Finding Inductive Assertions
Top-Down Approach

Assertion propagation

we have previously proven $\Box \chi$
and we want to prove $\Box \varphi$
but

$\{\chi \land \varphi\} \tau \{\varphi\}$

is not state-valid for some $\tau \in \mathcal{T}$.

What is the problem?
(assuming that φ is indeed an invariant)
Solution: Take the largest set of states that will result in a φ-state when τ is taken. How?

Precondition of φ w.r.t. τ

$pre(\tau, \varphi) : \forall V'. \rho_\tau \rightarrow \varphi'$

a state s satisfies $pre(\tau, \varphi)$ iff all τ-successors of s satisfy φ.

Note:
s trivially satisfies $pre(\tau, \varphi)$ if it does not have any τ-successors (i.e., τ is not enabled in s).
Precondition of \(\varphi \) w.r.t. \(\tau \) (Con’d)

Example:

\[V: \{x\} \text{ integer} \]
\[\rho_\tau: x > 0 \land x' = x - 1 \]
\[\varphi: x \geq 2 \]
\[\text{pre}(\tau, \varphi): \]
\[\forall x'. \ x > 0 \land x' = x - 1 \rightarrow x' \geq 2 \]
\[x > 0 \rightarrow x - 1 \geq 2 \]
\[x \leq 0 \lor x \geq 3 \]
\[\frac{j}{\tau} \]
\[x \leq 0 \lor x \geq 3 \]
\[\frac{j+1}{\tau} \]
\[x \geq 2 \]

Properties of \(\text{pre}(\tau, \varphi) \)

By the definition of \(\text{pre}(\tau, \varphi) \),
\[\{ \chi \land \varphi \land \text{pre}(\tau, \varphi) \} \tau \{ \varphi \} \]
is guaranteed to be state-valid.

But we have to justify adding the conjunct \(\text{pre}(\tau, \varphi) \) to the antecedent.
This can be done in two ways:
1. Incremental: prove \(\Box \text{pre}(\tau, \varphi) \)
2. Strengthening: prove \(\Box (\varphi \land \text{pre}(\tau, \varphi)) \)
Properties of $\text{pre}(\tau, \varphi)$ (Con’d)

Claim: If φ is P-invariant then so is $\text{pre}(\tau, \varphi)$ for every $\tau \in T$.

Proof:
Suppose φ is P-invariant, but $\text{pre}(\tau, \varphi)$ is not P-invariant.

Then there exists a P-accessible state s such that $s \not\models \text{pre}(\tau, \varphi)$.

But then, by the definition of $\text{pre}(\tau, \varphi)$, there exists a τ-successor s' of s such that $s' \not\models \varphi$.

Since s is P-accessible, s' is also P-accessible, contradicting that φ is a P-invariant.

Properties of $\text{pre}(\tau, \varphi)$ (Con’d)

Definition: A transition τ is said to be self-disabling if for every state s, τ is disabled in all τ-successors of s.

Claim: For every assertion φ and self-disabling transition τ

$$\{\varphi \land \text{pre}(\tau, \varphi)\}\, \tau\, \{\varphi \land \text{pre}(\tau, \varphi)\}$$

is state-valid.

Proof:
Assume $s \models \varphi \land \text{pre}(\tau, \varphi)$.

Then by definition of $\text{pre}(\tau, \varphi)$, for every s', τ-successor of s,
$$s' \models \varphi.$$

Since τ is self-disabling, τ is disabled in all τ-successors s' of s, and so trivially
$$s' \not\models \text{pre}(\tau, \varphi)$$

Thus for all τ-successors s' of s,
$$s' \not\models \varphi \land \text{pre}(\tau, \varphi).$$
Heuristic

If the verification condition
\[\{ \chi \land \varphi \} \tau \{ \varphi \} \]
is not state-valid:

Find \(\text{pre}(\tau, \varphi) \) and then

- Strengthening approach:
 strengthen \(\varphi \) by adding the conjunct \(\text{pre}(\tau, \varphi) \)
 prove \(\square(\varphi \land \text{pre}(\tau, \varphi)) \)
 or,
- Incremental approach:
 prove \(\square \text{pre}(\tau, \varphi) \)
 and add \(\text{pre}(\tau, \varphi) \) to \(\chi \).

