
( 52501 EE387 - LECTURE 2 - Linear Codes and finite fields .

AGENDAS TODAY 'S OCTOPUS FACT :

④ RECAP from LAST TIME The oldest known octopus fossil

⑦ LINEAR ALGEBRA over {0,13 ? is from an animal that lived almost

② FINITE FIELDS 300 million
years ago

!

③ LINEAR CODES gnggqci.ch?TdY3
⑨ Recall all this notation we had from last time :

n : block length
k : message length then)
d : distance (den)
E : alphabet

A CODE is a subset C E E
"

.

Its elements are called CODEWORDS
.

If ICI -- Elk, the RATE of C is kin .

QoN from last time :

what is the best trade-off between rateand distance?
(still open !)

In particular, recall EXAMPLE3 from last time :
-

ENC : {0,134→ {0,137
, given by :

I

ENC -

' ( X
, ,
X 2

, Xz, Xy ) ↳ ( X
, ,
Xz
,
Xs
, Xg, XztX3tX4 mod2

,
X itXztXy mod2, X , txztmoxayz)|C:=lmageCEN÷

C is a binary code of length 7, message length 4, distance3; rate 12=417 .

We say it is a 17,4,3)a code ."

n bi d' a
,q -



We called thisthe HAMMING CODE cofangth7) and we saw that it was

optimal in that itmet the HAMMING BOUND .
]Recall
HAMMING BOUND
-

We also came up (sort of) with a an⇐e%N%k¥| Rate = I -
T

decoding algorithm for this code : -
AmM:

/
"""""" ÷÷÷÷÷÷÷ I

Then identify which circles don't sum to O cmod 2) and flip the
ue bit that ameliorates the situation

.

We waved our hands at how this sort of argument can also show that the distance
is at least 3

.

But this was all a bit unsatisfying . While clever
,
this construction feels a bit ad hoc .

How can we generalize this construction?

How can we generalize this algorithm / distance argument ?

Today we'll see an important framework in coding theory , that of LINEAR CODES,
which will help us put this example in context .



Aside So far we've mentioned the Hamming model , Hamming bound ,
Hamming distance, Hamming balls, and Hamming codes .

Who was this guy Hamming
?

Richard Hamming (1915-1998) was working at Bell labs starting in
the late 1940 's, where hewas colleagues with Claude Shannon

(of the "

Shannon model
" which we also mentioned )

.

Hammingwas working on old -school computers (calculatingmachines) , and theywould
return an error if even one bit was entered in error

.

This was extremely frustrating ,
and inspired Hamming to study this

rate- vs - distance question , and to comeup with Hamming codes .

⑦ LINEAR ALGEBRA over {0,13 ?

EXAMPLE 3 ( from now on , THE HAMMING CODE) has a really nice form :
.

m.dz

→ i
ENC : ( Xi , Xz , Xs, Xy) l→ ( Xi

,
Xz
,
X3
,
X4
,
Xzt Xs tX4 , X , tX3tXq , X,tXztX4)

ENC : I ↳
,
some linear fnofx (mod 21) .

-

aka
,
we can write this as X t GX (mod2)

,
where G is somematrix .

o (mod 2)ene""

.

-

→
G NOTE : Some people write

G " """" a GENERATOR ""R" ' / ='T

SUPPOSE FORNOW that " linearalgebra works mod 2.
"

aka
,
G is short and fat.

Then this view is pretty Useful . In this class
, generator matrices are

tall and skinny.



Why is this a useful way to look at things?
Let us pretend that linear algebra

" works " mod 2
,

and see what we can do .

LINEAR CODES

Ieng nice property : it is closed under addition : if Cec
,
c' c-C. lhenctiee .

This view makes that very clear :
lmod2 "mode

④ Dx
t II. = I]GDxtx '

- - -
c

c
' also in C

Aka
,
C - span ( cols(G ) ) is a LINEAR SUBSPACE

,
of DIMENSION 4

.

VERY

o. Yw tf C is LINEAR
,
then distance (C) - min wt (C) . Indeed

, D(Gx ,GxY=D(Glx.xD,O)
=wtlGlx -x'D .

PARITY CHECK MATRICES
.

