
(5250/EE387 - LECTURE 1- LOGISTICS + BASICS

¥astimK-
AGENDA Duringthis course , we will be learning alittlebit

① Logistics
about OCTOPUSES

.

www.ask? Mg°É|② CoursePitch wnynot?!wÑ
"

③ Basic problem in coding theory
④ anna, degnan, { T.a.y.soa.p.sa.at :⑤ Raters . Distance : Hamming bound Octopuses have three hearts ! One of the

hearts is inactive when the octopus is swimming ,
so it tires out faster when swimming than when

① LOGISTICS crawling
• COURSE ELEMENTS

•Pre-recorded videos
,
with corresponding lecture notes

• In-class exercises
,
meant to practice , reinforce , and extend material in the videos/notes .

• 3 HW assignments
'

• Final project
• CLASS MEETINGS

•This is a "

flipped
"

class - Watch thevideos before class and come to class ready to engage
!

SEE COURSE WEBSITE FOR MORE DETAILS ! Also forme schedule , materials,
assignments, etc .

② COURSE PITCH

" ALGEBRAIC ERROR CORRECTING CODES
"

-
- communication

I
-

storage
I. Error correcting codes area fundamental tool for→ - complexity theory# algorithm design
I. Algebraic techniques are a fundamental tool for designing ECG .

-

cryptography
- pseudorandomness

Basically ,
this course is about the following fact : - etc . . .

,

LOW -DEGREE POLYNOMIALS

DON'T HAVE TOO MANY ROOTS
. e§É%%§

As we will see
,
this fact is stupidly useful throughout CS and EE

.



[CoursePitch ctd .]

lnlhisdasswewilldiscussi

p
. Basics of Error Correcting Codes : combinatorial bounds + existential results

what
are codes?

. Some basic abstract algebra [ finite fields - nothing fancy]

www.dq, {
. The classic polynomial codes : Reed- Solomon and Reed -Muller

them
?

. [If time wewill mention] fancier polynomial codes :
Multiplicity codes, folded RS codes

→ o Algorithms for manipulating these codes in various settings :How
do

weThen?

Unique decoding, list decoding , local decoding
wnydo a . Applications !
we
care
?

lnthisdasswewillnotdiscus.SI
. Nitty gritty details of any one application (this is a THEORY course)
. LDPC codes

,

Turbo codes
,
Raptor codes

,
Fountain codes

, . . .

[ See Montanari 's course EE 388 for all that good stuff. I

Attheendofthiscoursei

YOU SHOULD HAVE THE TOOLS TO USE

ERROR - CORRECTING CODES (andthealgebraic tools behind them)
IN YOUR OWN RESEARCH / LIFE .

That means :

• Enough familiarity with terminology ,
constructions

, algorithms,
and notions of decoding to pick up a research paper
and understand it

.

• Exposure to lots of examples of how ECG can be

useful in a wide variety of settings .



③ TheBASIC PROBLEM in CODING THEORY

The picture looks like this :
CODEWORD C of length n
-

#I¥#
T ENCODE

MESSAGE X SOMETHING BAD HAPPENS

of length k

⇒
-
CORRUPTED CODEWORD I .

maybe some entries got deleted , changed , etc.

| GIVEN E
,
FIND (SOMETHING ABOUT) X .

-

EXAMPLEi.COMMUNICAMON.eso.IS"
.

MM> EDE: " tying"¥÷?--

1. Alice has some /
2. Alice encodes 3. Alice sends

message x X her message asc Cb Bob over T
she would like a noisy channel ;
to send to Bob

.

ALICE
Bob hears E X

BOB



EXAMPLE : STORAGE
-

0
6

e

or

→ T Tt÷÷¥¥±, I
1
. Suppose x isa file . /
# #

2 . Encode x as a codeword c .

3
.
c is stored ; say on a.cl?.fs

but something
or in a RAID array .

BAD happens .

5
.
I still want x !

THINGSWECAREABOUTi.IO
We should be able to handle the SOMETHING BAD

,
whateverthat means

.

② We should be able to recover WHATWEWANT TO KNOW about X .

③ We want to MINIMIZE OVERHEAD : kin should be as big as possible .
④ We want to to all this EFFICIENTLY

.

Question What are the trade-offs between①-④ ?

