CS256/Winter 2009 Lecture #1

Zohar Manna

FORMAL METHODS FOR REACTIVE SYSTEMS

Instructor: Zohar Manna
Email: manna@cs.stanford.edu
Office hours: by appointment

TA: Boyu Wang
Email: wangboyu@stanford.edu
Office hours: Tuesday, Friday 3-5pm
Durand 1st floor lounge

Web page:
http://cs256.stanford.edu

Course Meetings: MW11:00-12:15, Gates B12

Course work

• Weekly homework due Wed’s before class.
• Final exam (8:30am-11:30am on Friday, March 20).
• No collaboration on homeworks and exam (but welcome otherwise).
• No late homeworks.
Practical − Pentium Bug − Ariane Bug − expected government regulation for formal methods in signalling systems, medical equipment, power plants, highway control.

Concurrent Programs (Hardware/Software)

Temporal Logic Specifications

Mathematical Logic (CS156 / CS157)

Veriﬁcation (CS256)

Automata

Tools

− STeP
− others:
 − model checking: Mau̇l, SMV, VIS, SPIN, UPPAAL, KRONOS, ...
 − deductive: ACL2, PVS, EVES, HOL, ...

Theory

− Model checking
− Deductive veriﬁcation
− Speciﬁcation methods
− Combining model checking and deduction

Textbooks

Manna & Pnueli Springer

Copies of lecture slides.

Papers.
Textbook Overview
(Volume II)

Chapter 0: Preliminary Concepts
[Summary of volume I]

Chapter 1: Invariance: Proof Methods

Chapter 2: Invariance: Applications

Chapter 3: Precedence

[Chapter 4: General Safety]

Chapter 5: Algorithmic Verification
(“Model Checking”)

Extra:
- ω-automata
- branching time logic CTL; BDDs

Transformational Systems

Observable only at the beginning and the end of their execution (“black box”)

\[
\text{input} \rightarrow \text{system} \rightarrow \text{output}
\]

with no interaction with the environment.

- specified by

\[
\text{input-output relations} \downarrow
\]

state formulas (assertions)

First-Order Logic

- typically

terminating sequential programs
e.g., input \(x \geq 0 \rightarrow \text{output } z = \sqrt{x} \)
Reactive Systems

Observable throughout their execution ("black cactus")

Interaction with the environment

- specified by
 their on-going behaviors
 (histories of interactions with their environment)
 \[\downarrow\]
 sequence formulas
 Temporal Logic

- Typically
 - Airline reservation systems
 - Operating systems
 - Process control programs
 - Communication networks
Overview of the Verification Process

The Components

- **System Description Language**
 SPL (Simple Programming Language)
 Pascal-like high-level language with constructs for
 - concurrency
 - nondeterminism
 - synchronous/asynchronous communication

- **Computational Model**
 FTS (Fair Transition System)
 Compact first-order representation of all sequences of states that can be generated by a system
The Components (cont.)

- **Specification Language**

 TL (temporal logic)

 models of a TL formula are infinite sequences of states

- **Verification Techniques**

 - algorithmic (model checking)
 search a state-graph for counterexample

 - deductive (theorem proving)
 prove first-order verification conditions

Reactive System

\[\text{SPL Program } P \]

\[\downarrow \]

Fair Transition System (FTS) \(\Phi \)

\[\downarrow \]

Verification

Proof

\[\text{Com}(\Phi) \subseteq \text{Mod}(\psi) \]

i.e., all computations of \(\Phi \) are models of \(\psi \)

Counterexample

\[\text{computation } \sigma \text{ of } \Phi, \text{ s.t. } \sigma \notin \text{Mod}(\psi) \]
Chapter 0:

Preliminary Concepts

States

- vocabulary \(V \) — set of typed variables
 (type defines the domain over which the values can range)

 \[x + y \]
 \[x > y \]

- expression over \(V \)

- assertion over \(V \)

• state \(s \) — interpretation over \(V \)

Example:

\[V = \{ x, y : \text{integer} \} \]

\[s = \{ x : 2, y : 3 \} \]

