frac{1}{2}\)
 - Initiate new counts (next slide)
Start a count for an itemset $S \subseteq B$ if every proper subset of S had a count prior to arrival of basket B

- **Intuitively:** If all subsets of S are being counted this means they are “frequent/hot” and thus S has a potential to be “hot”

- **Example:**
 - Start counting $S=\{i, j\}$ iff both i and j were counted prior to seeing B
 - Start counting $S=\{i, j, k\}$ iff $\{i, j\}$, $\{i, k\}$, and $\{j, k\}$ were all counted prior to seeing B
How many counts do we need?

- Counts for single items \(< (2/c) \cdot (\text{avg. number of items in a basket}) \)

- Counts for larger itemsets = ??

- But we are conservative about starting counts of large sets
 - If we counted every set we saw, one basket of 20 items would initiate 1M counts