CS250/EE387 - Lecture 1 -Logistics + Basics

Agenda
(1) Logistics
(2) Course Pitch
(3) Basic problem in coding theory
(4) Formal definitions
(5) Rate vs. Distance: Hemming bound
(1) LOGISTICS

During this course, we will be learning a little bit about OCTOPUSES.

Today's Octopus Fact:
Octopuses have three hearts! One of the hearts is inactive when the octopus is swimming, So it tires out faster when swimming than when crawling.

- Course Elements
- Pre-recorded videos, with corresponding lecture notes
- In-class exercises, meant to practice, reinforce, and extend material in the videos/notes.
- 3 HW assignments
- Final project
- CLASS Meetings
-This is a "flipped"class - watch the videos before class and come to class ready to engage!
SEE COURSE WEBSITE FOR MORE DETAILS! Also for the schedule, materials, assignments, etc.
(2) COURSE PITCH
\qquad

I. Error correcting codes are a fundamental tool for
II. Algebraic techniques are a fundamental tool for designing ECCs.

Basically, this course is about the following fact:
LOW-DEGREE POLYNOMIALS
DON'T HAVE TOO MANY ROOTS.

As we will see, this fact is stupidly useful throughout CS and EE.
[Tours eDith std.]

In this class we will discuss:

- Basics of Error Correcting Codes: combinatorial bounds + existential results
- Some basic abstract algebra [finite fields-nothing fancy]
- The classic polynomial codes: Reed-Solomon and Reed-Muller
- [If time wewillmention] fancier polynomial coddles:

Multiplicity Codes, Folded RS coles

- Algorithms for manipulating these codes in various settings:

Unique decoding, list decoding, local decoding
why.
we are? - Applications!
In this class we will NOT discuss:

- Nitty gritty details of any one application (this is a THEORY course)
- LDPC codes, Turbo codes, Raptor Codes, Fountain Codes,...
[See Montanari's course EE 388 for all that good stuff.]
At the end of this course:

You should have the tools to use
ERROR-CORRECTING CODES (and the algebruictools behind them)
IN YOUR OWN RESEARCH/LIFE.

That means:

- Enough familiarity with terminology, constructions, algorithms, and notions of clecoding to pick up a research paper and understand it.
- Exposure to lots of examples of how ECCs can be useful in a wide variety of settings.
(3) The BASIC PROBLEM in CODING THEORY

The goal:
Given
Cu, FIND (SOMETHING ABOUT) x.

EXAMPLE: COMMUNICATION

EXAMPLE: STORAGE

1. Suppose x is a file.

2. Encode as a codeword c.
3. c is stored; say on a CD or in a RAID array.. but something BAD happens.
4. I still want x !

Things we care about:
(1) We should be able to handle the SOMETHING BAD, whatever that means.
(2) We should be able to recover WHAT WE WANT To KNOW about x.
(3) We want to MINIMIZE OVERHEAD: k / n should be as big as possible.
(4) We want to to all this EfficIENTLY.

QUESTION What are the trade-offs between (1)-(4)?

It depends on how we model things:

- What is the SOMETHING BAD?
- What exactly do we WANT TO KNOW?
-What counts as EFFICIENT? What kind of access do we have to \tilde{C} ?

Today weill look at one way of ans wiring these questions.
There are many legit ways, and we will see more throughout the quarter.
(4) Formal Definitions

Let \sum be any finite set and let $n>0$ be an integer. DEF.

A CODE C of BLOCKLENGTH x over an ALPHABET \sum is a subset $C \subseteq \sum^{n}$.
An element $c \in C$ is called a CODEWORD.
So far, this is not a very interesting definition.
EXAMPLE 1. $C=\{$ HELLOWORLD, BRUNCHTIME, ALLTHETIME $\}$ is a code of block length 10 over $\sum=\{A, B, \ldots, X, Y, Z\}$.

EXAMPLE 2

$$
C=
$$

$$
\left\{\begin{array}{l}
(0,0,0,0) \\
(0,0,1,1) \\
(0,1,0,1) \\
(0,1,1,0) \\
(1,0,0,1) \\
(1,0,1,0) \\
(1,1,0,0) \\
(1,1,1,1)
\end{array}\right\}
$$

What does this have to do with the picture from before? [tisane \downarrow] Consider the map ENc: $\{0,1\}^{3} \rightarrow\{0,1\}^{4}$ given by:

ENC: $\frac{\left(x_{1}, x_{2}, x_{5}\right)}{\text { message } x} \longmapsto \underbrace{\left(x_{1}, x_{2}, x_{3}, x_{1}+x_{2}+x_{3} \operatorname{man} / 2\right)}_{\text {codeword } c}$ For example, $\operatorname{ENC}((0,1,1))=(0,1,1,0)$.