Note:
\(\text{pre}(\tau, \varphi) \) is not guaranteed to be an inductive invariant,
so the premises of INV have to be checked again.

Example:

local \(x \): integer where \(x = 1 \)
\[
\begin{align*}
\ell_0 &: \text{request } x \\
\ell_1 &: \text{critical} \\
\ell_2 &: \text{release } x
\end{align*}
\]

We want to prove
\[
\Box (\text{at}_{-\ell_1} \rightarrow x = 0)
\]

Problem:
\[\{ \text{at}_{-\ell_1} \rightarrow x = 0 \} \tau_{\ell_0} \{ \text{at}_{-\ell_1} \rightarrow x = 0 \} \]
is not state-valid.

If we use the above heuristic we get
\[
\text{pre}(\tau_{\ell_0}, \varphi) = \\
\forall x', \pi'. (\text{move}(\ell_0, \ell_1) \land x > 0 \land x' = x - 1) \\
\rho_{\ell_0} \rightarrow (\text{at}'_{-\ell_1} \rightarrow x' = 0)
\]
Example (Con’d):

\[
\text{pre}(\tau_{\ell_0}, \varphi) = \\
\forall x', \pi'. (\text{move}(\ell_0, \ell_1) \land x > 0 \land x' = x - 1) \\
\rho_{\ell_0} \Rightarrow (at'_{\ell_1} \rightarrow x' = 0)
\]

Since

\[
\text{move}(\ell_0, \ell_1) \rightarrow at_\ell_0 = t, at'_{\ell_1} = t
\]

\[
x' = x - 1 \land x' = 0 \rightarrow x = 1
\]

it simplifies to

\[
\text{pre}(\tau_{\ell_0}, \varphi): at_\ell_0 \land x > 0 \rightarrow x = 1
\]

Substituted form of \text{pre}(\tau, \varphi)

Many transition relations have the form

\[
\rho_\tau: C_\tau \land V' = E
\]

where \(C_\tau\) is the enabled condition of \(\tau\).

And so

\[
\text{pre}(\tau, \varphi): \forall V'. C_\tau \land V' = E \rightarrow \varphi'
\]

can be simplified to

\[
\forall V'. C_\tau \rightarrow \varphi[E/V]
\]

replacing all primed variables by its corresponding expression,

thus the quantifier can be eliminated to obtain

\[
\text{pre}(\tau, \varphi): C_\tau \rightarrow \varphi[E/V]
\]

Show that \(\varphi \land \text{pre}(\tau_{\ell_0}, \varphi)\) is inductive

("strengthening approach")

8-11 8-12
Example: Program mux-pet1 (Fig. 2.25) (Peterson's Algorithm for mutual exclusion)

\[
\text{local } y_1, y_2: \text{ boolean where } y_1 = F, y_2 = F \\
\text{s : integer where } s = 1
\]

\[
\ell_0: \text{ loop forever do} \\
| \ell_1: \text{ noncritical} \\
| \ell_2: (y_1, s) := (T, 1) \\
| \ell_3: \text{ await } (\neg y_2) \lor (s \neq 1) \\
| \ell_4: \text{ critical} \\
| \ell_5: y_1 := F
\]

\[
P_1 :: \\
| m_0: \text{ loop forever do} \\
| \text{noncritical} \\
| (y_2, s) := (T, 2) \\
| \text{await } (\neg y_1) \lor (s \neq 2) \\
| \text{critical} \\
| y_2 := F
\]

Example: Program mux-pet1 (Fig. 2.25) (Con’d)

