

1) Singleton
$$\notin$$
 Plotkin bounds
Let's try to narrow down that region a little bit.
THM ESingleton Bound] IF C is an $(n,k,d)_{\gamma}$ code, that $k \le n-d+1$.
Proof. For $c \in C$, consider throwing out the last d-1 coordinates:
 $c = (x_1, x_2, \cdots, x_{n-d+2}, x_{n-d+2}, \ldots, x_n)$
 $call this $q(c) \in \mathbb{Z}^{n-d+1}$ get nd of these
Consider $\hat{C} = \{ q(c) : c \in C \}$, so $\tilde{C} \le \mathbb{Z}^{n-d+2}$
CLAIM 2: $|C| = |\tilde{C}|$
 $CLAIM 2: |\tilde{C}| \le q^{n-d+1}$ Since $\tilde{C} = \mathbb{Z}^{n-d+2}$
Thus, $|C| \le q^{n-d+1} \Rightarrow q^k \le q^{n-d+1} \Rightarrow k \le n-d+1$.

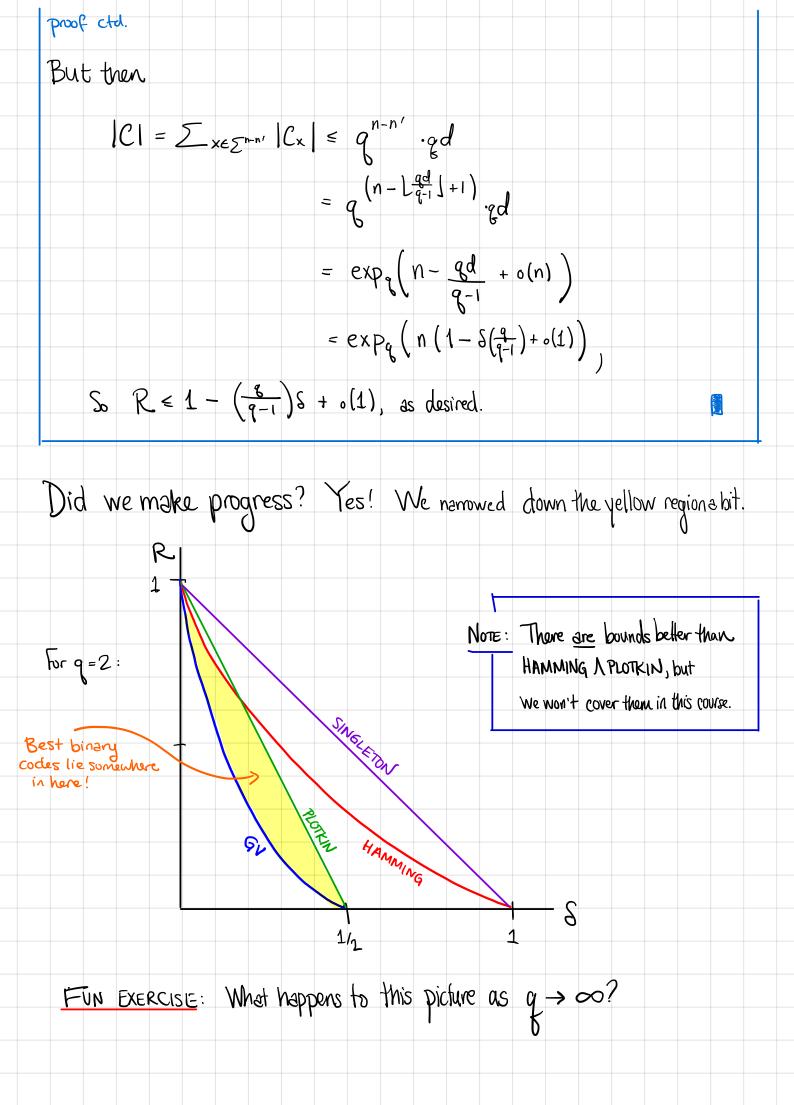
NOTE. For $q = 2$, the Singleton bound is WORSE than the Hamming band! A
HOWEVER (a) it's singleton and (b) as $q \Rightarrow \infty$ we'll get something befor.
R
 $\frac{q}{2}$$