Then $C=\operatorname{Im}(E N C)$. That is, C is the set of all codewords that could be obtained using this encoding map.

The second example can actually be used to fix bad stuff
Suppose you see:

$$
0\} 01
$$

C The SOMETHNN BAD that happened obscured this entry. \longleftarrow
What is the missing bit?
It must be a 1 , since $0+\boldsymbol{O}+0=1 \bmod 2$.
Suppose instead you see:
We know which bit got erased, but we don't know what its
original value was.
0001
Then we know SOMETHING went wrong (at least one bit ness flipped) but we are not sure what it was.
We say that the code in EXAMPLE 2 can $\left\{\begin{array}{l}\text { CORRECT one ERASUVE } \\ \text { DETECT one ERROR }\end{array}\right.$ his is called an ERROR. know which one.

But it cannot CORRECT one ERROR Let's see a code that can.
EXAMPLE 3. Consider the encoding map ENC: $\{0,1\}^{4} \rightarrow\{0,1\}^{7} \quad{ }^{\text {all ma/ }} 12$

$$
\text { ENC: }\left(x_{1}, x_{2}, x_{5}, x_{4}\right) \mapsto\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{2}+x_{3}+x_{4}, x_{1}+x_{3}+x_{4}, x_{1}+x_{2}+x_{4}\right)
$$

Another way i VISUALLZE this CODE:

Put the message $x_{1}, x_{2}, x_{3}, x_{4}$ in the middle, and then the circles tell you how to fill in the rest.

PUZZLE: I took some $c \in C$ and flipped at most one bit, to obtain:

$$
\tilde{c}=\left(\begin{array}{lllllll}
0 & 1 & 1 & 1 & 0 & 1 & 0
\end{array}\right)
$$

What is C?

ALTERNATIVE LOOK at the PUZZLE:

In a legit codeword, all three circles should sum to 0 . Here, both the green circle and the red circle are messed up.

The thing those circles have in common is \tilde{c}_{3}. So if I flip \tilde{c}_{3} I should get a legit Codeword again:

$$
\tilde{C}=(0,1,0,1,0,1,0) \text { or }
$$

And, \tilde{C} is the ONLY solution because flipping any other bit would mess up other circles.

Hooray! That works. But it seems pretty ad hoc. For the rest of this lecture and some of next one, well try to introduce some formalism to makethis solution seem less ad hoc. At the same time we will flesh out what we care about for ECCS.

First some definitions:

(1) We should be able to handle the SOMETHING BAD, whatever th
(2) We should be able to recover WHAT WE WANT T KNOW about x
(3) We want to Minimize ovelin (2) We should be dole to recover WHAT WE WANT To KNoW about x.
(3) We want to MINIMIZE OVERHEAD: Kin should be as small as possible.
(4) We want to to all this EFFICIENTLY.

DEF. The HAMMING DISTANCE between $x, y \in \sum^{n}$ is

$$
\Delta(x, y):=\sum_{i=1}^{n} \mathbb{1}\left\{x_{i} \neq y_{i}\right\}
$$

The RELATVE HAMMING DISTANCE between $x, y \in \sum^{n}$ is

$$
\delta(x, y):=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{x_{i} \neq y_{i}\right\}=\frac{\Delta(x, y)}{n} .
$$

DEF The MINIMUM DISTANCE of a code $C \leq \sum^{n}$ is

$$
\min _{\substack{c \neq c^{\prime} \\ \text { inc } c}} \Delta\left(c, c^{\prime}\right)
$$

CLAIM The code in EXAMPLE 3 has minimum distance 3.

If the CLAIM is true, it explains why that cockle can correct oneemor:

I will frequently draw
pictures as though Hamming distance is Euclidean distance, and $\{0,1\}^{n}$ is \mathbb{R}^{2}.

Indeed, if $\Delta\left(c, c^{\prime}\right) \geqslant 3 \forall c \neq c^{\prime} \in C$, then
$\Delta(\tilde{c}, c)=1 \quad \Longrightarrow \quad \Delta\left(\tilde{c}, c^{\prime}\right) \geqslant 2 \quad \forall c^{\prime} \in C$ other than c.
by the triangle inequality. Thus, the "correct" codeword $c \in C$ is uniquely defined by "the one that is dosest to "c."