We want to prove mutual exclusion:

\[
\neg (at_{\ell_4} \land at_{m_4})
\]

Bottom-up invariants:

\[
\begin{align*}
\varphi_0: & \quad s = 1 \lor s = 2 \\
\varphi_1: & \quad y_1 \leftrightarrow at_{\ell_3..5} \\
\varphi_2: & \quad y_2 \leftrightarrow at_{m_3..5}
\end{align*}
\]

Problem: the verification conditions

\[
\{\varphi_0 \land \varphi_1 \land \varphi_2 \land \psi\} \ell_3 \{\psi\} \\
\{\varphi_0 \land \varphi_1 \land \varphi_2 \land \psi\} m_3 \{\psi\}
\]

are not state-valid
Example: Program mux-pet1 (Fig. 2.25) (Con’d)

\[\text{pre}(\tau_{l3}, \psi): \forall \pi': \left(\text{move}(l_3, l_4) \land (\neg y_2 \lor s \neq 1) \right) \rightarrow \neg(\text{at}_{l_4} \land \text{at}_{m4}) \]

since

\[\text{move}(l_3, l_4) \text{ implies } \text{at}_{l_4} = 1, \text{ at}_{m4} = \text{at}_{m4} \]

\[\text{pre}(\tau_{l3}, \psi) \text{ simplifies to:} \]

\[at_{-l_3} \land (\neg y_2 \lor s \neq 1) \rightarrow \neg at_{-m4} \]

\[\varphi_3: at_{-l_3} \land at_{-m4} \rightarrow y_2 \land s = 1 \]

\[\text{pre}(\tau_{m3}, \psi): \forall \pi' \ldots \ldots \]

simplifies to:

\[\varphi_4: at_{-l_4} \land at_{-m3} \rightarrow y_1 \land s = 2 \]

Show that \(\varphi_3: \text{pre}(\tau_{l3}, \psi) \) and \(\varphi_4: \text{pre}(\tau_{m3}, \psi) \) are inductive relative to \(\varphi_0 \land \varphi_1 \land \varphi_2 \) ("incremental approach")

Then show that \(\psi \) is inductive relative to \(\varphi_0 \land \ldots \land \varphi_4 \).
Example: pre may never terminate

The transition is
\[\rho_\tau : x' = x + y \land y' = y \]

The property is
\[\varphi : x \geq 0 \]

The VC is
\[\frac{x' = x + y \land y' = y}{\rho_\tau} \frac{x \geq 0}{\varphi} \frac{x' \geq 0}{\varphi'} \]

which is not state valid.

Step 1: The precondition is
\[pre(\tau, x \geq 0) : \forall x', y' : x' = x + y \land y' = y \rightarrow x' \geq 0 \]

that is $y \geq -x$.

Attempting to prove $\Box pre(\tau, \varphi)$ state valid, the VC
\[\frac{x' = x + y \land y' = y}{\rho_\tau} \frac{x \geq 0}{\varphi} \frac{y' \geq -x'}{pre'} \]

is not state-valid.

Step 2: Compute $pre(\tau, y \geq -x)$

\[\forall x', y' : x' = x + y \land y' = y \rightarrow y' \geq -x' \]

that is $y \geq -\frac{x}{2}$.

In general the precondition
\[pre(\tau, y \geq -\frac{x}{n}) : y \geq -\frac{x}{n + 1} \]

Taking the limit as n approaches infinity, we obtain
\[y \geq 0 \]

which is what we want.
Finite-State Algorithmic Verification

finite-state program P

each $x \in V$ assumes only finitely many
values in all P-computations

Therefore,
there are only finitely many distinct
P-accessible states.