(also written as

\[s[x] = 2, \quad s[y] = 3 \]

\[x + y \] is 5 on \(s \)

\[x > y \] false on \(s \)

• \(\Sigma \) — set of all states
Fair Transition System (FTS)
\[\Phi = \langle V, \Theta, T, J, C \rangle \]
(represent s a Reactive Program)

• \(V = \{u_1, \ldots, u_n\} \subseteq V \) — vocabulary

A finite set of system variables

System variables = data variables + control variables

• \(\Theta \) — initial condition

First-order assertion over \(V \) that characterizes all initial states

Example:
\[\Theta: \ x = 5 \land 3 \leq y \leq 5 \]

initial states: \(\{x: 5, y: 3\} \)
\(\{x: 5, y: 4\} \)
\(\{x: 5, y: 5\} \)

• \(T \) — finite set of transitions

For each \(\tau \in T \),
\[\tau: \Sigma \rightarrow 2^\Sigma \]
(\(\tau \) is a function from states to sets of states)

– \(s' \) is a \(\tau \)-successor of \(s \) if \(s' \in \tau(s) \)

– \(\tau \) is represented by the transition relation ("next-state" relation) \(\rho_\tau(V, V') \) where

\(V \) – values of variables in the current state
\(V' \) – values of variables in the next state

Example:
\[\rho_\tau: x' = x + 1 \text{ means} \]
\[s'[x] = s[x] + 1 \]

– special idling (stuttering) transition \(\tau_I \),
\[\rho_{\tau_I}: V = V' \]
Example:

\[\langle x : 5, y : 3 \rangle \xrightarrow{\tau} \{ \langle x : 5, y : 4 \rangle, \langle x : 5, y : 5 \rangle \} \]

“When in state \(\langle x : 5, y : 3 \rangle \) \(\tau \) may increment \(y \) by either 1 or 2, and keep \(x \) unchanged.”

\(\langle x : 5, y : 4 \rangle \) and \(\langle x : 5, y : 5 \rangle \) are \(\tau \)-successors of \(\langle x : 5, y : 3 \rangle \).

- \(J \subseteq T \): set of just (weakly fair) transitions
- \(C \subseteq T \): set of compassionate (strongly fair) transitions

Enabled/Disabled/Taken Transition

- For each \(\tau \in T \),
 - \(\tau \) is enabled on \(s \) if \(\tau(s) \neq \emptyset \)
 - \(\tau \) is disabled on \(s \) if \(\tau(s) = \emptyset \)

- For an infinite sequence of states
 \(\sigma : s_0, s_1, s_2, \ldots, s_k, s_{k+1}, \ldots \)
 - \(\tau \in T \) is enabled at position \(k \) of \(\sigma \)
 - if \(\tau \) is enabled on \(s_k \)
 - \(\tau \in T \) is taken at position \(k \) of \(\sigma \)
 - if \(s_{k+1} \) is a \(\tau \)-successor of \(s_k \)
Example:
\[\rho_\tau : x = 5 \land x' = x + 1 \land y' = y \]
\(\tau\) is enabled on all states s.t. \(s[x] = 5\) and disabled on all other states
\[\sigma : \ldots \langle x : 5, y : 3 \rangle, \langle x : 6, y : 3 \rangle \ldots \]
\(\tau\) is enabled at position \(k\)
\(\tau\) is taken at position \(k\)

Computation

Infinite sequence of states
\[\sigma : s_0, s_1, s_2, \ldots \]
is a computation of an FTS \(\Phi\) (\(\Phi\)-computation),
if it satisfies the following:

- **Initiality**: \(s_0\) is an initial state (satisfies \(\Theta\))
- **Consecution**: For each \(i = 0, 1, \ldots\), \(s_{i+1} \in \tau(s_i)\) for some \(\tau \in \mathcal{T}\).
• Justice: For each $\tau \in J$, it is not the case that τ is continually enabled beyond some position j in σ but not taken beyond j.

