Stanford University
Computer Science Department
CS 253 Final Exam Fall 2021

December 7, 2021

This is a closed book exam. You may use 3 (double-sided) sheets of notes. You have 3 hours. Write all
of your answers directly on the paper. Make your answers as concise as possible.

NOTE: We will take off points if a correct answer also includes incorrect or irrelevant
information (i.e. don’t write everything you know in hopes of saying the correct buzzword.)

Question Score

1. True or False (25 points)

2. Short Answers (42 points)

3. The Great Cannon (24 points)

4. Cookies (9 points)

5. Coffee Shop Wi-Fi (12 points)

6. Delete Account (6 points)

7. User Agent (6 points)

8. CSP (9 points)

9. XSSl (12 points)

TOTAL (145 possible points)

Stanford University Honor Code

In accordance with both the letter and the spirit of the Honor Code, | did not cheat on this exam nor will
| assist someone else in cheating.

Name and SUNet ID:

Signature:

Problem 1. True or False (1 point each)

For each question, write either "True" or "False".

1. Reflected XSS occurs when an attacker gets a victim to send a request with
malicious input to a server which includes the unsanitized input in the HTML output
it produces.

2. The CSP directive strict-dynamic tells the browser to use HTTPS for all in-site
resource requests, regardless of the protocol in the URL.

3. Checking the Referer header is a robust defense against CSRF attacks.

4. Cookies set with the HttpOnly attribute are never sent over HTTPS.

5. Setting the SameSite=Lax attribute on a cookie is a good defense against CSRF.

6. The logout process in a web app should mark the session as expired on the server.

7. The Same Origin Policy used for the DOM is the same as the Same Origin Policy
applied to cookies.

8. The server can trust cookie values in HTTP requests to be untampered since the
cookies are set by the server.

9. A CSREF vulnerability at a bank has the following consequence: a malicious web
site can issue requests to the bank on behalf of users visiting the malicious web
site.

10.

1.

12.

13.

14.

15.

16.

17.

18.

The design of HTTPS prevents a network attacker from replaying an old session.

The cookie attribute HttpOnly helps to mitigate the effects of XSS attacks by
preventing client-side JavaScript from reading the cookie.

A malicious website can execute a successful clickjacking attack even if the victim
website uses HTTPS and the user’s browser correctly implements the same origin

policy.

If site-a.com loads a website from another domain, site-b.com, inside of an
iframe, the same origin policy prevents Javascript from site-a.com from
accessing any of site-b.com's website content in the iframe.

postMessage is a powerful browser-based communication mechanism that allows
any frame to broadcast messages that will be accepted by any other frame,
regardless of frame origin.

The best way to prevent untrusted user input from exploiting your application is to
use encryption.

When the server receives an HTTP request with an Origin header, the server can
rely on the browser to ensure that the header value reflects the true origin of the
page that initiated the HTTP request.

When a site sends a cross-origin GET request without custom headers, the
browser will first send a "preflight" OPTIONS request.

When a site sends a same-origin PUT request with custom headers, the browser
will first send a "preflight" OPTIONS request.

19.

20.

21.

22.

23.

24.

25.

In a "recursive DNS query", a client (DNS resolver) queries a single DNS server,
which may in turn query other DNS servers on behalf of the requester until the
answer can be determined, and then returns the answer to the client.

HTTPS will protect the user even if an attacker manages to change or spoof a DNS
record so that it points to an attacker-controlled IP address.

When accepting untrusted input from the user, we should escape it before it is
added to the database so that we can later use it without worrying about escaping.

Your browser will save cookies even from sites you have not visited directly.
("Visited directly" means that e.g. you navigated to the site and its URL appeared in
the browser's address bar)

One benefit of DNS-over-HTTPS, as compared with normal DNS, is that it provides
privacy from network eavesdroppers such as ISPs.

Alocal HTTP server can defend against DNS rebinding by inspecting the Host
header and dropping any request for which the value is not
localhost:<some-port>.

A website can use Certificate Transparency to improve the security of their users'
HTTPS connections, at the HTTPS protocol level.

Problem 2. Short Answers (2 points each)

For each question, write a short answer using no more than 50 words.

