CS341 info session is on Tue 3/5 6pm in Gates 219

Mining Data Streams (Part 2)

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu
More algorithms for streams:

1. Filtering a data stream: **Bloom filters**
 - Select elements with property x from stream

2. Counting distinct elements: **Flajolet-Martin**
 - Number of distinct elements in the last k elements of the stream

3. Estimating moments: **AMS method**
 - Estimate std. dev. of last k elements

4. Counting frequent items
(1) Filtering Data Streams
Each element of data stream is a tuple
Given a list of keys \(S \)
Determine which tuples of stream are in \(S \)

Obvious solution: Hash table
- But suppose we do not have enough memory to store all of \(S \) in a hash table
 - E.g., we might be processing millions of filters on the same stream
Applications

- **Example: Email spam filtering**
 - We know 1 billion “good” email addresses
 - Or, each user has a list of trusted addresses
 - If an email comes from one of these, it is **NOT** spam

- **Publish-subscribe systems**
 - You are collecting lots of messages (news articles)
 - People express interest in certain sets of keywords
 - Determine whether each message matches user’s interest

- **Content filtering:**
 - You want to make sure the user does not see the same ad multiple times
First Cut Solution (1)

Given a set of keys S that we want to filter

- Create a **bit array B** of n bits, initially all **0s**
- Choose a **hash function h** with range $[0,n)$
- Hash each member of $s \in S$ to one of n buckets, and set that bit to **1**, i.e., $B[h(s)]=1$
- Hash each element a of the stream and output only those that hash to bit that was set to **1**
 - Output a if $B[h(a)] == 1$
First Cut Solution (2)

- Creates false positives but no false negatives
 - If the item is in S we surely output it, if not we may still output it

Output the item since it may be in S. Item hashes to a bucket that at least one of the items in S hashed to.

Drop the item.
It hashes to a bucket set to 0 so it is surely not in S.

Bit array B

0010001011000
First Cut Solution (3)

- $|S| = 1$ billion email addresses
 $|B| = 1$GB = 8 billion bits

- If the email address is in S, then it surely hashes to a bucket that has the bit set to 1, so it always gets through (no false negatives)

- Approximately $1/8$ of the bits are set to 1, so about $1/8^{th}$ of the addresses not in S get through to the output (false positives)
 - Actually, less than $1/8^{th}$, because more than one address might hash to the same bit
Analysis: Throwing Darts (1)

- More accurate analysis for the number of false positives

- **Consider:** If we throw \(m \) darts into \(n \) equally likely targets, what is the probability that a target gets at least one dart?

- **In our case:**
 - Targets = bits/buckets
 - Darts = hash values of items
We have \(m \) darts, \(n \) targets

What is the probability that a target gets at least one dart?

\[
1 - (1 - 1/n)^n \rightarrow 1/e \quad \text{as } n \rightarrow \infty
\]

\[
1 - e^{-m/n}
\]

Approximation is especially accurate when \(n \) is large.
Fraction of 1s in the array $B = \text{probability of false positive} = 1 - e^{-m/n}$

Example: 10^9 darts, $8 \cdot 10^9$ targets

- Fraction of 1s in $B = 1 - e^{-1/8} = 0.1175$
 - Compare with our earlier estimate: $1/8 = 0.125$
Bloom Filter

- Consider: \(|S| = m, |B| = n\)
- Use \(k\) independent hash functions \(h_1, \ldots, h_k\)

Initialization:
- Set \(B\) to all 0s
- Hash each element \(s \in S\) using each hash function \(h_i\), set \(B[h_i(s)] = 1\) (for each \(i = 1, \ldots, k\))

Run-time:
- When a stream element with key \(x\) arrives
 - If \(B[h_i(x)] = 1\) for all \(i = 1, \ldots, k\) then declare that \(x\) is in \(S\)
 - That is, \(x\) hashes to a bucket set to 1 for every hash function \(h_i(x)\)
 - Otherwise discard the element \(x\)
What fraction of the bit vector B are 1s?
- Throwing $k \cdot m$ darts at n targets
- So fraction of 1s is $(1 - e^{-km/n})$

But we have k independent hash functions and we only let the element x through if all k hash elements x to a bucket of value 1

So, false positive probability = $(1 - e^{-km/n})^k$
Bloom Filter – Analysis (2)

- \(m = 1 \text{ billion}, \ n = 8 \text{ billion} \)
 - \(k = 1: (1 - e^{-1/8}) = 0.1175 \)
 - \(k = 2: (1 - e^{-1/4})^2 = 0.0493 \)

- What happens as we keep increasing \(k \)?