To prove the CLAIM:

- You can probably convince yourself ty staring at (in the same way we convinced ourselves we could always fix one error).
- But weill see a much less ad hoc way to establish distance after we build up some machinery for LINEAR CODES in lecture 2, so let's putt aside for now.

The POINT of this dicussion was that:
MINIMUM DISTANCE is a reasonable proxy for robustness.

That is,

- In EXAMPLE 2, the code had minimum distance 2 (check this!) and could CORRECT 1 ERASURE and DETECT 1 ERROR.
- In EXAMPLE 3, the code had minimum distance 3, and could CORRECT 1 ERROR.

More generally, a code with distance d can:

- correct $\leqslant d-1$ erasures
- detect $\leq d-1$ errors $<$
\rightarrow - correct $\leqslant\left\lfloor\frac{d-1}{2}\right\rfloor$ errors
For these two, the (inefficient) algorithm is:
"if you see "cf, return $c \in C$ that's closest to \check{c}."
For this one, the (inefficient) alg. is: "If "eq C, say that something is wrong."

The picture looks like this:

- If C is the "correct" codeword and $\left.\leq \frac{d-1}{2}\right\rfloor$ errors are introduced, we may end up with \tilde{c}_{1}. Since all the \qquad
- However, if $\leq d-1$ errors are introduced, we may end up with \tilde{c}_{2}. Now it's possible that \tilde{c}_{2} came from cor that it came from c^{\prime}; we can't tell. However, since each ball duesn't contain any codeword other than its center, we can tell that something went wrong.

Retuming to this, we can now clarify the first two things.

$$
\theta \text { (forme erie) }
$$

Things we care about:
(1) We should be able to handle the SOMETHNG BAD, whatever that means.
(2) We should be able to recover WHAT WE WANT To KNow about x.
(3) We want to MINIMIZE OVERHEAD: k / n should be as small as possible.
(4) We want to to all this EfficIENTLY.

If we want:
(1) We should be able to handle $\left\lfloor\frac{d-1}{2}\right\rfloor$ worst-cASE ERRors or $d-1$ wurst-aSE ERNuRES
(2) We want to recover ALL OF x (aka correct the errors or erasures)

Then we should say $1 \dot{2}$ We want MINIMUM DISTANCE d.
Next we will move on to (3).
AsIDE. A natural question at this point is, "what if I don't want to handle worst-case errors/erasures?" For example, if my code has minimum distance d, and I have two codewords:

$$
\begin{aligned}
& C=\left(\begin{array}{lllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \in\{0,1\}^{n} \\
& c^{\prime}=(\underbrace{(1111}_{d} 000000000000) \in\{0,1\}^{n}
\end{aligned}
$$

Then if an adversary chooses to flip the first two bits, wed be confused. But instead say two bits get flipped at random. The probability we get confused is $\frac{\binom{d}{2}}{\binom{n}{2}}$ which might be quite small!
The random-eror model (also called the "Shannon model" or "Stochastic model") is natural and important! We will discuss it a lithe bit in this class. However, most of our focus will be in the worst -case model (also called the "Hemming model" or "adversarial model."

Moving on to (3), what do we mean by "overhead"?
DEF. The MESSAGE LENGTH (sometimes called DIMENSION) of a code C over an alphabet Σ is defined to be $k=\log _{|\Sigma|}|C|$.

This definition makes sense with our operational understanding:

$$
\underbrace{(\text { message of length k over } \Sigma)}_{|\Sigma|^{k} \text { possibilities }} \stackrel{E N c}{\longmapsto} \underbrace{\text { codeword } c \in C)}_{|C| \text { possibilities }}
$$

So $|\Sigma|^{k}=|C|$ aka $k=\log _{|\Sigma|}|C|$.

DEF. The RATE of a code $C \subseteq \sum^{n}$ with block length n over an alphabet Σ is

$$
R=\frac{\log _{|\Sigma|}|C|}{n}=\frac{\text { message length } k}{\text { block length } n}
$$

So if R is close to 1, that's GOOD. Not much overhead.
And if R is close to O, that's BAD. Lots of overhead.
DEF. A code with distance d, message length k, block length n, and alphabet \sum is called a $(n, k, d)_{|\Sigma|}$ code.

Question. What is the best trade-off between rate and Distance?
(5) Rate us. Distance: Hamming Bound.