It depends on how we model things :
• What is the SOMETHINGBAD ?

• What exactly do weWANT TO KNOW ?
• What counts as EFFICIENT? What kind of access do we have to E ?

Today we'll look at one way of answering these questions.
There are many legit ways, and we will see more throughout the quarter.



④ FORMAL DEFINITIONS

Let E. be any
finite set and let nso bean integer.

DEAcoDE_CofBL0CkLENGtHno/ an ALPHABET C is a subset CEE
'?

An element CEC is called a CODEWORD
.

Sometimes I will say
-

"

length
" instead of

-

"block length .
"

so far
,

this is not avery interesting definition .

EXAMPLE 1 . C = { HELLOWORLD , BRUNCHTIME, ALLTHETIME }
- -

is a code of block length 10 over[ ={ A ,B, . . >X.Y, Z} .

EXAMPLE2
.

(0,0
,
0,0)

T
This is not

= a very interesting(O
,
O

,
I
,
I ) code

, although it
(O

,
I
,
O
,
I ) does capturethe

C- { ii. o' :O' :P,} is:c;h%. "*mm'im"ivies .

( i
,
o
,
I
,
O) E -- {0113 . TTM's second( I , I , O , O ) -if E- {913

,
we say example is( I , I

,
I
,

I ) Cis a BINARY CODE
.

a bit more

interesting .
What does this have to do with the picture from before ? Ctnisoney]
Consider the map Enc :{0,133→ {0,134 givenby :
-

CODEWORD c of length n
-

#µ¥#
T ENCODE

C-NC : (X , , Xz , Xs ) ↳ (X , , Xz , Xz, X,tXztXz mod2) MESSAGE x SOMETHING BAD HAPPENS

of length K

Forixoi ltsiotnnia
Then C -

- IMCENC)
.
That is

,
C is the setof all codewords that could

be obtained using this encoding map .



The second example can actually be used to fix bad stuff .

suppose you see :
o ftp.oa.1

The SOMETHING BAD that happened
obscured this entry .

What is the missing bit ?
%

This is called an ERASUR

It must be a 1
,
since 0tDf@tO-1mod2.We know which bit

got erased, butwe
don't know what its

original valuewas .Suppose instead you see :
o.O o y

Then we know SOMETHING went wrong
(atleast one bit was flipped) but

we are not sure what it was . C-This is called an ERROLL .

We say that the code in EXAMPLE 2 can { CORRECT. ERASURE Oonmanbgitgmbauthaweabonen
DETECT one ERROR

know which one .

But itcannot CORRECToneERROR. Let's see a code that can .

EXAMPLE3_ .

Consider the encoding map ENC:{0,13%10,137 all mod
2

ENC : ( Xi , Xz , Xs, Xy) l→ ( Xi
,
Xz
,
Xs
,
4
,
Xzt Xstxy , X ,

tX¥Xq
, Xitxztxy)

let C- Imf ENC) . So CE {0,137
,

aka C is a BINARY CODE of LENGTH '7.

ANOTHER WAY to VISUALIZE this CODE :

4- -Xitxztx
,

← Put the message Xi , Xz , Xs , X4

inning:ii"www.iiimninenencisi.es .

÷*.



-

PUZZLE: I took some CEC and flipped at most one bit , to obtain :

E = ( O 1 1 L O L O)|Whati#
-

Ee ii. =Da
:÷±n:::

5
"

Is =

- .⇒n¥€÷i÷÷÷÷;÷
l÷÷÷÷÷÷÷÷÷:÷÷÷÷÷÷:* :*:And

,
E is the ONLY solution because

flipping any other bit would mess up other circles .

-



Hooray ! That works . But it seems pretty ad hoc .

Forthe restof this lectureand some of next one
,
we'll try

to introduce some formalism to makethis solution
seem less ad hoc . At the same timewe will flesh out what
we care about for ECG -

2. { gwwe.sn#..:i:a:::n::::mw:..som:ntntnais:snio:÷:c::
" means

.

thesethings . ③ We want to MINIMIZE OVERHEAD : kin should be as small as possible .

First some definitions :
④ We want to loan this EFFICIENTLY

.