SINGLETON

1-1/4 S

q>2

The GV bound only works up to
$$dn \leq 1-\frac{1}{4}$$
.
Is this recessing? Turns ord, yes, at least asymptotically.
THM [PLOTKIN BOUND]
Let C be a $(n, k, d)_q$ code.
(a) If $d = (1 - \frac{1}{4})n$, then $|C| \leq \frac{1}{d - (1 - \frac{1}{4})n}$.
Notice that either (a) or (b) imply $R \rightarrow 0$ as $n \rightarrow \infty$.
Thus, in order to have a constant rate code, we should have $d < (1 - \frac{1}{4})n$.
We'll omit the proof of the Plotkin bound in class - Check out
ESSENTIAL coDING THEORY \$4.4 for a proof.
COR. Let C be a family of codes of rate R and distance $\delta < 1 - \frac{1}{4}$.
Then:
 $R \leq 1 - (\frac{q}{q-1}) \cdot S + o(1)$
Proof. (Assuming the Plotkin bound)
 $rate that n' < \frac{dn}{d}$.
Choose $n' = \lfloor \frac{dq}{1-4} \rfloor - 1$. For all $X \in \Sigma^{n-n'}$ define
 $C_X = \left\{ (C_{n,N+1,...,C_n}) \right\} ceC with (C_{1,...,C_{n,N'}} = X \right\}$
 $=$ the set of ENDS of codewords that EEGIN with X.
Now Cx has distance $\geq d$, block length $n' < \frac{d1}{q^2 - (q^2)^{n'}}$ for an order to each distance $\delta < 1 - \frac{1}{4}$.
Now Cx has distance $\geq d$, block length $n' < \frac{d1}{q^2 - (q^2)^{n'}}$ for an order $\delta < \frac{1}{q^2 - (q^2)^{n'}}$.



2 REED - SOLOMON CODES.

Notice that for any fixed q, the Plotkin bound is strictly better than the Singleton bound. Singleton AND YET, tucky we are going to see Read-Solomon Codes, Plotkin which EXACTLY ACHIEVE the SINGLETON BOUND. 2 | 2 | 1-1/9 (The trick: the alphabet size will be growing with n) We can define polynomials over finite fields, just like we can over IR. $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_d \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_d \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_d \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_d \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_d \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_d \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_d \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_d \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_d \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_d \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_d \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_d \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_d \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_d \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_d \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_d \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_d \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_d \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_d \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_d \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_d \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X + a_2 \cdot X^d$ $f(X) = a_0 + a_1 \cdot X + a_2 \cdot X +$ Note: depending on your background, it's totally normal to use capital X as a variable or it's totally think of as taking values in H. weird. If it's the latter, The set of all univariate polynomials get over it. W/ coeffs in Hy is denoted Hy LX] nonzero! A polynomial for degree d over Fig has at FACT most d noots. "pf". (Sketch). If f(B)=O, then (X-B) f. So if B1,..., Bd+1 are roots of f, then $(X-\beta_1)(X-\beta_2)\cdots(X-\beta_{d+1})|f$, a contradiction. degree≤d degree d+1 [This proof implicitly uses: "Thm:" Arithmetic over F[X] behaves like you think it should. That Theorem is true.]

EXAMPLES Over F₃,

$$f(X) = X^{2} - 1 \quad has two roots. \quad [f(a) - f(1) = 0] \quad f(X) - X^{2} + 2X + 1 \quad has zero roots. \quad [f(a) = 1, f(1) = 2, f(a) = "S" = 2] \quad f(X) = X^{2} + 1 \quad has zero roots. \quad [f(a) = 1, f(1) = 2, f(a) = "S" = 2] \quad Notice that X^{2} + 1 \quad DOES have a root over F_{2}, so the field matters.$$