What is the best trade-off between rate and distance we can hope for? The hamming Bound gives one bound on this.

Let's return to the picture we had before, with disjoint Hamming balls of radius $\left\lfloor\frac{d-1}{2}\right\rfloor$:

- We have $|\mathrm{C}|$ disjoint Hamming balls of raclius $\left\lfloor\frac{d-1}{2}\right\rfloor$.
- There can't be too many of them or they wouldn't all fit in Σ^{n}.

To be a bit more precise:
DEF. The HAMMING BNLL in \sum^{n} of radius e about $x \in \sum^{n}$ is

$$
B_{\Sigma^{n}}(x, e):=\left\{y \in \Sigma^{n}: \Delta(x, y) \leqslant e\right\}
$$

The VOLUME of $B_{\Sigma^{n}}(x, e)$ is $\left.\quad \operatorname{Vol}\right|_{|\Sigma|}(e, n):=\left|B_{\Sigma^{n}}(x, e)\right|$
Notice that $\left|B_{\Sigma^{n}}(x, e)\right|$ does not depend on x. Notes:
Say that $|\Sigma|=q$. Then

- Sometimes I will drop the " $\Sigma^{n "}$ from the $B_{\Sigma^{n}}(x, e)$ notation
- Sometimes I will write $B_{\Sigma^{n}}(x, e / n)$ if its more convenient to talk about relative distance.

So that means that if a code $C \subseteq \sum^{n}$ has distance d and messogelenght k, where $\left|\sum\right|=q$,

$$
|C| \cdot \operatorname{Vol}_{q}\left(\left\lfloor\frac{d-1}{2}\right\rfloor, n\right) \leqslant q^{n}
$$

total volume in the total volume in \sum^{n}
so taking logs of both sides,

$$
\begin{aligned}
& \int_{\log _{q \log _{q}(|C|)=k}}(|C|)+\log _{q}\left(\operatorname{Vol}_{q}\left(\left\lfloor\frac{d-1}{2}\right\rfloor, n\right)\right) \leqslant n \\
\Rightarrow & \text { Rate }=\frac{k}{n} \leqslant 1-\frac{\log _{q}\left(\operatorname{Vol}_{q}\left(\left\lfloor\frac{d-1}{2}\right\rfloor, n\right)\right)}{n}
\end{aligned}
$$

This is called the HAMMING BOUND.
Back to EXAMPLE 3, which was a $(7,4,3)_{2}$ code

- We have $\left\lfloor\frac{d-1}{2}\right\rfloor=1$
- $\operatorname{Vol}_{2}(1,7)=1+\binom{7}{1} \cdot 1=8$
- So

$$
\frac{k}{n} \leqslant 1-\frac{\log _{2}(8)}{7}=1-3 / 7=4 / 7 .
$$

- And in fact $\frac{k}{n}=4 / 7$, so in this case the Hamming bound is tight!

Notes about this example:

- When the Hamming bound is tight, we say the code is PERFECT.
- EXAMPLE 3 (which is perfect) is a special case of something called a HAMMING CODE
- You will explore this more in in-class exercises and on homework.
(6) RECAP Now we understand the first 3 of our desiderata:

Things we care about:

$$
\text { THESE THREE }\left\{\begin{array}{l}
\text { (1) We should be able to handle the SOMETHING BAD, whatever that means. } \\
\text { (2) We should be able to recover WHAT WE WANT To KNow about } x . \\
\text { (3) We want to MINIMIZE OVERHEAD: R/n should be as large as possible. } \\
\text { (4) We want to to all this EFFICIENTLY. }
\end{array}\right.
$$

That is, (for now), our goal is to design coddles $C \leqslant \sum^{\text {n }}$ so that:

- The DISTANCE of C is as large as possible.
- The RAIE of C is as close to 1 as passible.

Even without the algorithmic considerations, understanding the trade-off between rate and distance tums out to be a fascinating combinatorial question!
In fact, for binary codes $(|\Sigma|=2)$, this question is STILL OPEN! (We saw that EXAMPLE 3 was optimal for $n=7$ and $k=4$, but what about in general?)
Next time, we'll give an overview of abstract algebra, and then give some more definitions that will further de-ad-hoclify EXAMPLE 3.

That's it for today.
QUESTIONS to PONDER:
(1) How would you generalize the code in EXAMPLE 3 to larger?
(2) What is the best bound you can come up with on the rate of a code $C \subseteq\{0,1\}^{n}$ with distance d ?

