CS246 Finals Review

The CS 246 Course Staff
MapReduce (Hadoop)

Programming model designed for:

- **Large Datasets (HDFS)**
 - Large files broken into chunks
 - Chunks are replicated on different nodes

- **Easy Parallelization**
 - Takes care of scheduling

- **Fault Tolerance**
 - Monitors and re-executes failed tasks
Dataflow

MapReduce operates exclusively on <key, value> pairs

Steps:
- **Map:**
 - Map function be applied independently to each unit of input
- **Shuffle:**
 - Redistributes data by output key of mappers
- **Reduce:**
 - Operates on full set of values for each key and produces a single output

Final output is the union of all the reducers

Multiple MapReduce jobs can be chained together

Degree of parallelism determined by # Mapper tasks and Reducer tasks
Coping with Failure

MapReduce is designed to deal with compute nodes failing. Output from previous phases is stored. Re-execute failed tasks, not whole jobs.

Blocking Property: no output is used until the task is complete. Thus, we can restart a Map task that failed without fear that a Reduce task has already used some output of the failed Map task.
Frequent Itemsets

- **The Market-Basket Model**
 - Items
 - Baskets
 - Count how many baskets contain an itemset
 - Support threshold => frequent itemsets

- **Application**
 - Confidence
 - \(\Pr(D | A, B, C) \)
Computation Model

- Count frequent pairs
- Main memory is the bottleneck
- How to store pair counts?
 - Triangular matrix/Table
- Frequent pairs -> frequent items
- A-Priori Algorithm
 - Pass 1 - Item counts
 - Pass 2 - Frequent items + pair counts
- PCY
 - Pass 1 - Hash pairs into buckets
 - Infrequent bucket -> infrequent pairs
 - Pass 2 - Bitmap for buckets
 - Count pairs w/ frequent items and frequent bucket
All (Or Most) Frequent Itemsets

● Handle Large Datasets

● Simple Algorithm
 ○ Sample from all baskets
 ○ Run A-Priori/PCY in main memory with lower threshold
 ○ No guarantee

● SON Algorithm
 ○ Partition baskets into subsets
 ○ Frequent in the whole => frequent in at least one subset

● Toivonen’s Algorithm
 ○ Negative Border - not frequent in the sample but all immediate subsets are
 ○ Pass 2 - Count frequent itemsets and sets in their negative border
 ○ What guarantee?
Locality-Sensitive Hashing

Main idea:

- What: hashing techniques to map similar items to the same bucket
- Applications: similar documents, entity resolution, etc.

For the similar document application, the main steps are:

1. Shingling - converting documents to set representations
2. Minhashing - converting sets to short signatures using random permutations
3. Locality-sensitive hashing - applying the “b bands of r rows” technique on the signature matrix to an “s-shaped” curve
Locality-Sensitive Hashing

General Theory:

- **Distance measures** d (similar items are “close”):
 - Ex) Euclidean, Jaccard, cosine, edit, Hamming

- **LSH families**:
 - A family of hash functions H is (d_1, d_2, p_1, p_2)-sensitive if for any x and y:
 - If $d(x, y) \leq d_1$, $\Pr[h(x) = h(y)] \geq p_1$; and
 - If $d(x, y) \geq d_2$, $\Pr[h(x) = h(y)] \leq p_2$.
 - Ex) minhashing, random hyperplane

- **Amplification of an LSH families** (“bands” technique):
 - AND construction (“rows in a band”)
 - OR construction (“many bands”)
 - AND-OR/OR-AND compositions
Clustering

What: Given a set of points, group them in ‘clusters’ so that a point is more similar to other points within the cluster compared to points in other clusters (unsupervised learning - without labels)

How: Two types of approaches

- **Point assignments:** maintain a set of clusters, assign points, iteratively refine
- **Hierarchical:** each point is its own cluster, repeatedly combine nearest clusters
Point Assignment approaches

- **Spherical/convex cluster shapes**
- **k-means**: initialize cluster centroids, assign points to the nearest centroid, iteratively refine estimates of the centroids
 - Euclidean space
 - Sensitive to initialization (K-means++)
 - Good values of “k” empirically derived
 - Assumes dataset can fit in memory
- **BFR algorithm**: variant of k-means for very large datasets (residing on disk)
 - Keep running statistics of previous memory loads
 - Compute centroid, assign points to clusters in a second pass
Hierarchical clustering

- Works better when clusters have weird shapes (e.g. concentric)
- **General approach:**
 - Start with each point in its own cluster
 - Successively merge two “nearest” clusters until convergence
- **Important problems:**
 - Location of clusters: centroid in Euclidean spaces, clustroid in non-Euclidean spaces
 - Intercluster distance: smallest max distance, smallest average distance, cohesion. What works best depends on cluster shapes, often trial and error
Dimensionality Reduction