× This can

way we looked at this example was meaayieeirtrf.ua
understand
thedistance.

We observed that all the circles summed 100 mod 2 .

Another way of writing that : e

Green Circle 's Constraint→ / /
T

Red Circle's Constraints I O l l O l O G = µ mod 2
.

""""" """mint" / To
Cs

:
-

Aka
,
Cec ⇒ He - O

.

(mod 2)

Aka
,

CE Kerch)
.

TESTON : Does C- Kerch ) ?



Answers Meese
,
C -Keith

.

P
← '

Ii:c!:p!:* ,
Why? Dimension counting ! dim (C) = 4 .

since the identitymatrix
is just sittingthere .

• dim ( Kerch )) - F - dim ( rowspanlltl) = 7-3=4

• So CE Kerch )
,

and dime) -- dimlkerlltll
,

↳
//I O l l O l O

⇒ C - Kerch )
It is called a

. PARITY -CHECK matrix of C . Again , it's easy to see
-

dimlwwspanlltll =3

PARHECkMATRkEFUL. becauseof the identity .

① It makes it easier to seethe distance of C .

-

CLAIM : dist(C) =3

Proof :

As before
,
suffices to show Min wtkl =3

.

CE 03

I ::::÷:::÷::÷÷.of thesum of two columns of H is 0 mod 2 c

aka there is a repealed column (NOPE)
w-44=10-2

So feel
,
wtfc)33

.

Now
,
the codeword 0101010 has weight exactly 3, so this is light B
-

② It gives us a nice decoding algorithm .

→ PUZZLE : Given E - 0111010 which has suffered one bit flip , what is c ?
Samepuzzle
as last time.



jERRORvectorwhichhaswt-S.no/uzzE:Write I = Ctz mod2

ON THE / f
I

①,EHAND :
' ° ' ' ° ' ° ' =

""' 2

1_ | :|OH0I
-0 E

ON THE OTHERHAND :

a. .mn. . /* ftp.F-lfl- | | Where 2- has a 1 .

I E E
←

Hz is called the
"

syndrome .

"/ since i. me # ammo, µ
, yneerror.aare.inp.sn.mg .

sothisgivesusanefficientdecodingalgfof-hisi.su
much nicer way of seeingour circle - based algorithm .

"Which circles fail losumtot" is the same as "which bits of Hlxtz) are 1
"

,
and it

picks out whichbit we needed to flip .

THEPOlNTS0FA_

Assuming that
"

linearalgebra works
"

in {0,13 mod 2
, // this linear-algebraic view ofthings is very useful !
-



THEQUES.no# Does linearalgebra
"make sense

"

over Eo
,
13 mod 2 ?

( And what does that mean? )

What's the problem? Whywouldn't it work?
To see the (potential) issue, consider what happens for {0,1 , 2,3} mod 4 .

- NON-EXAMPLE (WARNING ! FALSE STATEMENTS BELOW )-

Let G =/! 0¥
be a generator matrix , mod 4 .

Deane
.

e. ↳÷ , * go . .. . . ,y .

.

pan , . /So dim (C) = 2
.

( The columns are not scalar multiples of
eachother

,
aka
, theyare linearly independent )

But consider/ .. "::÷÷¥:÷÷÷"÷:*:" ÷ ::
The rows are not scalar multiples of each other) .

s

:
'm

:::::::::c.:÷ :
"

:::::::::
"

:*
.

. I
OH NO !!

#



WHY WASTHIS A NON- EXAMPLE?

What went wrong
? Linearalgebra doesnot

"work " over {0,112,334,0442ASIDE :

• In particular, several times in that examplewe said (something like) :
' You canmake

itwork a"

yineiew.vengorsg.ae?dwua:;linw7YindePendentitt ftp.qq.gg. /. Another definition of linear independence : buzzword is
"
nonzero vectors v and ware linearly independent iff

' 'module !

there is no nonzero X
, , Xz Sit . X

,
Vt 72W = 0

.

-µ:i¥÷÷÷÷÷:÷:÷ in:i:i:÷÷÷÷÷÷:
• But over {o , I , 2,33 mod 4, these are not the same .