Example:
MUX-PET1 (Fig 2.25) is finite-state program:
$s = 1, 2$
$y_1 = T, F \quad y_2 = T, F$
π can assume at most 36 different values

Example: Program mux-pet1 (Fig. 2.25)
(Peterson’s Algorithm for mutual exclusion)

local y_1, y_2: boolean where $y_1 = F, y_2 = F$
s: integer where $s = 1$

ℓ_0: loop forever do
\begin{align*}
\ell_1 & : \text{noncritical} \\
\ell_2 & : (y_1, s) := (T, 1) \\
\ell_3 & : \text{await } (\neg y_2) \lor (s \neq 1) \\
\ell_4 & : \text{critical} \\
\ell_5 & : y_1 := F
\end{align*}

$P_1 ::$

m_0: loop forever do
\begin{align*}
m_1 & : \text{noncritical} \\
m_2 & : (y_2, s) := (T, 2) \\
m_3 & : \text{await } (\neg y_1) \lor (s \neq 2) \\
m_4 & : \text{critical} \\
m_5 & : y_2 := F
\end{align*}

$P_2 ::$
Algorithm (transition-graph)

For a given finite-state program P,
Incrementally construct the state-transition graph G_P, where each node represents a state.

- **Initially**
 Place as nodes in G_P all initial states (satisfy Θ)

- **Repeat** until no new nodes or new edges can be added to G_P

 For some $s \in G_P$, let s_1, \ldots, s_k be its successors

 Add to G_P all new nodes in $\{s_1, \ldots, s_k\}$

 and draw edges connecting s to s_i, $i = 1, \ldots, k$

Algorithmic Verification of Invariance

For assertion q,
To check validity of $\Box q$ over finite-state program P:

1. Construct the state-transition graph G_P.

2. Check if q holds in each state of the graph.

Example: Program MUX-SEM (Fig 2.26)

Generates finite state-transition graph (Fig 2.27)

Check assertion

$$\varphi: \neg(at_{-\ell_3} \land at_{-m_3})$$

in the graph.

φ holds over all accessible states.
Thus, $\Box \varphi$ for MUX-SEM.
Program MUX-SEM (Fig. 2.26)
(mutual exclusion by semaphores)

local y: integer where $y = 1$

$P_1:: \begin{bmatrix} \ell_0: \text{loop forever do} \\ \ell_1: \text{noncritical} \\ \ell_2: \text{request } y \\ \ell_3: \text{critical} \\ \ell_4: \text{release } y \end{bmatrix}$ $|| P_2:: \begin{bmatrix} m_0: \text{loop forever do} \\ m_1: \text{noncritical} \\ m_2: \text{request } y \\ m_3: \text{critical} \\ m_4: \text{release } y \end{bmatrix}$
Example: Program MUX-PET1 (Fig. 2.25)

State-transition graph G_P (Fig. 2.28)

(i, j, v) means $\pi: \{\ell_i, m_j\}, \ s: v$

No y_1, y_2 since

$y_1 = T \text{ iff } 3 \leq i \leq 5$

$y_2 = T \text{ iff } 3 \leq j \leq 5$

Property checked

$\not\psi (\not at_{\ell_4} \land at_{m_4})$

Example: Program mux-pet1(Fig. 2.25)
(Peterson’s Algorithm for mutual exclusion)

local y_1, y_2: boolean where $y_1 = F, y_2 = F$

s: integer where $s = 1$

ℓ_0: loop forever do

$P_1 :: \begin{array}{l}
\ell_1: \text{noncritical} \\
\ell_2: (y_1, s) := (T, 1) \\
\ell_3: \text{await } (\neg y_2) \lor (s \neq 1) \\
\ell_4: \text{critical} \\
\ell_5: y_1 := F
\end{array}$

$\begin{array}{ll}
\hline
m_0: \text{loop forever do} \\
\hline
m_1: \text{noncritical} \\
m_2: (y_2, s) := (T, 2) \\
m_3: \text{await } (\neg y_1) \lor (s \neq 2) \\
m_4: \text{critical} \\
m_5: y_2 := F
\end{array}$