1. Name the three parts of a URL that are used to determine the URL's origin.

2. What is the purpose of the HTTP Strict-Transport-Security header (HSTS)? Please make
sure to explain what attack is being prevented by this header.

3. (Continued from previous question) What denial-of-service attack could a network attacker
perform if the HSTS header was allowed to be set on HTTP responses? (Recall that the
browser only respects the HSTS header if it is set on an HTTPS response.)

4. (Continued from previous question) The protection offered by the HSTS header only applies
after a user has visited the site at least once. What is the mechanism that a site can use to
ensure that even the first request that a user makes to the server uses HTTPS?

5. Suppose A and B are two frames in a browser that are loaded from different origins. Why is it a
reasonable security policy to allow A to navigate B to another origin based only on whether the
display area of A contains the display area of B and A has control over that area?

6. You are a penetration tester evaluating a website for security vulnerabilities. You notice that their
authentication system chooses session IDs by taking the cryptographic hash of the username,
using e.g. the SHA256 hash function. For example, a user "feross" would be assigned a session
ID of SHA256(' feross') and a user "kaminsky" would be assigned a session ID of
SHA256('kaminsky '), and so on. Describe an attack against this authentication system.

7. (Continued from previous question) The website "fixes" the issue by updating the server code so
a random counter value between 1 and 2%* is chosen at startup and included along with the
username before hashing it. The server increments the counter each time it generates a session
ID. For example, assume the server randomly chose 9000 as the initial counter value. If "feross"
is the first user to login, he will be assigned a session ID of SHA256('feross’ + 9000). If "ada"
logs in next, she will be assigned a session ID of SHA256('ada’ + 9001), and so on. Is this
authentication system secure? Write "Secure" or "Not Secure". If you choose "Not Secure", then
describe an attack against this authentication system.

8. Consider a Web site xyz . com that implements a phone dialer. When the user enters a phone
number to call, the browser opens a new window to xyz.com/call.html containing the
following Javascript that defines a postMessage event listener:

function receiveMessage (event) {
// event.data is a phone number from sender
initiatePhoneCallTo(event.data)

}

window.addEventListener('message', receiveMessage)

The parent page then sends a postMessage to this window to initiate the call. This activates the
receiveMessage function which makes the call. Explain how an attacker website can cause a
visitor to initiate phone calls to arbitrary phone numbers. Assume the visitor is logged in to her
xyz .com account, but does not have xyz.com open in a window.

9. (Continued from previous question) If the function receiveMessage started with the following
line:

if (event.origin !== 'https://xyz.com') return

Would this eliminate the problem you identified in the previous question? Recall that
event.origin is the true origin that initiated the postMessage call.

10. An attacker injects an XSS payload into the HTML page sent by your server. Given the following
CSP, would the XSS attack succeed? Justify your answer.

CSP: Content-Security-Policy: default-src 'self';

XSS: <script>alert(document.cookie)</script>

11. An attacker injects an XSS payload into the HTML page sent by your server. Given the following
CSP, would the XSS attack succeed? Justify your answer.

CSP: Content-Security-Policy: script-src 'self' 'nonce-PAk3kslfKFAoaP423';

XSS: <script>alert(document.cookie)</script>

12. Explain why including 'unsafe-inline' in a CSP makes it almost entirely ineffective at
preventing XSS attacks.

13. Describe a server-side defense that mitigates the effects of brute force (testing multiple
passwords from a dictionary against a single account), credential stuffing (testing
username/password pairs obtained from a breach), as well as password spraying (testing a
single weak password against a large number of different accounts).

14. Suppose that a page loaded over HTTP loads a login iframe as:
<iframe src="https://site.com/login'></iframe>

Can an active network attacker steal the password entered into the login frame? Justify your
answer.

15. Suppose an attacker steals the private key of a website that uses TLS, and remains undetected.
What can the attacker do using the private key?

16. List three unique attributes of a user's browser that a fingerprinting script could use to
persistently identify the user even if they clear their cookies and other site data.