-

DEI. The HAMMING DISTANCE between x.ye
E
"

is

Alay) [ iii. Ifxityi) c-
None :

/ the *www.n.mmngpwn.neewweenx.yeg , µ÷a÷g÷÷÷;g÷µ,

slays tnciiklxityi3.NET .

7-
DIE

.

The MINIMUM DISTANCE of a code CEE
"

is

min Dlc
,
c
' )|ci.¥/

CLAIMS The code in EXAMPLE3 has minimum distance 3
.



If the CLAIM is true, it explains why that code can correct oneerror ::

at least
3

0101010gc
'
↳
•

-
•
g-

•
"

any
other c' EC

.

DISCLAIMER 9 at least2
- I =

I will frequently draw
"" "o

pictures as though Hamming distance is Euclidean
distance

,
and {0,13

"
is R2

.

Indeed
,
if BK.ci/s-3fc-toeC, then

Ali
,
c) =L ⇒ DIE ,c

' ) >2 feel other than c.

by the triangle inequality . Thus , the
"correct

"

codeword Cec is

uniquely defined by
"

the one that is closestto E .

"

To
prove the CLAIM

:

• You can probably convince yourself by staring at (in the sameway we convinced
ourselves we could always
fix one error)

.

• But we'll see amuch less ad hocway to
establish distance after we build up somemachinery for LINEAR CODES
in Lecture 2

,
so let's put it aside for now .

The POINT of this dicussion was that :

MINIMVMDISTANCEisareasonabkproxyforrobustness.dk
a
, ①We should be able to handle the SOMETHING BAD

,
whatever that means

.{ ② We should be able to recover WHAT WE WANT TO KNOW about X .



That is
,

• In EXAMPLE 2
,
the code had minimum distance 2 (check this! ) and could CORRECT 1 ERASURE

and DETECT 1 ERROR
.

• In EXAMPLE 3
,
the code had minimum distance 3

,
and could CORRECT 1 ERROR

.

More generally , a code with distance d can :

[
• correct Ed -1 erasures

-

• detect Ed- 1 errors5-

→ . correct ⇐ VII errors (
form, one

,
the lineaments alg. is :

↳
these two, the (inefficient) algorithm is :

" if you seeE, return e-C that 's closest to E
"

"

If EetC, say that something is wrong.
"

The picture looks like this :

..⑧i¥⇒⑧÷÷÷÷÷÷¥"÷.

( e
. I '÷:÷:÷÷:¥÷:disjoint, but they

each contain exactly
one codeword

.

True codeword c Some other codeword c
'

• If c is the "

correct
"

codeword and s LH errors are introduced
,
we may end up

with CT
.

Since all the↳atolls
are disjoint, we can find c from CI .

• However
,
if ← d- 1 errors are introduced

, we may end up with CT .

Now it's possible
that I came from c or that it came from c ' ; we can't tell . However

,
since each "⑨

ball doesn't contain any codeword other than its center
,
we can tell that something

went wrong.



Returning to this , we can now clarify the first two things .
bile

THINGS WE CARE ABOUT :

/ Eisner::*::*. swim:*:c:S:*::*:c:p. means .③ We want to MINIMIZE OVERHEAD : kln should be as small as possible.
④ Wewant to to all this EFFICIENTLY

.

-

If we want :

① We should be able to handle Ld I WORST-CASE ERRORS or d-1 WORST-CASE ERASURES

② We want to recover ALL OF X (aka correct the errors or erasures)

Then we should say 1 Wewant MINIMUM DISTANCE d .

Next we will move on to③ .

#

Aside .

A natural question at this point is ,
"
what if I don't want to

handle worst-case errorsIerasures ?
" for example, if my

code has

minimum distance d
,
and I have two codewords :

C = ( O O O O O O O O O O O O O O) E {913
"

C
'

= ( l l l l O O O O O O O O O O ) E {0,13
"

-

d
.

Then if an adversary chooses to flip the first two bits
,
we'd be confused .

But instead say two bits get flipped at tandem .
The probability we get

confused is {d÷, which might be quite small !

The random -error model (also called the " Shannon model " or "stochastic model
"

)

is natural and important ! We will discuss it a little bit in this class . However,

most of our focus will be in the worst - ease model (also called the " Hamming model
"

or

"adversarial model . "

-



Moving on to ③ ,

what do we mean by
" overhead " ?