"

÷÷÷:÷it÷÷÷÷:::
. I• The Proof above breaks : What does (-7¥) mean ?

( 312 mod 4 does not immediately make sense) .
•

This does not bode well for algebraic coding theory if evenlinear algebra doesn't work . . .



② FINITE FIELDS

FORTUNATELY
,
all that stuff that we did mod 2 actually was Ok !

The difference between {o , I , 2,33 mod 4 and {0,13 mod2
is that {0,13 mod2 is a FINITE FIELD

.

Informal definition of a field :
-

A FIELD is
any
set of elements that you canfadcbsubhaot.mu/tiplyanddiridelikeyouwant#./

Formal definition of afield :

#

DEF A HELI ft is a set of elements
, along with operations t, x ,-

C. "addition " and
"

multiplication
" ) so that :

T X
, y , ZE IF :

• (Associativity) (Xty) it Z = X t (ytz)
(xx y)

x Z = X x (yxz)

l÷÷÷÷÷÷÷÷:÷:÷÷÷÷÷÷÷÷:÷÷÷÷.im/XtO--XVXc-IF

X. I = X f XEF

• ( INVERSES ) VXEF
,

3- y sit . Xty -
-O (let 's call thisy

"
-X

" )
✓ FEET, Fy sit . X.y

- t (Let's call this y
''' '

z'
'
or
"

X
" ")
-



Familiar examples of fields : IR ,
Q

.

A FINITEftELD.is a finite field .

(aka
,
afield that is finite) .

Familiar example : {0,1} mod 2 .

(The only thing to check is the inverses : -0=0, -1=1 , I
- '
il

. so we'regood ! )

Familiar non - example : { 0,112,3 } mod 4
.

( 2 has no multiplicative inverse : 0-2=0 There's no way to get 1 ! )
1.2=2

2
:
2--4=-0 mod 4

3 2--6=2 mod 4

"

THEOREM :
"

linear algebra
"works " over finite fields .
×

ENOUGH

There are some things that don't.
Most notably , orthogonality doesn't mean what you think itmeans .

Thevector ( t ) is orthogonal to itself over (so , is mod 2) ! WEIRD
.

Beforewe go into more details, WHEN DO FINITE FIELDS EXIST ?

ARE WE STUCK IN {o , 13 mod 2?
-

term.

for every prime power pt , there is a unique
* finite field

with pt elements . We call this field Hft .ITherearenootherfinitefields.im#snate[
some peopleProof . Exercise .

- call it Gffpt) .(
Not really - I'll post somereading if you are GF stands for

interested
,
but if you arenot you can

"
Galois field !

take thisThin on faith . I mightusethis
sometimes .



-

EXAMPLES ft = {0,1 , 2,3 , 43 mod 5
.

Again , the only interesting part is the inverses :

/ : ÷ . ..y÷÷÷÷: I
4. 4 = 1 ( 16 mod 5) 4 t I = 0

So
,
for example, I =3 mod5 So

,
for example, -1=4 mods .
-

More generally , Fp = {0,1 , . . .

, p
- I} mod p .

-

EXAMPLE HTT is NOT {Oil ,2,33 mod 4.

-

Instead
,
it is {o , I , 8,823 ,

with :

t x

O l y y
'

O O O Olit:÷÷÷÷i÷÷÷l
FUN EXERCISE : Check that this satisfies all the axioms .
-

More generally , Ipt is NOT the same as {0,1, . . ..pt - I} modptwhent>1 .

FUN EXERCISE : If you haven't seen finite fields before, proveboth of the "moregenerally
" statements

.



③ LINEAR CODES

Now that we havethe appropriate language about finite fields, we can formally
definethethings wewere talking about before with the Hamming code .

All the definitions you know + love for linear algebra over make sense over finite fields :

Let ft be a finite field . Then :

• IF { (x
, ,
-

,
xn) : Xie tf }

.FYIEEEYII.is nano§ . A subspace Ve #
n
"

Ya
"

subset that is closed under addition & scalar multiplication .any subspaceVEF
"

-

isa VECTOR SPACE

over F (in the
aka

,
TV

,
WEV

,
theft

,
Vt 7W EV .

sense that they • Vectors y , . . ,v, e #
n

are LINEARLY INDEPENDENT if V X
, , . .