- Methods of Dimensionality Reduction
 - UV Decomposition
 - \(M = UV \)
 - SVD
 - \(M = U\Sigma V^T \)
 - CUR Decomposition
 - \(M = CUR \)

- Motivation
 - Discover hidden correlation
 - Remove redundant and noisy features
 - Easier storage and processing of the data

\[A = U \Sigma V^T \text{ - example:} \]

\[
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
3 & 3 & 3 & 0 & 0 \\
4 & 4 & 4 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 2 & 0 & 4 & 4 \\
0 & 0 & 0 & 5 & 5 \\
0 & 1 & 0 & 2 & 2
\end{bmatrix}
= \begin{bmatrix}
0.13 & 0.02 & -0.01 \\
0.41 & 0.07 & -0.03 \\
0.55 & 0.09 & -0.04 \\
0.68 & 0.11 & -0.05 \\
0.15 & -0.59 & 0.65 \\
0.07 & -0.73 & -0.67 \\
0.07 & -0.29 & 0.32
\end{bmatrix}
\]

SciFi-concept:

\[
\begin{bmatrix}
12.4 & 0 & 0 \\
0 & 9.5 & 0 \\
0 & 0 & 1.3
\end{bmatrix}
\]

“strength” of the SciFi-concept

\[
\begin{bmatrix}
0.56 & 0.59 & 0.56 & 0.09 & 0.09 \\
0.12 & -0.02 & 0.12 & -0.69 & -0.69 \\
0.40 & -0.80 & 0.40 & 0.09 & 0.09
\end{bmatrix}
\]

\(V \) is “movie-to-concept” similarity matrix
SVD Calculation

- $M = U \Sigma V^T$
 - Based on the orthonormal properties of U and V, it can be shown the columns of V are eigenvectors of $M^T M$
 - The columns of U are eigenvectors of $M M^T$

- Steps to calculate
 - Find Σ, V
 - Find eigenpairs of $M^T M$
 - Σ is square root of eigenvalues
 - V is the normalized eigenvectors
 - Similarly, to find U, just find eigenpairs of $M M^T$
PageRank

- PageRank is a method for determining the importance of webpages
 - Named after Larry Page
- Rank of a page depends on how many pages link to it
- Pages with higher rank get more of a vote
- The vote of a page is evenly divided among all pages that it links to
PageRank

- **PageRank equation** [Brin-Page, ‘98]
 \[
 r_j = \sum_{i \rightarrow j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}
 \]

- **The Google Matrix A:**
 \[
 A = \beta \ M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}
 \]

- **We have a recursive problem:** \(r = A \cdot r \)

If \(i \rightarrow j \), then \(M_{ji} = \frac{1}{d_i} \) else \(M_{ji} = 0 \)

[Jure Leskovec, CS 246, Winter 2014]
Hubs and Authorities

- Similar to PageRank
- Every webpage gets two scores: an “authority” score, which measures the quality of the webpage, and a “hub” score, which measures how good it is at linking to good webpages
- Mutually recursive definition:
 - Good hubs link to good authorities
 - Good authorities are linked to by good hubs
Hubs and Authorities

- Adjacency matrix $A (N \times N)$: $A_{ij} = 1$ if $i \rightarrow j$, 0 otherwise
 - Set: $a_i = h_i = \frac{1}{\sqrt{n}}$

Repeat until convergence:
- $h = A \cdot a$
- $a = A^T \cdot h$
- Normalize a and h

[Jure Leskovec, CS 246, Winter 2014]
Social Networks & Community Detection

- **Basic Terms:**
 - Locality, Community, Diameter, Small-world property

- **Betweenness:**
 - Edges of high betweenness separate communities
 - Girvin-Newman Algorithm

- **Cliques, bi-cliques**
 - Definition: Sets of nodes that are fully connected
 - Growing cliques + bi-cliques

- **Laplacian Matrices**
 - How to Construct a Laplacian Matrix
 - Using eigenvector with the second-smallest eigenvalue

![Graph with nodes A, B, C, D, E, F, G and edges labeled with weights.]

\[
\begin{bmatrix}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{bmatrix}
\begin{bmatrix}
1 \\
\sqrt{2} & -1 \\
1 & -\sqrt{2} \\
-1
\end{bmatrix}
=
\begin{bmatrix}
2 - \sqrt{2} \\
3 \sqrt{2} - 4 \\
4 - 3 \sqrt{2} \\
\sqrt{2} - 2
\end{bmatrix}
=
\begin{bmatrix}
.586 \\
.242 \\
-.242 \\
-.586
\end{bmatrix}
\]
More Graph Algorithms