- **Optimal value of \(k \):** \(n/m \ln(2) \)
 - In our case: Optimal \(k = 8 \ln(2) = 5.54 \approx 6 \)
 - Error at \(k = 6 \): \((1 - e^{-3/4})^6 = 0.0216 \)

Optimal \(k \): \(k \) which gives the lowest false positive probability
Bloom Filter: Wrap-up

- Bloom filters guarantee no false negatives, and use limited memory
 - Great for pre-processing before more expensive checks
- Suitable for hardware implementation
 - Hash function computations can be parallelized

- Is it better to have 1 big B or k small Bs?
 - It is the same: \((1 - e^{-km/n})^k\) vs. \((1 - e^{-m/(n/k)})^k\)
 - But keeping 1 big B is simpler
(2) Counting Distinct Elements
Counting Distinct Elements

- Problem:
 - Data stream consists of a universe of elements chosen from a set of size N
 - Maintain a count of the number of distinct elements seen so far

- Obvious approach:
 Maintain the set of elements seen so far
 - That is, keep a hash table of all the distinct elements seen so far
Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?)

- How many different Web pages does each customer request in a week?

- How many distinct products have we sold in the last week?
Real problem: What if we do not have space to maintain the set of elements seen so far?

Estimate the count in an unbiased way

Accept that the count may have a little error, but limit the probability that the error is large
Flajolet-Martin Approach

- Pick a hash function h that maps each of the N elements to at least $\log_2 N$ bits

- For each stream element a, let $r(a)$ be the number of trailing 0s in $h(a)$
 - $r(a) =$ position of first 1 counting from the right
 - E.g., say $h(a) = 12$, then 12 is 1100 in binary, so $r(a) = 2$
 - Record $R = \text{the maximum } r(a) \text{ seen}$
 - $R = \max_a r(a)$, over all the items a seen so far

- Estimated number of distinct elements = 2^R
Why It Works: Intuition

- Very very rough and heuristic intuition why Flajolet-Martin works:
 - \(h(a) \) hashes \(a \) with equal prob. to any of \(N \) values
 - Then \(h(a) \) is a sequence of \(\log_2 N \) bits, where \(2^{-r} \) fraction of all \(a \)s have a tail of \(r \) zeros
 - About 50% of \(a \)s hash to ***0
 - About 25% of \(a \)s hash to **00
 - So, if we saw the longest tail of \(r=2 \) (i.e., item hash ending *100) then we have probably seen about 4 distinct items so far
 - So, it takes to hash about \(2^r \) items before we see one with zero-suffix of length \(r \)
Now we show why Flajolet-Martin works.

Formally, we will show that the probability of finding a tail of \(r \) zeros:
- Goes to 1 if \(m \gg 2^r \)
- Goes to 0 if \(m \ll 2^r \)

where \(m \) is the number of distinct elements seen so far in the stream.

Thus, \(2^R \) will almost always be around \(m \)!
What is the probability that a given $h(a)$ ends in at least r zeros? It is 2^{-r}

- $h(a)$ hashes elements uniformly at random
- Probability that a random number ends in at least r zeros is 2^{-r}

Then, the probability of NOT seeing a tail of length r among m elements:

$$
(1 - 2^{-r})^m
$$

- Prob. all end in fewer than r zeros.
- Prob. that given $h(a)$ ends in fewer than r zeros.
Note: \((1 - 2^{-r})^m = (1 - 2^{-r})^{2^r(m2^{-r})} \approx e^{-m2^{-r}}\)

Prob. of NOT finding a tail of length \(r\) is:

- If \(m << 2^r\), then prob. tends to \(1\)
 - \((1 - 2^{-r})^m \approx e^{-m2^{-r}} = 1\) as \(m/2^r \to 0\)
 - So, the probability of finding a tail of length \(r\) tends to \(0\)

- If \(m >> 2^r\), then prob. tends to \(0\)
 - \((1 - 2^{-r})^m \approx e^{-m2^{-r}} = 0\) as \(m/2^r \to \infty\)
 - So, the probability of finding a tail of length \(r\) tends to \(1\)

Thus, \(2^R\) will almost always be around \(m!\)
E[2^R] is actually infinite
- Probability halves when R → R+1, but value doubles

Workaround involves using many hash functions h_i and getting many samples of R_i