$$DEF = A \quad VANDERMONDE \quad MATRIX \quad has the form.$$

$$I = \begin{pmatrix} u & u & u & u \\ 1 & u & u & u & u \\ 1$$

ALMOST I TRUE CUR Any square submatrix of a Vandemonde matrix is invertible. At: If one of the eval pts is O, then we need to include pot of the all-ones column in our square submatrix. Proof. A square submatrix looks like α'_{i+r} , α''_{i+r} a square Vandemonde matrix. These facts about Vondermonde matrices will be useful. First, they imply: THEOREM. "Polynomial interpolation works over Fg." Formally, given $(\alpha_i, y_i) \in \mathbb{F}_q \times \mathbb{F}_q$ for i=1, ..., d+1, there is a unique degree-d polynomial f so that $f(\alpha_i) = y_i$. proof. If $f(X) = a_0 + a_1 X + \dots + a_d X^d$, then the requirements that $f(\alpha_i) = \gamma_i \forall i$ are precisely $V = \int_{\vec{a}} \vec{y}$ for a square Vandermonde matrix V. Hence, $\alpha = V^{-1}\gamma$ is the unique scilution. (Because linear algebra "works" over $f_{i_{i_{j}}}$). -> Achually, VERY Moreover, the proof implies that we can find f. efficiently. efficiently. You can do an FFT-like thing FACT. All functions $f: F_q \rightarrow F_q$ are polynomials of degree $\leq q-1$. to multiply by Vandomande matrices real fust. proof. There are only q pts in Fq., So we can interpolate a (unique) degree $\leq q - i$ polynomial through any function. Esecond proof: there are q^8 such functions and also q^8 such polynomials]

EXAMPLE:
$$f(X) = X^{\frac{1}{2}}$$
 must have some representation, as a degree eq.1 ply
over f_{iq} . What is it?

ANSWER: $X^{\frac{1}{2}} = X$. This is bacause $first : \alpha^{\frac{1}{2}} = x \forall x \in F_{iq}$.

Navo we are finally ready to define...

DEF. (REED-SUCMAN CODES)

Let $n \ge k$, $q \ge n$. The REED-SUCMAN CODE
of dimension k over f_{iq} , with evaluation points
 $\vec{a} = (\alpha_{1,2}, ..., \alpha_n)$, is

 $RS_{iq}(\vec{a}, n, k) = {(f(\alpha), f(\alpha_{2}), ..., f(\alpha_{n})) : f \in F_{i}[X], deg(f) \in k-1}$

We will use it
a bunde.

 $RS_{iq}(\vec{a}, n, k) = {(f(\alpha), ..., f_{iq}(\alpha_{n})), ..., f_{iq}(X)], where $f_{i}(X) = X_{i} \times X_{i} \times X_{i} \cdots \times X_{in}, X_{i}^{t-1}$

We will the only one field biddly

where $f_{i}(X) = x_{i} \times X_{i} \times X_{i} \cdots \times X_{in}, X_{i}^{t-1}$

Reference index 2 .

Note: This definition implies a natural encoding map. for RS codes:

 $x = (x_{2}, ..., x_{in}) \mapsto (f_{i}(x_{i}), ..., f_{i}(x_{i1})), where $f_{i}(X) = X_{i} \times X_{i} \times X_{i} \cdots \times X_{in}, X_{i}^{t-1}$

Event at indexing
but the RS $i_{i}(\vec{a}, n, k)$ is a linear code, and the generation matrix
is the nor k Vardermonde matrix with. POWS corresponding
to $\alpha_{1}, \alpha_{2}, ..., \alpha_{n}$.

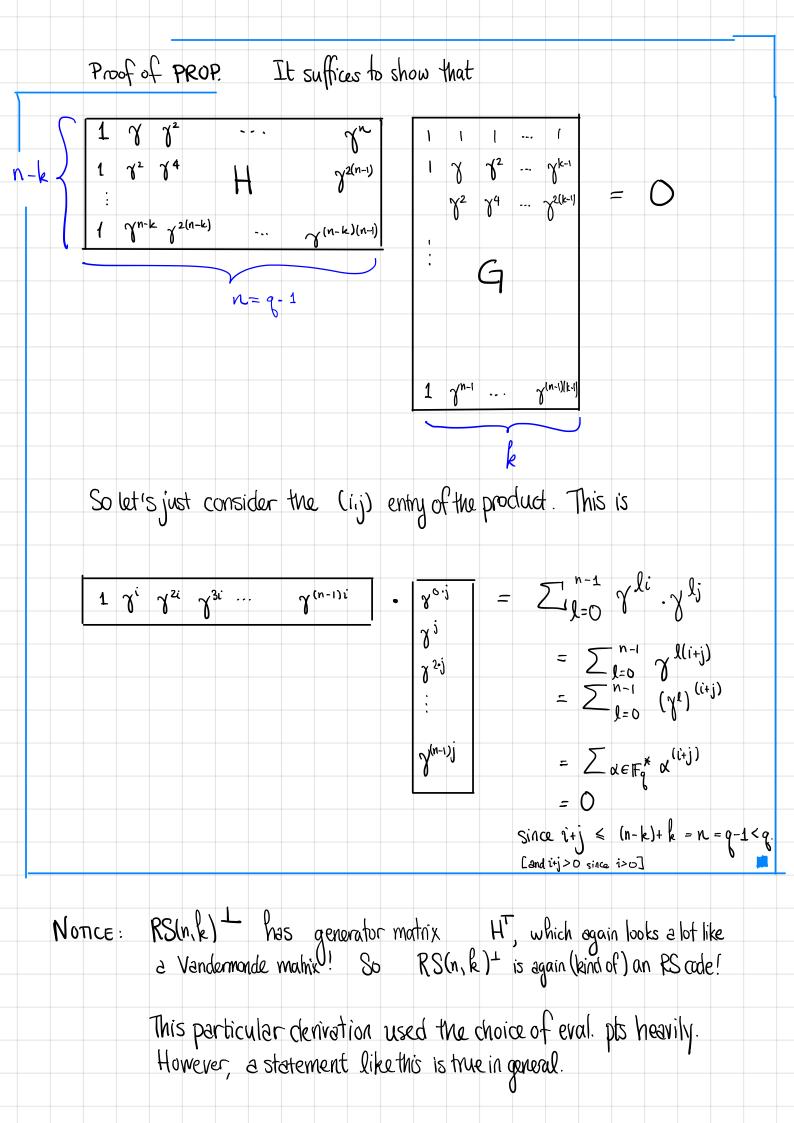
Proof. Staring. (If x has the coefficients of f_{i} , then $Vf = \binom{i(x_{i})}{i(x_{i})} = k$.)$$