- Affiliation-Graph Models (AGM):
 - Model that best explains the edges in the graph, given a set of communities with associated probabilities
 - Gradient Descent optimizes graph

- Triangle Counting via “Heavy Hitters”:
 - “heavy hitter” – a node with degree at least \sqrt{M}
 - Using heavy-hitter triangles to count triangles $\Rightarrow O(M^{1.5})$ algorithm
 - Potential speed-up compared to naive solution $O(MN)$ or $O(N^3)$
Transitive Closure

- Definition: Given a directed graph, find out if a vertex \(j \) is reachable from another vertex \(i \) for all vertex pairs \((i, j)\) in the given graph.
- \(O(NM) \) in general, but can parallelize depending on algorithm

<table>
<thead>
<tr>
<th>Method</th>
<th>Total (Serial) Computation</th>
<th>Parallel Rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warshall</td>
<td>(O(N^3))</td>
<td>(O(N))</td>
</tr>
<tr>
<td>Depth-First Search</td>
<td>(O(NM))</td>
<td>(O(M))</td>
</tr>
<tr>
<td>Breadth-First Search</td>
<td>(O(NM))</td>
<td>(O(D))</td>
</tr>
<tr>
<td>Linear + Seminaive</td>
<td>(O(NM))</td>
<td>(O(D))</td>
</tr>
<tr>
<td>Nonlinear + Seminaive</td>
<td>(O(N^3))</td>
<td>(O(\log D))</td>
</tr>
<tr>
<td>Smart</td>
<td>(O(N^3))</td>
<td>(O(\log D))</td>
</tr>
</tbody>
</table>

Seems odd. But in the worst case, almost all shortest paths can have a length that is a power of 2, so there is no guarantee of improvement for Smart.
Social Networks & Graph Algorithms: Cheat Sheet

- Property of Social Graphs: Locality, diameters
- Communities Detection: Betweenness, Girvan-Newman (GN) Algorithm
- Communities Detection: Cliques, Bi-Cliques, properties of Bi-Cliques
- Communities Detection: Using Laplacian Matrices
- The Affiliation-Graph Model (AGM), estimating maximum likelihoods
- Graph Algorithms: Using “Heavy Hitters” to count triangles in a large graph
- Graph Algorithms: Transitive Closure, algorithms on computing TC (focus on Semi-naive TC, Smart TC…)
Recommender Systems: Content-Based

What: Given a bunch of users, items and ratings, want to predict missing ratings

How: two methods.

- **Content-Based:**
 1. Collect user profile x and item profile i
 2. Estimate utility: $u(x,i) = \cos(x,i)$

- **Collaborative Filtering (next slide)**
Recommender Systems: Collaborative Filtering

Collaborative Filtering:

- **user-user CF vs item-item CF**
 user-user CF: estimate a user’s rating based on ratings of similar users who have rated the item. Similar definition for item-item CF.

- **Similarity metrics**
 Jaccard similarity: *binary*; Cosine similarity: *treats missing ratings as “negative”*; Pearson correlation coeff: *remove mean of non-missing ratings, zero-centered.*

- **Baseline estimate:** \(b_{xi} = \mu + b_x + b_i \)
 In CF, sometimes we remove baseline estimate and only model rating deviations from baseline estimate, so that we’re not affected by user/item bias.

Evaluation: Root-Mean-Square error (RMSE), etc.
Recommender Systems: Latent Factor Models

Motivation: Collaborative filtering is a local approach to predicting ratings based on finding neighbors. Matrix factorization takes a more global view.

Intuition: We decompose users and movies based on a set of latent factors. Using these latent factors, we can make predictions. For example, if you like fantasy movies and Harry Potter has a big fantasy component, then the model will predict that you’ll be more likely to like Harry Potter.

Model: \(\hat{r}_{xi} = p_x \cdot q_i \) for user x and movie i
Recommender Systems: Latent Factor Models

\[
\min_{P,Q} \sum_{(x,i) \in \text{training}} (r_{xi} - p_x \cdot q_i)^2 + \lambda_1 \sum_x \|p_x\|^2 + \lambda_2 \sum_i \|q_i\|^2
\]

- Note that we only sum over observed ratings in the training set
- Use regularization to prevent overfitting
- Can solve this via SGD
- Can be extended to include biases (and temporal biases)

\[
\hat{r}_{xi} = \mu + b_x + b_i + p_x \cdot q_i
\]

- Netflix Prize: get best performance using large ensemble of models
Machine Learning

Training examples \{((x_1, y_1), (x_2, y_2), ...\} where x is the type of item we wish to evaluate, and y is its label. If y belongs to a discrete set, this is a classification problem, and if y is a real number, it is a regression problem.