$P_2 :: \begin{array}{l}
\hline
\end{array}$
Completeness of rule INV

Rule INV (general invariance)

For assertions φ, q,

- I1. $\vdash \varphi \rightarrow q$
- I2. $\vdash \Theta \rightarrow \varphi$
- I3. $\vdash \{\varphi\} \land \{\varphi\}$

$\vdash \Box q$

Theorem (Relative completeness of rule INV)

For every assertion q such that

$\Box q$ is P-valid

there exists an assertion φ such that I1 – I3 are provable from state validities
We actually show
“completeness relative to
first-order reasoning”
taking all state-valid assertions as axioms

Outline of proof

Given FTS P with system variables (program + control variables)

$$\bar{y} = (y_1, \ldots, y_m)$$

- Assume $\Box q$ is P-valid, i.e.,
 (\dagger) q holds over every P-accessible state

- Construct (to be shown) accessibility assertion
 $acc_P(\bar{y})$
 such that for any state s,
 ($*$) s is P-accessible state \iff $s \not\models acc_P$

- Take $\varphi = acc_P$

We have to show:
1. acc_P satisfies I1 – I3
2. acc_P can be “constructed”

1. acc_P satisfies I1 – I3

- Premise I1: $\varphi \rightarrow q$
 $$s \not\models acc_P \quad (\Rightarrow) \quad s \text{ is } P\text{-accessible state}$$
 $$\Rightarrow \quad s \not\models q$$
 Thus
 $$\varphi \rightarrow q$$
 is state-valid

- Premise I2: $\Theta \rightarrow acc_P$
 $$s \not\models \Theta \quad (\Rightarrow) \quad s \text{ is } P\text{-accessible}$$
 $$\Rightarrow \quad s \not\models acc_P$$
 Thus
 $$\Theta \rightarrow acc_P$$
 is state-valid
Premise I3: for every $\tau \in T$,
$$\rho_\tau \land acc_P \rightarrow acc'_P,$$
where $acc'_P = acc_P(y')$.

Take s' to be a y-variant of s (s agrees with s' on all variables other than \overline{y}) and for each y_i take
$$s'[y_i] = s[y'_i].$$

Then
$$s \not\models \rho_\tau \Rightarrow s' \text{ is a } \tau\text{-successor of } s$$
$$s \not\models acc_P \quad \overset{(\ast)}{\Rightarrow} \quad s \text{ is } P\text{-accessible} \quad \overset{(\ast)}{\Rightarrow} \quad s' \text{ is } P\text{-accessible}$$
$$s' \not\models acc_P$$
$$\Rightarrow \quad s \not\models acc'_P$$

Example:
$V: \{y\}$ $\Theta: y = 0$
$T: \{\tau_I, \tau\}$, where $\rho_\tau: y' = y + 2$
For this program: $acc_P(y): y \geq 0 \land even(y)$

2. Construction of acc_P

Assume assertion language includes dynamic array a over D

Array a is viewed as function,
$$a: [1..n] \mapsto D$$
where n is the size of the array

The assumption is not essential
We can use Gödel numbering
$$(k_1, \ldots, k_n) \mapsto n = p_1^{k_1} \cdots p_n^{k_n}$$
where p_i is the ith prime number
Case: single-variable \(y \)

Define

\[
\text{acc}_P(y): \ (\exists n > 0) \ (\exists a \in [1..n] \mapsto D).
\]

\(\text{init} \land \text{last} \land \text{evolve} \)

where

\(\text{init}: \ \Theta(a[1]) \)
\(\text{last}: \ a[n] = y \)
\(\text{evolve}: \ \forall i \cdot 1 \leq i < n. \ \bigvee_{\tau \in T} \rho_{\tau}(a[i], a[i+1]) \)

i.e., there exists an array \(a \), such that

- \(a[1] \) is an initial state
- \(a[n] \) has value \(y \) (last element)
- every two consecutive elements are related by some transition relation

array \(a \) represents a prefix

\(s_1, \ldots, s_n \)

of a computation where \(a[i] \) stands for

the value of \(y \) at state \(s_i \)