Example:
$V: \{x: \text{integer}\}$
$\Theta: x = 0$
$T: \{\tau_I, \tau_{\text{inc}}\}$ with $\rho_{\tau_{\text{inc}}}: x' = x + 1$
$J: \{\tau_{\text{inc}}\}$
$C: \emptyset$

$\sigma: \langle x: 0 \rangle \xrightarrow{\tau_I} \langle x: 0 \rangle \xrightarrow{\tau_I} \langle x: 0 \rangle \xrightarrow{\tau_I} \cdots$

satisfies Initiality and Consecution, but not Justice.
Therefore σ is not a computation.

(In any computation of this system, x grows beyond any bound.)

\[
\sigma: \begin{bmatrix}
\langle x: 0 \rangle & \rightarrow & \langle x: 1 \rangle & \rightarrow & \langle x: 2 \rangle & \rightarrow & \langle x: 3 \rangle & \rightarrow & \langle x: 4 \rangle & \rightarrow & \cdots
\end{bmatrix}
\]

is a computation.

Question: $\rho_{\tau_{\text{inc}}}: (x = 0 \lor x = 1) \land x' = x + 1$

Is
$\sigma: \begin{bmatrix}
\langle x: 0 \rangle & \rightarrow & \langle x: 1 \rangle & \rightarrow & \langle x: 2 \rangle & \rightarrow & \langle x: 3 \rangle & \rightarrow & \langle x: 4 \rangle & \rightarrow & \cdots
\end{bmatrix}$
a computation?
Compassion: For each $\tau \in C$, it is not the case that τ is enabled at infinitely many positions in σ, but taken at only finitely many positions in σ.

Example:

$V : \{x, y : \text{integer}\}$

$\Theta : x = 0 \land y = 0$

$T : \{\tau_I, \tau_x, \tau_y\}$ with

$\rho_{\tau_x} : x' = x + 1 \mod 2$

$\rho_{\tau_y} : x = 1 \land y' = y + 1$

$J : \{\tau_x\}$

$C : \{\tau_y\}$

$\sigma : \langle 0, 0 \rangle \xrightarrow{\tau_x} \langle 1, 0 \rangle \xrightarrow{\tau_x} \langle 0, 0 \rangle \xrightarrow{\tau_x} \ldots$

is not a computation: τ_y is infinitely often enabled, but never taken.

(Note: If τ_y had only been just, σ would have been a computation, since τ_y is not continually enabled.)

\[
\text{FTS } \Phi = \langle V, \Theta, T, J, C \rangle
\]

\[
\text{Run} = \text{Initiality + Consecution}
\]

\[
\text{Fairness} = \text{Justice + Compassion}
\]

\[
\text{Computation} = \text{Run + Fairness}
\]

\[
\text{Notation: } s_0 \xrightarrow{\tau_1} s_1 \xrightarrow{\tau_2} s_2 \xrightarrow{\tau_3} s_3 \rightarrow \ldots
\]

Note: For every two consecutive states s_i, s_{i+1}, there may be more than one transition that leads from s_i to s_{i+1}. Therefore, several different transitions can be considered as taken at the same time.
Finite-State

• For a computation σ of Φ

$$\sigma : s_0, s_1, s_2, \ldots, s_i, \ldots,$$

state s_i is a Φ-accessible state.

• Φ is finite-state if the set of Φ-accessible states is finite. Otherwise, it is infinite-state.

 – If the domain of all variables of Φ is finite, (e.g., booleans, subranges, etc.), then Φ is finite-state.

 – Even if the domain of some variables of Φ is infinite (e.g., integer), Φ may still be finite-state.

Example:

$V : \{x : \text{integer}\}$

$\Theta : x = 1$

$T : \{\tau_1, \tau_1, \tau_2\}$ with

$$\rho_{\tau_1} : x = 1 \land x' = 2$$

$$\rho_{\tau_2} : x = 2 \land x' = 1$$

$J, C : \emptyset$

has 2 accessible states:

$\langle x : 1 \rangle$ and $\langle x : 2 \rangle$