17. Explain why the browser must send an OPTIONS or "preflight" request to the server before it
sends certain HTTP requests. What would happen if the browser didn't send these requests? To
help jog your memory, here is an example of an OPTIONS request:

OPTIONS /resource/foo
Access-Control-Request-Method: PUT
Origin: https://example.com

18. Assume that Axess has an APl endpoint GET /api/transcript which returns the currently
logged-in user's grades. Would the following code running on https://attacker.combe
allowed to print out your Stanford grades? Justify your answer.

<script>
const res = await fetch('https://axess.stanford.edu/api/transcript’)
const data = await res.body.text()
console.log(data) // Haha, got your grades!

</script>

You can assume that https://axess.stanford.edu does not send any special HTTP

headers such as Access-Control-Allow-0Origin (also known as "CORS" headers) or set any
special cookie attributes such as SameSite.

10

19. Would the following code running on https://attacker.com be allowed to listen to the 'submit'
event on bank. com's login form and grab the username and password? Justify your answer.

<iframe src='https://bank.com'></iframe>

<script>

const loginForm = window.frames[@].forms[0]

loginForm.addEventListener('submit', () => {
console.log(loginForm.username) // Haha, got your username...
console.log(loginForm.password) // ...and password!

1)

</script>

20. "Mixing program control and user data” is a class of vulnerabilities where an app accidentally
treats user input as code and executes it. Which of the following attacks exploit this class of

vulnerabilities? Mark ALL that apply.

O Clickjacking
O CSsRF
O saL injection

O Denial of service

O stored XSS
O Reflected XSS
O Man-in-the-middle

O None of the above

21. Which of the following attacks might allow an attacker to steal one of your browser cookies?

O TLS/SSL Strip
O CsRF
O saL injection

O JavaScript sandbox escape
(compromised renderer process)

O stored XSS
O Reflected XSS
O Brute Force

O None of the above

11

Problem 3. The Great Cannon (24 points)

In 2015, Github experienced a DoS attack orchestrated by China using the so-called “Great Cannon”
(GC). It worked as follows. (Some details have been simplified or modified for this problem.)

Many websites include a fetch for a script for analytics from Baidu, a large Internet service in China
somewhat similar to Google. The script would be retrieved via http://hm.baidu.com/h.js. The GC
operated at the border between China and the rest of the Internet. Upon seeing a request for this script,
the GC would prevent the original HTTP request from being forwarded, and would instead return a
different script, which instructed clients to repeatedly load http://github.com/cn-nytimes, in an
attempt to overload Github's servers.

You can assume that Baidu served its traffic using servers in China; Github did so from servers in the
USA; and websites using the analytics script were hosted all over the world.

(a) (3 point) Whose traffic contributed to the DDOS attack? Mark the BEST choice.

O Web browsers inside China O Both of these

O Web browsers outside China O Neither of these

(b) (6 points) Why doesn't the Same Origin Policy prevent this attack? (2 sentences max)

(c) (3 points) Which of the following changes would have prevented the attack? Consider each
choice in isolation (i.e., assess whether it prevents the attack assuming none of the other
choices are in effect). For each choice, assume that the content that the site serves remains the
same. Mark ALL that apply.

O Baidu switches its analytics server to
only be accessible using HTTPS.

O Every website that uses Baidu’s
analytics changes the script tag URL so
it loads over HTTPS instead of HTTP.
(Assume the script was also available
over HTTPS.)

O Github’s server redirects any incoming

HTTP connection to a corresponding

HTTPS URL.
O Baidu's analytics server redirects any

incoming HTTP connection to a
corresponding HTTPS URL.

O Baidu adds baidu. com to the HSTS

(HTTP Strict Transport Security) preload
list.

O Github switches its server to only be
accessible using HTTPS.

O None of these.

12

(d) (3 points) Which of the following techniques could Github have used to make the DoS attack
ineffective? Mark ALL that apply.

O Block any packets from Chinese IP O Remove all use of Baidu analytics from
addresses Github web pages
O Move the affected Github server to a O None of these.

new |IP address

(e) (3 points) The remainder of this problem concerns a Web security feature called
Subresource Integrity (SRI). It works by adding an attribute to the script tag for externally loaded
scripts:

<script src="http://example.com/script.js" integrity="[CRYPTOGOOP]">
Browsers then validate the integrity of the script retrieved from the given src location.