In binary (two classes) classification problems, y belongs to \{-1, 1\}. Example: spam classification, we might have an email x that is spam, and its label is y = 1.

Usually evaluated on a test set of the form \{((x_1, x_2, x_3, x_4...\}.

(Here we are only talking about supervised learning, where labels are given).
SVM: Maximum margin classifiers

When we have linearly separable data
Measuring Impurity of a Set S

Let $p_1, ..., p_k$ be the fractions of measures of S with the k possible values of y.

3 main measures of impurity:

1) **Accuracy**: if output is the most common value of y, what fraction of inputs in the set S are not given their correct output: $1 - \max_i p_i$

2) **GINI Impurity**: $1 - \sum_i (p_i)^2$

3) **Entropy**: $\sum_i -p_i \log_2(p_i)$ or equivalently $\sum_i p_i \log_2(1/p_i)$

We want low impurity!
Linear Separator

- A linear separator is a d-dimensional vector \(w \) and a threshold \(\theta \) such that the hyperplane defined by \(w \) and \(\theta \) separates the positive and negative examples.
- Given input \(x \), the separator returns +1 if \(x.w > \theta \) and returns -1 if not.
- The hyperplane is the set of points whose dot product with \(w \) is \(\theta \).
Perceptron

Given a set of training points \((x, y)\) where:

1) \(X\) is a real valued vector of \(d\) dimensions (i.e. a point in a Euclidean space) and
2) \(y\) is a binary decision +1 or -1

A perceptron tries to find a linear separator between the positive and negative inputs.
Stochastic Gradient Descent

- performs a parameter update for each training example $x(i)$ and label $y(i)$
 computes the gradient of the cost function w.r.t. to the parameters θ for the entire training dataset

$$\theta = \theta - \eta \cdot \nabla_{\theta} J(\theta; x^{(i)}; y^{(i)}).$$
Bloom Filter [1970]

- **Basic construction**
 - Use one hash function
 - Errors caused by hash function collisions
 - Bounded error probability

- **The Magic of independent trials**
 - Use many (independent!) hash functions
 - Combine trials by noting if all corresponding cells have a 1
 - Exponentially reduce probability of error

- **Tune number of buckets and number of hash functions**
 - Query time, and insertion time increase linearly with number of hash functions
 - Trade off error probability with space usage
 - But, space usage does not depend on number of elements in stream!
Count-Min Sketch (HW 4) [2003]

- Similar in spirit to Bloom filter
- Basic construction
 - Use one hash function
 - Each cell stores an overestimate of the true count
 - Again, errors caused by hash function collisions
 - In expectation, overestimate not too bad
 - Bounded probability of overestimating
 - Use a tail bound
Count-Min Sketch (HW 4) [2003]

- **The Magic of Independent Trials**
 - Use many (independent!) hash functions
 - Combine trials by taking the *best* overestimate (the minimum!)
 - Exponential reduction in error probability

- **Tune error tolerance ε and error probability δ**
 - Space usage is $O(1/\varepsilon \log(1/\delta))$
 - Trade off both tolerance and error probability with space usage
 - Again, space usage does not depend on number of elements in stream!
 - For fixed tolerance and error probability, space is a constant

- **This is a primitive at many large tech companies**
 - Search queries
 - Web requests
Flajolet-Martin

- Problem: a data stream consists of elements chosen from a set of size n. Maintain a count of the number of distinct elements seen so far.
- Pick a hash function h that maps each of the n elements to at least $\log_2 n$ bits.
- For each stream element a, let $r(a)$ be the number of trailing 0’s in $h(a)$.
 - Record R = the maximum $r(a)$ seen for any a in the stream.
 - Also known as the “tail length”
- Estimate of distinct elements $= 2^R$.
- Intuitively, seeing r trailing 0s is “unusual”
 - More distinct elements leads to a higher chance of seeing this “unusual” event
- If we notice this “unusual” event, our estimate should be correspondingly higher
AMS Algorithm

● Problem: Suppose a stream has elements chosen from a set of n values. Let m_i be the number of times value i occurs. Find the k^{th} moment which is the sum of $(m_i)^k$ over all i.
 ○ 0^{th} moment = number of different elements in the stream.
 ○ 1^{st} moment = sum of counts of the numbers of elements = length of the stream.
 ○ 2^{nd} moment = measure of how uneven the distribution is.

● Algorithm for 2^{nd} moment:
 ○ Assume stream has n elements
 ○ Pick a random starting and let the chosen time have element a in the stream.
 ○ Let $X =$ # times a is seen in the stream from that point onward
 ○ Estimate of 2^{nd} moment = $n(2X -1)$