Prop	The distance of $RS_q(n,k)$ is $d = n - k + 1$.
Proof.	Since $RS_2(n,k)$ is linear, $dist(RS_2(n,k)) = min wt(c)$. $C \in RS$
	The minimum weight of any codeword is at least $n-k+1$, since any degree $k-1$ polynomical has at most $k-1$ roots.
	Equivalent proof: the follows from the fact that every kxk minor of the generator motrix is full rank.
Cor. R.	's codes exactly meet the Singleton Bound. YAY! OPTIMALITY !! For any n and k we like!
DEF. A	inear (n, k, d), code with d=n-k+1 (aka, meeting the Singleton bd) callect MAXIMUM DISTANCE SEPARABLE. (MOS)
So, RS propert which	s codes are MDS. Notice that MDS-ness is equivalent to the y: "every lex le submatrix of the generator matrix is full rank," we just sow was true for RS codes.
In par then determ	ticular, if C is MDS, any k positions of $c \in C$ ine all of c. $k \neq k$ sub-motive corresponding $k \neq k$ sub-motive $k \neq k$ sub-motive $k \neq k$ sub-motive corresponding $k \neq k$ sub-motive correspondence $k \neq k$ sub-motive correspondence correspondence $k \neq k$ sub-motive correspondence $k \neq k$ sub-motive correspondence $k \neq k$ sub-motive correspondence $k \neq k$ sub-motive correspondence correspondence correspondence correspondence correspondence correspondence correspondence correspondence correspondence correspondence correspondence correspondence correspondence correspondence correspondence correspondence correspondence corespondence
an MDS code does q have	ust be growing in order to get (by the Plotkin bound). How big somewhat be? OPEN QUESTON! Character in the sub-matrix of G is invertible.
	for prime fields in 2012 by Ball). Sconsecture"). If $k \in q$, then $n \in q+1$, unless $(q = 2^{h} \text{ and } k = 3)$ or $k = q-1$, in which case $n \leq q+2$. m 1955) $k = q \cdot q \cdot q$.

3 DUAL VIEW of RS CODES
What is the perity-check matrix of an RS code?
Well need a bit more algubra.
DEF
$$F_{q}^{\star}$$
 is the multiplicative group of nonzero elements in F_{q} .
Aka, $F_{q}^{\star} = F_{1} \setminus 50$ as a set, and I can define multiplication and
division everywhere in F_{t}^{\star} .
EXAMPLE: $F_{5} = \{0, 1, 2, 3, 4\}$ mod 5 equipped ω / 4 and \star
 $F_{5}^{\star} = \{1, 2, 3, 4\}$ mod 5 equipped ω / just \star .
FACT: F_{q}^{\star} is CYCLIC, which means there's some \sqrt{c} F_{q}^{\star} so that
 $F_{q}^{\star} = \{7, 8^{2}, 7^{3}, ..., 7\}^{s-1}\}$
 γ is called a PEIMITIVE ELEMENT of F_{5} , and
 $F_{5}^{\star} = \{2, 2^{2}=4, 2^{2}=3, 2^{4}=1\}$
4 is NOT a primitive element, since $4^{2}=1, 4^{3}=-1, 4^{4}=1, 4^{5}=-1,...$
and we'll never generate 2 or 3 as a power of 4.
FUN EXERCISE:
If you haven't seen this before, play around will this and other exemptes.