What should CRYPTOGOOP contain for it to achieve its goal of assuring integrity, while minimizing
the effort required by web developers to adopt it? Mark the BEST answer.

O An encryption of the script being O A digital signature of the script being loaded

loaded
O A hash of the URL of the script

O Ahash of the script being loaded

(f) (3 points) Suppose every website with Baidu’s analytics starts using SRI. Given GC’s
capabilities, could it still redirect some Baidu analytics traffic to Github? Justify your answer.

(g9) (3 points) Name ONE drawback to a website’s owner from deploying SRI. (If you name
more than one, we will only grade the first.)

13

Problem 4. Cookies (9 points)

Your friend has built a personal site hosted at https://stanford.edu/~clueless. They have built an
authentication system so certain pages of the site can only be accessed by authorized individuals.
Once a user logs in successfully, the server sends a response with a Set-Cookie HTTP header to set
a sessionId cookie in the user's browser.

Set-Cookie: sessionId=1234; Path=/~clueless

Your friend is specifying the Path attribute on the cookie so that the cookie is scoped to the path prefix
/~clueless. This means that the cookie will be sent when the user visits
https://stanford.edu/~clueless or https://stanford.edu/~clueless/secret but not when
they visit https://stanford.edu/~attacker.

(a) (3 points) Nonetheless, it turns out that https://stanford.edu/~attacker can read the
sessionld cookie that was scoped to your friend's site with the Path attribute. Explain what the
page at https://stanford.edu/~attacker could do to read the cookie.

(b) (3 points) What cookie attribute (e.g. Secure, HttpOnly, Domain, SameSite, etc.) could your
friend have specified when setting the cookie that would have prevented the attacker from
stealing the sessionId cookie? Justify your answer.

(c) (3 points) Does adding the cookie attribute you specified in (b) actually prevent
https://stanford.edu/~attacker from reading the content of your friend's website? If yes,
explain why. If not, explain how the attacker site can still access the content.

14

Problem 5. Coffee Shop Wi-Fi (12 points)

You're sitting in a coffee shop enjoying a latte and doing some relaxing computer security reading at
http://awesome-security-stuff.com. You're connected on the coffee shop’s wifi network.

(a) (3 points) Assuming you are only browsing http://awesome-security-stuff.com, who is

potentially able to observe what articles you are reading? Mark ALL that apply.

O Other coffee shop patrons O The coffee shop’s ISP

O The manager of the store next door to

the coffee shop who occasionally
leeches off of the coffee shop’s wifi

O The website

awesome-security-stuff.com

O None of the above
O Your friend in a dorm a few miles away

(b) (3 points) Name a technology that could reduce the number of parties in part (a) that can

observe your traffic. Do not give an explanation, simply write down the name.

(c) (3 points) If you use the technology you listed in part (b), who will still be able to know a
complete list of all the articles you view? Mark ALL that apply.

O Other coffee shop patrons O The coffee shop’s ISP

O The manager of the store next door to

the coffee shop who occasionally
leeches off of the coffee shop’s wifi

O The website

awesome-security-stuff.com

O None of the above
O Your friend in a dorm a few miles away

(d) (3 points) You notice that each article has a Facebook Like button, loaded as such:

allowing you to indicate on Facebook that you enjoyed this article. If Facebook wanted to, could
it track what articles you are visiting, if you don’t click on the Like button? Justify your answer.

15

Problem 6. Delete Account (6 points)

The route handler below implements the "delete account” functionality which is common on most
websites. This allows the user to completely delete their account. The actual deletion logic is in the
deleteAccount function, which is not shown here. Assume that the session cookie is not a SameSite
cookie, i.e. it is set with the SameSite=None attribute.

app.post('/delete-account’, (req, res) => {
const { sessionId } = req.cookies

if (!sessionld) {
// The user is logged out so send them to login page
res.redirect('/login')
return

const { username } = getUserForSessionId(sessionId)
deleteAccount(username)
res.send('Account deleted."')

1)

a. (3 points) There is a severe security issue in the route handler. Identify the issue.

b. (3 points) Propose a solution that fixes the security issue. Make sure to explain how your
proposal actually solves the problem.