How are samples R_i combined?
- Average? What if one very large value 2^{R_i}?
- Median? All estimates are a power of 2

Solution:
- Partition your samples into small groups
- Take the median of groups
- Then take the average of the medians
(3) Computing Moments
Suppose a stream has elements chosen from a set A of N values

- Let m_i be the number of times value i occurs in the stream

- The k^{th} **moment** is

$$\sum_{i \in A} (m_i)^k$$

This is the same way as moments are defined in statistics. But there we many times “center” the moment by subtracting the mean.
Special Cases

$$\sum_{i \in A} (m_i)^k$$

- **0th moment** = number of distinct elements
 - The problem just considered
- **1st moment** = count of the numbers of elements = length of the stream
 - Easy to compute
- **2nd moment** = *surprise number* S = a measure of how uneven the distribution is
Moments

- Third Moment is Skew:

- Fourth moment: Kurtosis
 - peakedness (width of peak), tail weight, and lack of shoulders (distribution primarily peak and tails, not in between).
Example: Surprise Number

- **Stream of length 100**
- **11 distinct values**

- **Item counts:** 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
 - Surprise $S = 910$

- **Item counts:** 90, 1, 1, 1, 1, 1, 1, 1, 1, 1
 - Surprise $S = 8,110$
AMS Method

- AMS method works for all moments
- Gives an unbiased estimate
- We will just concentrate on the 2nd moment \(S \)
- We pick and keep track of many variables \(X \):
 - For each variable \(X \) we store \(X.el \) and \(X.val \)
 - \(X.el \) corresponds to the item \(i \)
 - \(X.val \) corresponds to the count \(m_i \) of item \(i \)
 - Note this requires a count in main memory, so number of \(X \)s is limited
- Our goal is to compute \(S = \sum_i m_i^2 \)
How to set $X.val$ and $X.el$?

- Assume stream has length n (we relax this later)
- Pick some random time t ($t < n$) to start, so that any time is equally likely
- Let at time t the stream have item i. We set $X.el = i$
- Then we maintain count c ($X.val = c$) of the number of is in the stream starting from the chosen time t

Then the estimate of the 2^{nd} moment ($\sum_i m_i^2$) is:

$$ S = f(X) = n (2 \cdot c - 1) $$

- Note, we will keep track of multiple Xs, (X_1, X_2, \ldots, X_k) and our final estimate will be $S = 1/k \sum_j^k f(X_j)$
2nd moment is $S = \sum_i m_i^2$

c_t ... number of times item at time t appears from time t onwards ($c_1=m_a$, $c_2=m_a-1$, $c_3=m_b$)

$$E[f(X)] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t - 1)$$
$$= \frac{1}{n} \sum_i n (1 + 3 + 5 + \cdots + 2m_i - 1)$$

Group times by the value seen

Time t when the last i is seen ($c_t=1$)

Time t when the penultimate i is seen ($c_t=2$)

Time t when the first i is seen ($c_t=m_i$)
\[E[f(X)] = \frac{1}{n} \sum_i n \left(1 + 3 + 5 + \cdots + 2m_i - 1 \right) \]

- Little side calculation: \((1 + 3 + 5 + \cdots + 2m_i - 1) = \sum_{i=1}^{m_i} (2i - 1) = 2 \frac{m_i(m_i+1)}{2} - m_i = (m_i)^2 \)

- Then \(E[f(X)] = \frac{1}{n} \sum_i n \left(m_i \right)^2 \)

- So, \(E[f(X)] = \sum_i (m_i)^2 = S \)

- We have the second moment (in expectation)!
Higher-Order Moments

- For estimating k^{th} moment we essentially use the same algorithm but change the estimate:
 - For $k=2$ we used $n \cdot (2 \cdot c - 1)$
 - For $k=3$ we use: $n \cdot (3 \cdot c^2 - 3c + 1)$ (where $c=X.val$)

- Why?
 - For $k=2$: Remember we had $(1 + 3 + 5 + \cdots + 2m_i - 1)$ and we showed terms $2c-1$ (for $c=1,\ldots,m$) sum to m^2
 - $\sum_{c=1}^{m} 2c - 1 = \sum_{c=1}^{m} c^2 - \sum_{c=1}^{m} (c - 1)^2 = m^2$
 - So: $2c - 1 = c^2 - (c - 1)^2$
 - For $k=3$: $c^3 - (c-1)^3 = 3c^2 - 3c + 1$