What elements of IFp are primitive? If an element isn't primitive, what can you say about its ORBIT $\{\chi^i : i=1,2,3,..., \}$?

$$\begin{aligned} & \operatorname{FACT} / \operatorname{LEMMA} . \quad \operatorname{For any} \quad 0 \leq d \leq q-1, \quad \sum_{\alpha \in H_q} \alpha^{\alpha d} = 0, \\ & \alpha \in H_q \\ & \operatorname{Pref.} \quad \sum_{\alpha \in H_q} \alpha^{\alpha d} = \sum_{\alpha \in H_q} \alpha^{\alpha d} \\ & \alpha \in H_q \\ & = \sum_{j=0}^{q-2} (\gamma^{j})^{\alpha} \quad \text{for a prinifive element } \gamma, \\ & = \sum_{j=0}^{q-2} (\gamma^{j})^{\alpha} \\ & \operatorname{for any} \quad x \neq 1, \\ & = \sum_{j=0}^{q-2} (\gamma^{d})^{3} \\ & (1-\chi) \cdot (\sum_{j=0}^{n-\chi} \chi^{j}) = 1-\chi^{n}, \\ & = \frac{1-(\gamma^{\alpha})^{q-1}}{1-\chi} \quad (\alpha^{j})^{q-1} - \gamma^{d} = (\gamma^{d})^{b} = \gamma^{d}, \\ & \text{for any } n \quad \operatorname{Aple the whit } \chi_{e_{T}}^{q} = 1 - (\gamma^{d})^{q-1} \\ & \text{for any } n \quad \operatorname{Aple the whit } \chi_{e_{T}}^{q}, \\ & = \frac{1-1}{1-\chi^{q}} = 0. \\ & \operatorname{Nowl we can answer our question about the party-check matrix of RS addes. \\ & \operatorname{PKOP.} \quad \text{Let } n = q-1, \text{ and let } \gamma \text{ be a primitive element of } H_{2}. \\ & \operatorname{RS}_{q}((\gamma^{\alpha}, \gamma^{\alpha}, \gamma^{\gamma}, ..., \gamma^{m-1}), n, k)) \\ & = \left\{ (c_{\alpha}, c_{\alpha}, ..., c_{n-1}) \in H_{q}^{m} : \quad C(\gamma^{1}) = 0 \quad \operatorname{for } j = 1, 2, ..., n-k \right\} \\ & \text{Ware } c(\chi) = \sum_{i=0}^{1-n-q} c_{i} \chi^{i}. \\ & \operatorname{COR}. \quad \text{The parity check matrix of } \operatorname{RS}_{q}((\gamma^{\alpha}, ..., \gamma^{n-1}), n, k) \text{ is } \\ & H = \left\{ \begin{array}{c} 1 & \gamma & \eta^{\alpha} & \cdots & \gamma^{n-q} \\ 1 & \gamma^{\alpha} & \gamma^{\alpha} & \cdots & \gamma^{n-q} \\ 1 & \gamma^{\alpha} & \gamma^{\alpha} & \cdots & \gamma^{n-q} \end{array} \right\} \in \operatorname{Fq}^{m-k_{2} \times n} \\ & \vdots \\ & i & \gamma^{n-k_{2} \times m} \end{array} \right\}$$



 $(\overline{\lambda} \in (\mathbb{F}^*)^n$ A GENERALIZED RS CODE GRS2(2,n,k; 2) is DEF. $GRS_q(\vec{x}, n, k; \vec{\lambda}) := \left\{ \left(\lambda_0 f(d_0), \lambda_1 f(d_1), ..., \lambda_n f(d_n) \right) \mid f \in F_q[X], deg(f) \leq k-1 \right\}.$ $GRS_q(\vec{x}, n, k; \vec{x})^{\perp} = GRS_q(\vec{x}, n, n-k, \vec{\sigma})$ THM. for some ∂ ∈ (Fg*)^.

Proof: Fun exercise! (We may prove it in the in-class exercises).

QUESTIONS TO PONDER.

() How would you modify RS codes to make them binary?

2) How would you decode RS codes from errors efficiently? Do you think it's possible?