16

Problem 7. User Agent (6 points)

The Express below implements a simple website that shows the visitor their browser User Agent. The
server also has a feature to display the last 100 user agents that were observed by the server.

// Top-level array persists between requests
const userAgents = []

app.get('/", (req, res) => {
userAgents.push(req.headers['user-agent']) // Save the current user agent

if (userAgents.length > 100) userAgents.shift() // Only keep latest user agents

res.send("
<h1>Your user agent: ${req.headers['user-agent']}</hl>
<hl>Last 100 observed user agents:</hl>

${userAgents.map(userAgent => “${userAgent}</1i>").join('\n")}

<p>We take your security seriously, so we use the best encryptions!!!i</p>
)
}
Recall that the req.headers property in Express is an object containing a property for each header in
the HTTP request. For example, if the user visits from a Firefox browser, the value of

req.headers['user-agent'] will be 'Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.15;
rv:94.0) Gecko/20100101 Firefox/94.0".

(a) (3 points) What type of vulnerability does this cause? Mark the BEST answer.

O Man-in-the-middle O CsRF
O Reflected XSS O saL injection
O stored XSS O Clickjacking

(b) (3 points) Describe how an attacker could exploit this vulnerability. Include ALL the steps,
starting from the steps the attacker performs until the exploit runs.

17

Problem 8. Content Security Policy (9 points)

The following CSP is applied to the given HTML page.
CSP:

Content-Security-Policy: default-src 'self'; script-src 'self'; img-src 'self'
https://images.example.com; style-src 'self' https://stylish.example.com;

HTML:

<ldoctype html>
<html lang='‘en'>
<head>
<link rel='stylesheet' href='/style.css' />
<link rel='stylesheet' href="https://stylish.example.com/style.css"' />
</head>
<body>
<script>alert('We have only the BEST memes!')</script>

<h1>Top memes:</h1>

<script src="'/bundle.js'></script>
<script src="https://partner.example.com/analytics.js'></script>
</body>
</html>

(1)
(2)

(3)

(4)
(5)
(6)

(7)
(8)

Specify which resources will be blocked from loading by the CSP. There may be more than one. Mark

ALL that apply.
O 1 Os
O 2 Oe
O3 O7
O 4 Os

O None will be blocked

18

Problem 9. Cross Site Script Inclusion (XSSI) (12 points)

In this problem we look at a common Web vulnerability. Consider a banking web site bank. com. After
login the user is taken to a user information page:

https://bank.com/accountInfo.html

that shows the user’s account balances. accountInfo.html is a static page: it contains the page
layout, but no user data. Towards the bottom of the page a script is included as

<script src="https://bank.com/userdata.js"> (1)
The contents of userdata. js is as follows:
displayData({ name: 'Feross', accountNumber: 1337, balance: 42 })

The function displayData is defined in accountInfo.html and uses the provided data to populate the
page with user data.

The script userdata. js is generated dynamically and is the only part of the page that contains user
data. Everything else is static content. Keep in mind that line (1) causes the script userdata. js to be
executed in the context of the page that includes it.

Suppose that after the user logs in to his or her account at bank. com the site stores the user’s session
token in a browser cookie. Assume that no special cookie attributes such as Secure, HttpOnly, or
SameSite are set.

(a) (3 points) Consider a user who logs into their account at bank. com and then visits the URL

https://attacker.com. Explain how the page at attacker.com can cause all of the user's
data to be sent to evil.com. Please provide the code contained in the page at attacker.com.

19

(b) (3 points) How would you keep accountInfo.html as a static page, but prevent the attack
from part (a)? You need only change line (1) and userdata.js. Make sure to explain why your
defense prevents the attack. Hint: Try loading the user’s data in a way that gives bank.com

access to the data, but does not give attacker.com access. In particular, userdata. js need
not be a JavaScript file.

(c) (3 points) Rather than implementing the fix in (b), what cookie attribute could bank. com
have set on their session cookies to mitigate the issue? Mark the BEST choice.

O secure O Domain
O HttpOnly O sameSite
O Ppath

O None of the above.

(d) (3 points) What's something you want to do in the new year that you’'ve never done before?

Thank you for an excellent quarter!

Have an amazing winter break!

20