- Generally: Estimate $= n \left(c^k - (c - 1)^k \right)$
In practice:
- Compute \(f(X) = n(2c - 1) \) for as many variables \(X \) as you can fit in memory
- Average them in groups
- Take median of averages

Problem: Streams never end
- We assumed there was a number \(n \), the number of positions in the stream
- But real streams go on forever, so \(n \) is a variable – the number of inputs seen so far
Streams Never End: Fixups

1. The variables X have n as a factor – keep n separately; just hold the count in X
2. Suppose we can only store k counts. We must throw some Xs out as time goes on:
 - **Objective:** Each starting time t is selected with probability k/n
 - **Solution:** (fixed-size sampling!)
 - Choose the first k times for k variables
 - When the n^{th} element arrives ($n > k$), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables X out, with equal probability
Counting Itemsets
New Problem: Given a stream, which items appear more than s times in the window?

Possible solution: Think of the stream of baskets as one binary stream per item

- 1 = item present; 0 = not present
- Use **DGIM** to estimate counts of 1s for all items
Extensions

- In principle, you could count frequent pairs or even larger sets the same way
 - One stream per itemset

- Drawbacks:
 - Only approximate
 - Number of itemsets is way too big
Exponentially Decaying Windows

- **Exponentially decaying windows**: A heuristic for selecting likely frequent item(sets)
 - What are “currently” most popular movies?
 - Instead of computing the raw count in last N elements
 - Compute a smooth aggregation over the whole stream
 - If stream is a_1, a_2, \ldots and we are taking the sum of the stream, take the answer at time t to be:
 \[
 \sum_{i=1}^{t} a_i (1 - c)^{t-i}
 \]
 - c is a constant, presumably tiny, like 10^{-6} or 10^{-9}
 - **When new a_{t+1} arrives**: Multiply current sum by $(1-c)$ and add a_{t+1}
If each a_i is an “item” we can compute the characteristic function of each possible item x as an Exponentially Decaying Window

- That is: $\sum_{i=1}^{t} \delta_i \cdot (1 - c)^{t-i}$
 where $\delta_i = 1$ if $a_i = x$, and 0 otherwise

- Imagine that for each item x we have a binary stream (1 if x appears, 0 if x does not appear)

- New item x arrives:
 - Multiply all counts by $(1-c)$
 - Add +1 to count for element x

- **Call this sum the “weight” of item x**
\[\sum_t (1 - c)^t \text{ is } 1/[1 - (1 - c)] = 1/c \]

- **Important property**: Sum over all weights

\[\sum_{k=0}^{n} z^k = \frac{1 - z^{n+1}}{1 - z} \]
Example: Counting Items

- What are “currently” most popular movies?
- Suppose we want to find movies of weight > \(\frac{1}{2} \)
 - **Important property:** Sum over all weights
 \[\sum_t (1 - c)^t \text{ is } \frac{1}{[1 - (1 - c)]} = \frac{1}{c} \]
- **Thus:**
 - There cannot be more than \(\frac{2}{c} \) movies with weight of \(\frac{1}{2} \) or more
- So, \(\frac{2}{c} \) is a limit on the number of movies being counted at any time
Extension to Itemsets

- Count (some) itemsets in an E.D.W.
 - What are currently “hot” itemsets?
 - **Problem:** Too many itemsets to keep counts of all of them in memory
- **When a basket B comes in:**
 - Multiply all counts by \((1-c)\)
 - For uncounted items in \(B\), create new count
 - Add 1 to count of any item in \(B\) and to any itemset contained in \(B\) that is already being counted
 - Drop counts < \(\frac{1}{2}\)
 - Initiate new counts (next slide)
Initiation of New Counts

- Start a count for an itemset $S \subseteq B$ if every proper subset of S had a count prior to arrival of basket B
 - **Intuitively:** If all subsets of S are being counted this means they are “frequent/hot” and thus S has a potential to be “hot”
- **Example:**
 - Start counting $S=\{i, j\}$ iff both i and j were counted prior to seeing B
 - Start counting $S=\{i, j, k\}$ iff $\{i, j\}$, $\{i, k\}$, and $\{j, k\}$ were all counted prior to seeing B
Counts for single items < \((2/c)\cdot(\text{avg. number of items in a basket})\)

Counts for larger itemsets = ??

But we are conservative about starting counts of large sets

- If we counted every set we saw, one basket of 20 items would initiate 1M counts