-
DEF. The MESSAGE LENGTH (sometimes called DIMENSION) of a code C1-overanalphabetcisdefinedtobek-log.IE#/
This definition makes sense with our operational understanding:

(messagex of length k over E
'

) I> ( codeword CEC )
- -

Elk possibilities ICI possibilities

So Idk - ICI aka k -- logis,Kl .

-

DEF
.

-

The RATE ofa code C E E
'"

with block length n over an alphabetC is|R=bszI=Y%aqenmgMnnk#
So if R is close to 1

,
that's GOOD . Not much overhead .

And if R is close to 0
,
that's BAD

.
Lots of overhead .

TD A code with distanced
, message length k , block length n ,

and alphabet E is called a cn.k.dk, code .-
-

QUESNOY .

WHAT ISTHE BEST TRADE-OFF BETWEEN RATE AND DISTANCE ?-
This question is still open for binary codes!
But there's lots we do know.



⑤ RATE vs . DISTANCE : HAMMING BOUND
.

What is the best trade-off between rate and distance we can hope for ?
The HAMMING BOUND gives one bound on this .

Let 's return to the picture we had before , with disjoint Hamming balls
of radius Ldztf :

(
ee
,
CEE

• We have let disjoint Hamming balls of radius L¥J .

- There can't be too many of them or they wouldn't all fit in C
"

.

To be a bit more precise :

-

DEF. The HAMMING BALL in L
"

of radius e about XEE
"

is

Bank , e ) :- { yet : Dlxiyke} .qq.name#Bgqe,igyoqg,,e,n,.,,p,.,,
Notice that I Bothell does not depend on X . Notes

• Sometimes Iwill drop

Say that 121 - q .
Then

the"E" from the

BsnlX.e) notation

e . Sometimes I will write

Volgle ,
n ) = It (7) lg-ht (1) tf- h't - " t (Hlf-t) Bznlx, ein ) if it's¥ aotftheefefmewneitgsh, ,

"

ffltheefemeeingtsz
"all the elements ofE

"

more convenient whelk about
- - -

of weight e . relative distance .



So that means that if a codeC c- Ei has distanced and messagelength k, where /Ekg ,

let . Volq (Elin) ⇐
qn
in

tÉ total volume in&

so taking logs of both sides,

logqlkl ) + logqfvolq ( 1¥] , n)) ⇐ n

(l)=kf

⇒ / Rate = In ⇐ 1- l%lVo¥Ldh ) /
-
This is called the HAMMING BOUND.

-BackbtXAMP-3.whichwasal-7.4.3L.cn?eItdcq
• We have L 1=1
• Volz ( 1. 7) = 1 + 171.1--8t.kzs f - 1092¥

= 1- 317 = 417
.

7-

.am, my, y.gg, g. mm, www.mmnggan, ,, ,yy , ,
|

Notes about this example :

• When the Hamming bound is tight , we say the code is PERFECT.
• EXAMPLE3 (which isperfect ) is a special caseof something called a HAMMING CODE.
• You will explore this more in in-class exercises and on homework .



⑥ RECAP Now we understand the first 3 of our desiderata :

THINGSWECAREABOUTi.IO
We should be able to handle the SOMETHING BAD

,
whateverthat means

.

THESETHREE {② We should be able to recover WHATWEWANT To KNOW about × .

③ We want to MINIMIZE OVERHEAD : kln should be as large as possible.
④ Wewant to to all this EFFICIENTLY

.

That is
, (for now) , our goal is to design codes CEE

"

so that :

•The DISTANCE of C is as largeas possible .

• The RATE of C is as close to 1 as possible .

Even without the algorithmic considerations, understanding the trade-off between rate
and distance turns out to be a fascinating combinatorial question !

In fact , for binary codes (121--2) , this question is STILL OPEN !
(we saw that EXAMPLE 3 Wasoptimal for n -7 and k=4 ,

but what about in general ? )

Next time
,
we'll give an overview of abstract algebra , and then give someMorettions that will further de -ad-hoc- ify . EXAMPLE 3

.

That's it for today .

QUESTIONS to PONDER :

① How would you generalize the code in EXAMINE to larger n?

②What is the best bound you can come up with on the rate of a code
C c- {0,13

"

with distanced ?