.

, At Etf thatsatisfy the -
axioms ofa

are not all 0
,
Ei XiVi t O .Vector space that

You knwe). . For y , - , rt EF; their SPAN is span (Vi , . .,Vt) - { Eiilivi : Xie tf)Landor just -

read onWikipedia: • A BASIS for a subspace VE#
h

is a collection of vectors Vi , . . ,Vt EV sit .Vector
- space#Definition -

- Y
,
. . .,vt are linearly independent

- V - spank , . . .,Vt ) .
• The Dimension of a subspace V is the number of elements in any basis of

V
.

T FUN EXERCISE : Provethat this is well-defined
.

ikg.at/baseshavethesamesiz#DEf.A LINEAR CODE C of length n and dimension k over alfinitefieldfisak-dimensionallinearsubspaceoff.CH#E
NOTE : We have overloaded k (message length & dimension) .
-

In fact this makes sense
.
If C is a k- dimensional subspace over ft, then

ICI = IF Ik
,

hence k = log,#, ICI
= log ,s , ICI -

-

message length .-

[
Why? Every CEC has a unique representation as €71 .

- Vi for a basis % . . .,vk .

That's HFI
"
choices for the ai .



OBSERVATION . If C is a linear code, over ft, then there is a matrix GE F
-

so that C = { G. x : Xe Ifk } = : Colspan(G) .
-

pronounced
" column span .

"÷
The span of the columns

Proofof OBSERVATION : Choose the columns of G to be a basisoff . of G

-

D A matrix G E F
"k

so that C- {G. x : xe#
h } isfcalledaGERM.nl#XfINERAlV-/

NTherecanbemanygeneratormatricesfrthesamec#
They all describe the same code, but they implicitly describe different
encoding maps . For example,

I :÷÷÷÷÷÷÷÷÷::i÷i÷:÷÷÷÷÷÷÷÷÷÷¥÷:*
For example, G above corresponds to a systematic encodingmap .
This means that Erica : (X , ,Xz, Xz ,Xy ) H (X , ,

Xz
, Xz, Xy , STUFF) .
-

The message shows up as the
firstpart of the codeword .G

'

still corresponds to a legit encoding map,
but it's not systematic .
-

DEI.lfcefnisalinearcodeovertfthenctistheDU.NL#Ct = { veF : (v. c> = O V ceC }
.✓ mists the standard inner product :
-

(V
,
e) =[i? , Vio Ci
-

NITE. If dim (C) =k , then dim (Ct) - n - k . (Just likeover IR) . . Fun Exercise : Provethis
.

# / (Gmivaqnatheatnsebgses and dimensions



-

OBSERVATION .

If C is a linear code of dimension k over ft
,
then there

-

is a matrix H e Fn
- k × "

so that|C={ceF:Hc=0}akaC=ker(÷
Proof of OBSERVATION : Let H be amatrix whose rows are a basis for Ct

.

-

A matrix HE IF
"-k" "

so that C = { a- IF
"

: H . c - O} is called a

±I÷:i÷÷:::÷.⇒.........
Note : Again, there is not a unique panty check matrix fora code C .

-
SOME FACTS : (FUN EXERCISE : Verify these! )
-

If C E F
"

is a linear code over ft of dimension L w/ generator matrix G and

parity- check matrix H , then :

f÷÷÷÷÷÷÷÷÷÷:÷:÷÷::÷÷:÷÷÷÷:÷÷÷÷÷÷"" I
• The distance of C is the smallest number d so that H has

cof
d linearly dependent columns.

o . I]because :

- tin
.
comb

. of
d cols ofH
-



That's all for today !

QUESTIONS to PONDER
① Does there always exist a generator matrix G so that G looks like §!,If so, how would you find it efficiently ?

What about nonlinear codes? Is there always an encoding map so that
K
Aka
, yMes ne

the message x appears as part of ENCGC) ? apnea sage +Est
puffsthe

② How would you structure
a linear code if you wanted to decode it

⇐
"
t

efficiently from UI ) errors ?

(what about generalizing the Hamming code that we saw?)