Claim:

For any value \(d \in D \),

\[\text{acc}_P(d) = T \]

iff

\(d \) is a possible value of \(y \) in a \(P \)-accessible state

\(\text{acc}_P(d) \) asserts the existence of a computation prefix

that leads to a state where \(y = d \).
Example: Transition system EVEN

\[V: \{y\} \quad \text{ranges over } \mathbb{Z} \text{ (the integers)} \]
\[\Theta: \ y = 0 \]
\[\rho_{\tau}: \ y' = y + 2 \]

\[acc_P(y): \]
\[(\exists n > 0)(\exists a \in [1..n] \mapsto \mathbb{Z}). \]
\[\left(a[1] = 0 \land a[n] = y \land \right) \]
\[\left(\forall i . 1 \leq i < n . a[i + 1] = a[i] + 2 \right) \]

simplifies to

\[(\exists n > 0)(\exists a \in [1..n] \mapsto \mathbb{Z}). \]
\[\left(a[n] = y \land \right) \]
\[\left(\forall i . 1 \leq i \leq n . a[i] = 2 \cdot (i - 1) \right) \]

simplifies to

\[y \geq 0 \land \text{even}(y) \]

Precisely characterizes the values that \(y \) may assume in \(P \)-accessible states of EVEN

Discussion

Although the assertion \(acc_P \) is inductive and strengthens any \(P \)-invariant, it is not very useful in practice.

The shaded area is preserved by all transitions. Its description is much simpler than that of \(acc_P \).
Multivariable $\mathbf{y} = (y_1, \ldots, y_m)$ case

Use 2-dimensional array \mathbf{a}

\[
\begin{array}{cccc}
 y_1 & \cdots & y_m \\
 a[1, 1] & \cdots & a[1, m] \\
 a[2, 1] & \cdots & a[2, m] \\
 \vdots & \ddots & \vdots \\
 \vdots & \ddots & \vdots \\
\end{array}
\]

Example: Transition system FACT

y, z ranging over \mathbb{N} (the nonnegative integers)

$\Theta: y = 1 \land z = 1$

$\rho, \tau: y' = y + 1 \land z' = (y + 1) \cdot z$

Construction of acc_P:

$(\exists n > 0)(\exists a \in [1..n] \times [1, 2] \mapsto \mathbb{N}).$

\[
\begin{pmatrix}
 a[1, 1] = 1 \land a[1, 2] = 1 \\
 a[n, 1] = y \land a[n, 2] = z \\
 \land \\
 \forall i: 1 \leq i < n: a[i + 1, 1] = a[i, 1] + 1 \land \\
 a[i + 1, 2] = (a[i, 1] + 1) \cdot a[i, 2]
\end{pmatrix}
\]
\((\exists n > 0)(\exists a \in [1..n] \times [1, 2] \mapsto \mathbb{N})\).

\[
\begin{pmatrix}
a[1, 1] = 1 & a[1, 2] = 1 \\
a[n, 1] = y & a[n, 2] = z \\
\forall i: 1 \leq i < n: a[i + 1, 1] = a[i, 1] + 1 & a[i + 1, 2] = (a[i, 1] + 1) \cdot a[i, 2]
\end{pmatrix}
\]

simplifies to

\((\exists n > 0)(\exists a \in [1..n] \times [1, 2] \mapsto \mathbb{N})\).

\[
\begin{pmatrix}
a[n, 1] = y & a[n, 2] = z \\
\forall i: 1 \leq i \leq n: a[i, 1] = i & a[i, 2] = i!
\end{pmatrix}
\]

simplifies to

\[y \geq 1 \land z = y!\]

Precisely characterizes the \(P\)-accessible states
for the transition system FACT

8-39